- 相关推荐
小学数学《圆锥的体积》教案
作为一名为他人授业解惑的教育工作者,有必要进行细致的教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!以下是小编为大家整理的小学数学《圆锥的体积》教案,希望对大家有所帮助。
小学数学《圆锥的体积》教案1
教学内容:
九年义务教育六年制小学数学第十二册P32页。
教学目标:
1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。
2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。
3、进一步培养学生将所学知识运用和服务于生活的能力。
教学重点:
灵活运用圆柱圆锥的有关知识解决实际问题。
教学难点:
同教学难点。
设计理念:
练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。
教学步骤、教师活动、学生活动
一、复习铺垫、内化知识。
1、圆锥体的体积公式是什么?我们是如何推导的?
2、圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。
(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
3、求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米。高12厘米。
4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。
学生独立练习,互相批改,指出问题。
学生交流一下这几题在解题时要注意什么?
二、丰富拓展、延伸练习。
1、拓展练习:
(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?
(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?
2、完成31页第5题。讨论下列问题:
(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?
(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?
3、分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?
学生分组讨论,教师参与其中,以有疑问的'方式参与讨论。
三、充分提高,全面升华。
1、展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。
2、教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。
3、讨论练习八蒙古包所占空间的大小的方法。
(1)蒙古包是由哪几个部分组成的?
(2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?
(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。
4、交流一下本节课的收获。
学生分组讨论后动手实践并计算。
学生先交流。
四、全课总结,内化知识。
1、提问:
(1)同学们掌握了圆锥体的哪些知识?
(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?
2、学有余力的同学思考38页思考题。
3、作业:练习八6、7、8
学生独立练习
小学数学《圆锥的体积》教案2
学情分析
美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。
教学过程
一、复习旧知,铺垫孕伏
1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?
2.复习高的概念。
(1)什么叫圆锥的高?
(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)
评析:
圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。
二、创设情境,引发猜想
1. 电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的.狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2. 引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)
问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)
问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)
过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
评析:
数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。
三、自主探索,操作实验
下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
出示思考题:
(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2)你们的小组是怎样进行实验的?
1. 小组实验。
小学数学《圆锥的体积》教案3
教学目标
1、使学生理解求圆锥体积的计算公式。
2、会运用公式计算圆锥的体积。
教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式。
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)1 2 3 4 5
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3。
5、推导圆锥的体积公式:用字母表示圆锥的体积公式。
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()
圆锥的'底面积是10,高是9,体积是()
(二)教学例1
1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
学生独立计算,集体订正。
答:这个零件的体积是76立方厘米。
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积。
(2)已知圆锥的底面直径和高,求体积。
(3)已知圆锥的底面周长和高,求体积。
4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?
(三)教学例2
1、例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
思考:这道题已知什么?求什么?
要求小麦的重量,必须先求什么?
要求小麦的体积应怎么办?
这道题应先求什么?再求什么?最后求什么?
2、学生独立解答,集体订正。
小学数学《圆锥的体积》教案4
教学目标
1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。
2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生认真审题,仔细计算的习惯。
重点:进一步掌握圆锥的.体积计算及应用
难点:圆锥体积公式的灵活运用
教学过程
一、知识回顾
1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?
2、学生说,教师板书:
圆锥圆柱
特征1个底面2个
扇形侧面展开长方形
体积V=1/3SHV=SH
二、提出本节课练习的内容和目标
三、课堂练习
(一)、基本训练
1、填空课本1----2(独立完成后校对)
2、圆锥的体积计算
已知:底面积、直径、周长与高求体积(小黑板出示)
(二)、综合训练:
1、判断
(1)圆锥的体积等于圆柱的1/3
(2)长方体、正方体、圆柱和圆锥的体积公式都可用V=SH
(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升
(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米
2、应用:练习四第45题任选一题
3、发展题:独立思考后校对
四课堂小结:说说本节课的收获
小学数学《圆锥的体积》教案5
教学内容
教科书第40~41页例2,练习九第3~7题。
1.使学生进一步理解并掌握圆锥体积的计算公式,能较熟练地运用圆锥的体积公式解决问题。
2.在解决问题的过程中,学会思考,增强思维的灵活性,培养学生有序思考的习惯。
3.在探究问题中,发展学生的空间观念。
运用圆锥体积的计算方法解决生活中的问题。
灵活运用圆锥的体积计算公式解决问题。
小黑板
一、复习引入课题
教师:怎样计算圆锥的体积?
学生回答,教师板书体积公式:V=13SH
教师:谁能说说圆锥的体积计算公式是怎么推导出来的?
抽学生简要叙述圆锥的推导过程。
教师:要求圆锥的体积,应该知道哪些条件?
让学生弄清要求圆锥的体积应该知道圆锥的底面积和高。
教师:这节课我们就利用圆锥体积的计算方法解决生活和学习中常见的数学问题。
板书课题:圆锥的体积二
二、探究新知
1.教学例2
教师用投影仪出示例2。
一煤堆的底面周长18.84M,高1.8M,这个煤堆近似一个圆锥体。准备用载重5吨的'车来运。一次运走这堆煤,需要多少辆车?(1M3煤重1.4吨)
教师要求学生带着问题理解题意。用投影仪出示问题。
(1)这道题讲的是什么事情?知道哪些条件?要求什么问题?
(2)要求这堆煤的质量,必须先求什么?
(3)要求煤的体积应该怎么办?
(4)这题应先求什么?再求什么?最后求什么?
教师鼓励学生独立思考,教师适时点拨。
反馈:要求学生用完整的语言叙述题意。
教师抽学生叙述思考过程,要求语言简洁,思路清晰。
在反馈过程中,尽量多抽几个学生叙述。
通过讨论,使学生明白,这题的关键是求出圆锥形煤堆的体积,也就求出了煤堆的质量。
教师抽学生上台板算。
板书:
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:……
教师:最后的结果为什么要取整数部分再加1?
让学生明白装了4辆车后,剩下的虽然不够装一车,仍然要用一辆车装,因此要取整数。
教师:在实际生活和学习中,经常会遇到不知道底面积的情况,这时怎样求圆锥的体积?
2.小结
要求圆锥的体积必须知道底面积和高,如果只知道底面半径、底面直径或底面周长和高,要先算出圆锥的底面积,再利用圆锥的体积公式求出圆锥的体积。学会具体问题具体分析。
三、巩固练习
1.教师用投影仪出示教科书第42页第3题
观察图形,独立解答。抽二生上台板算。
让学生理解此题应先算出圆锥的底面积,才能求出容器的体积。
2.解答教科书第42页第4题
学生独立解答,抽生反馈说出思考过程。
通过这一题的练习,体会圆锥与圆柱之间的关系。
3.解答练习九第6题
学生独立完成,小组交流,展示思考过程,先算什么,再算什么。解答此题的关键是抓住体积不变进行解答。
4.发展练习
有一个底面周长是31.4DM,高9DM的圆锥形容器里装满了黄豆,现在要把这些黄豆放入另一个高9DM的圆柱形容器里,刚好装满。这个圆柱形容器的底面直径有多大?
教师引导学生读题,理解题意。
弄清已知条件和问题,根据条件寻找中间问题。明白先算什么,再算什么。
学生小组内交流,探讨解决方案。
反馈:学生用完整清晰的语言叙述解题思路。
弄清解决这题的关键是抓住黄豆的体积不变,即圆柱和圆锥的体积相等。这是解答此题的突破口。教科书练习九第5题,第7题。教师:今天这节课我们学了什么知识?通过这节课的学习,对圆锥的体积计算更熟悉了。知道圆锥和圆柱的知识与我们的生活息息相关,在解决实际问题时,应有序思考,灵活运用知识。
例2……
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:
小学数学《圆锥的体积》教案6
教材分析
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。
设计理念
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
教学目标
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想→试验探索→合作交流→得出结论→实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
教学重点:
圆锥体积公式的理解,并能运用公式求圆锥的体积。
教学难点:
圆锥体积公式的推导
学情分析
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。
教法学法:
试验探究法、小组合作学习法
教具学具准备:
多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
教学课时:
1课时
教学流程
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景、激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
设计意图以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究、合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果。
3、小组汇报试验结论,集体评议。(注意汇报出试验步骤和结论)
4、教师介绍数学专用名词:等底等高。
设计意图通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据。(教师巡视指导每组的试验)
3、小组汇报试验结论。(提醒学生汇报出试验步骤)
教学预设:
1、圆椎的体积是圆柱体积的3倍;
2、圆锥的`体积是圆柱体积的三分之一;
3、当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)
设计意图
通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验,演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
设计意图
通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
四、实践运用、提升技能
1、判断题:题目内容见多媒体展示独立思考→抽生汇报→说明理由→师生评议。
2、口答题:题目内容见多媒体展示独立思考→抽生汇报→学生评议。
3、拓展运用:课本例题3学生分析题意→小组合作解答→学生解答展示→师生评议。
设计意图通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
五、谈谈收获:这节课你学到了什么呢?
六、课堂作业:
1、做在书上作业:练习四第4、7题
2、坐在作业本上作业:练习四第3题
小学数学《圆锥的体积》教案7
教学目标:
1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理 解。
2.培养学生观察、实践能力。
3.使学生在解决实际问题中感受数学与生活的密切联系。
教学重、难点:结合实际问题运用所学的知识
教学理念:
1.数学源于生活,高于生活。
2.学生动手实践,自主学习与合作交流相结合
教学设计:
一 回顾旧知:
1.圆锥的体积公式是什么? S、h各表示什么?
2.求圆锥的体积需要知道什么条件?
3.还知道哪些条件也能计算出圆锥的体积?怎样计算?
投影出示:
(1)S = 10,h = 6 V = ?
(2)r = 3,h = 10 V = ?
(3)V = 9.42,h = 3 S = ?
二 运用知识,解决实际问题
1.(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的体积是多少吗? 怎么办呢?
2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米
(1)麦堆的底面积:__________________
(2)麦堆的体积:____________________
3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得 数保留整千克数)
4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方 米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)
5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多 少立方分米的木料?
(1)(出示图)什么情况下削出的圆锥是的?为什么?
(2)削去的木料占原来木料的几分之几?
(3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出 的圆锥是的呢?
三 综合练习
1.一个圆柱的`底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为( )厘米;和它等体积等高的圆锥的底面积为( )厘米。
2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的 圆柱体容器中,水面的高度是( )分米
3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是 圆锥的几分之几?
小学数学《圆锥的体积》教案8
教学目标:
1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程设计:
一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)
2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高 6 厘米,体积 = ?
(2)底面半径是 2 分米,高10分米,体积 = ?
(3)底面直径是 6 分米,高10分米,体积 = ?
3、认识圆锥(课件演示),并说出有什么特征?
二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)
1、探讨圆锥的.体积计算公式。
教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?
学生回答,教师板书:
圆柱------(转化)------长方体
圆柱体积计算公式--------(推导)长方体体积计算公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)
(学生得出:底面积相等,高也相等。)
教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?
(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验,并借助课件演示。
(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)
a、谁来汇报一下,你们组是怎样做实验的?
b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的体积是圆锥体体积的3倍)
教师:同学们得出这个结论非常重要,其他组也是这样的吗?
学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。
(板书圆锥体体积计算公式)
教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
(教师给体积公式与“等底等高”四个字上连线。)
进一步完善体积计算公式:
圆锥的体积=等底等高的圆柱体体积×1/3
=底面积 × 高×1/3
V = 1/3Sh
教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
课件出示:
想一想,讨论一下:?
(1)通过刚才的实验,你发现了什么?
(2)要求圆锥的体积必须知道什么?
学生后讨论回答。
三、 应用求体积、解决问题。
1、口答。
(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?
(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?
2、出示例题,学生读题,理解题意,自己解决问题。
例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
a、 学生完成后,进行小组交流。
b 、 你是怎样想的和怎样解决问题的。(提问学生多人)
c 、 教师板书:
1/3×19×12=76(立方厘米)
答:它的体积是76立方厘米
3 、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
4、出示例2:要求学生自己读题,理解题意。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道了什么?
(2)学生独立完成后教师提问,并回答学生的质疑:
3.14×(4÷2)2×1.2× 1/3 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….
5、比较:例1和例2有什么不同的地方?
(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。
小学数学《圆锥的体积》教案9
【教学目标】
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
【教学重点】
圆锥体体积计算公式的推导过程.
【教学难点】
正确理解圆锥体积计算公式.
【教学步骤】
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.
5、推导圆锥的体积公式:
圆锥的体积是和它等底等高圆柱体积的1/3
V=1/3Sh
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()
圆锥的底面积是10,高是9,体积是()
(二)教学例1
1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?
学生独立计算,集体订正.
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的`体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积.
(2)已知圆锥的底面直径和高,求体积.
(3)已知圆锥的底面周长和高,求体积.
4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?
三、全课小结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
四、随堂练习
1、求下面各圆锥的体积.
(1)底面面积是7.8平方米,高是1.8米.
(2)底面半径是4厘米,高是21厘米.
(3)底面直径是6分米,高是6分米.
【板书设计】
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.
小学数学《圆锥的体积》教案10
教学目标:
1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
教学重点:
通过实验的`方法,得到计算圆锥的体积。
教学难点:
运用圆锥的体积公式进行正确地计算。
教学准备:
等底等高的圆柱和圆锥容器模型各一个。
教学过程:
一、复习导入
师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么?(指名学生回答)
2、圆锥有什么特征?
同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)
二、探究新知
课件出示等底等高的圆柱和圆锥
1、引导学生观察:这个圆柱和圆锥有什么相同的地方?
学生回答:它们是等底等高的。
猜想:
(1)你认为圆锥体积的大小与它的什么有关?
(2)你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?
2、学生动手操作实验
(1)用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?
(2)通过实验,你发现了什么?
小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。
3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积=1/3×圆柱体积)
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?(板书:圆锥的体积=1/3×底面积×高)
师:用字母应该怎样表示?(V=1/3sh)
师:在这个公式里你觉得哪里最应该注意?
三、教学试一试
一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?
四、巩固练习
1、计算圆锥的体积
2、判一判
3、算一算
4、拓展延伸
五、总结
通过这节课的学习,你有什么收获呢?
六、板书:
圆锥的体积=圆柱的体积×1/3
圆锥的体积=底面积×高×1/3
用字母表示V=1/3sh
小学数学《圆锥的体积》教案11
教学目标
1、结合具体情境和实践活动,了解圆锥的体积或容积的含义。进一步体会物体体积和容积的含义。
2、经历“类比猜想一一验证说明”的探索圆锥体积计算方法的过程。掌握圆锥体积的计算方法,能正确的计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生的自主探究的能力和小组合作学习的能力。
教学重难点、关键
重点:圆锥的体积计算。
难点:理解圆锥体积与圆柱体积的关系。
关键:经历实验活动,在活动中探索并发现其中的规律。
教具准备
等底等高的圆柱体和圆锥体、沙子等,多媒体课件。
教学过程
一、情境导入
1、师:同学们,夏天到了,美美冷饮店正在举行冰淇淋促销活动,推出两款冰淇淋:
4元 / 杯 1元 / 杯
2、师:老师还了解到这圆柱和圆锥是等底等高的。师:如果你现在有4元钱想去买冰淇淋的话,你认为买哪一种比较划算?
a学生思考后同桌互相交流
b指名汇报:
今天我们就一起来学习:圆锥的体积。(板书课题)
出示目标
本节课我们的目标是:(出示)
理解圆锥体积的计算公式推导过程,并掌握圆锥的体积计算公式,能利用公式解决实际问题。
学生齐读。师:从大家响亮的声音中,老师相信你们肯定能学好。下面让自学指导引领我们自学。
二、学习指导
认真看课本第41页的例2,理解圆锥的'体积推导过程,思考:
1、等底等高的圆柱和圆锥的体积有什么关系?
2、圆锥的体积计算公式是什么?用字母如何表示?
( 8分钟后对子之间相互交流,如有疑问小组内交流)
师:用——画出重点内容,用?表示出不懂的地方。比谁自学最认真,坐姿最端正,自学效果最好。下面自学竞赛开始!
三、自学共探:
1、看一看(自学探究)
生认真地看书自学,师巡视,督促人人认真地看书。
2、议一议(合作交流)
针对自学探究中的问题先对子交流,还不能解决的问题可以小组讨论。
教师在学生合作交流时巡视,观察小组交流情况,对合作不太好的小组给以帮助和提醒,促使每个组及组员都能积极参与到合作交流活动中。
3.说一说(汇报展示自学指导中的三个问题))
师:下面,我们比一比哪个小组展示得精彩,能为自己的小组争光添彩。用抽签的方式来决定你们组所展示的问题。
(学生汇报时有不足或不准确的地方老师或其他成员可以及时给予补充,在各组展示之后,其他小组给与评价。)
小组派代表来展示合作交流的成果和意见, 最后师再做借助课件总结。
今天你们通过动手操作,合作交流,实验验证,推导出圆锥体积的计算公式,同学们之间的合作是愈来愈默契了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)
四、学情展示
1、等底等高的圆柱和圆锥的体积有什么关系?
2、圆锥的体积计算公式是什么?用字母如何表示?
小学数学《圆锥的体积》教案12
圆锥的体积教学目的:使同学初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展同学的空间观念。
学具准备:等底等高的圆柱和圆锥8组,比圆柱体积多的沙土
教学过程:
一、复习
1、圆锥有什么特征?
使同学进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名同学回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
我们已经学过圆柱体积的计算公式,那么圆锥的体积是不是和圆柱体积有关呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名同学叙述圆柱体积计算公式的'推导过程,使同学明确求圆柱的体积是通过切拼生长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让同学讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么一起的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
同学分组实验。
汇报实验结果。先在圆锥里装满沙土,然后倒入圆柱。正好3次可以倒满。
多指名说
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 × 圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导同学想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高
师:用字母应该怎样表示?
然后板书字母公式:V=1/3 SH
师:在这个公式里你觉得哪里最应该注意?
2、巩固练习
(1)已知圆柱和圆锥等底等高。圆柱的体积是45立方厘米,圆锥的体积是( )立方厘米。已知圆柱和圆锥等底等高。圆锥的体积是20立方厘米,圆柱的体积是( )立方厘米。
(2)求下面圆锥的体积。
已知底面面积是9.6平方米,高是2米。
底面半径是4厘米,高是3.5厘米。
底面直径是4厘米,高是6厘米。
在列式时注意什么?( ) 在计算时,我们怎样计算比较简便?(能约分的要先约分)
(3)判断:
(l)圆锥体积是圆柱体积的1/3( )
(2)圆柱体的体积大于与它等底等高的圆锥体的体积。( )
(3)假如圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。( )
(4)圆锥的底面积是3平方厘米,体积是6立方厘米。( )
小学数学《圆锥的体积》教案13
一.教材依据
本节课所讲的《圆锥的体积》是九年义务教育人教实验版,第十二册第二章第二节的内容。
二.设计思想
为了落实素质教育,积极推进新改革,充分发挥学生的主体作用,甘做学生的朋友,引导其积极主动地进行探究性学习。通过“小组活动”、“合作探究”全面调动每一位学生的学习积极性和参与性。通过学生的自主学习、互助学习,自主探究所学的内容,完全改变过去被动的“填鸭式”的教学模式,切实提高课堂效率。
本节教材我想通过向等底等高的圆柱和圆锥中倒水或沙的实验,得到圆锥体积的计算公式V=1/3sh.即就是等底等高的圆锥体积是圆柱体积的三分之一。例2是已知圆锥形沙堆的底面直径和高,求沙子的体积。这是一个简单的实际问题,通过这个例子教学使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。前面学生对圆锥、圆柱立体图形的特征已进行了学习,对其特征也有了较深刻的认识,可以熟练地计算圆柱的.体积、表面积、侧面积。这是学习本节课的基础。
三.教学目标
知 识 技能:理解并掌握圆锥体积的计算方法,能运用公式解决
简单的实际问题。
过程与方法:在实践操作中掌握圆锥体积公式的推导。
情 感 态度:培养学生乐于学习,热爱生活,勇于探索的精神。
四.教学重点
进一步理解圆锥的体积公式,能运用公式进行计算,能解决
简单的实际问题。
五.教学难点:圆锥体积公式的推导。
六、教法选择
利用多媒体、观察法、实验法、师生互动启发式教学
七、学法指导
观察实验 —合作探究—达标反馈— 归纳总结
八.教学准备
多媒体课件、同样的圆柱形容器若干、与圆柱等底等高的圆锥形容器若干、水和沙土。
九.教学过程
【复习旧知】
1. 课件展示圆柱和圆锥的立体图形,并请学生说出图形各部分的名称。
2. 圆柱的体积公式是什么?
【创设情境,引发猜想】
1.多媒体课件呈现出动画情景故事(配音乐):
盛夏的一天,森林里闷热极了,小动物们热得喘不过气来,都想吃点解暑的东西。漂亮的小白兔去冷饮店买了一块圆柱形的冰麒麟,聪明的狐狸拿着一块圆锥形的冰麒麟想和它交换…… (多媒体课件展示两块冰麒麟等底等高)
2.引导学生围绕问题展开讨论。
问题一:小白兔上当了吗?
问题二:狐狸和小白兔怎样交换才算公平?
3. 导入新课,板书课题:同学们,要解决这些问题我们就来学习《圆锥的体积》这一节课,然后帮帮小白兔好吗?
【自主探索,动手实验】
出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们小组是怎样实验的?
1. 小组实验。按照实验程序要求和注意事项(多媒体课件展示)
每四人为一小组,各小组长带领三个成员动手操作实验,教师在教室巡回指导。
2. 全班交流。
组织收集信息 —— 引导整理信息 —— 参与处理信息
3. 引导反思。实验过程让学生积极发散思维,各抒己见。
4. 公式推导。
全班同学集体观看多媒体课件的实验过程,并结合自己的实验活动试着推导圆锥的体积计算公式。
圆柱的体积等于和它等底等高的圆锥体积的3倍;或者圆锥的体积等于和它等底等高的圆柱体积1/3。
用字母表示为: V=1/3sh
5.思考:如果要计算圆锥的体积,必须知道那些条件?
6.问题解决。
故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(课件出示:等底等高)
【运用公式,解决问题】
例2:建筑工地上有许多沙子,堆起来近似一个圆锥,这堆沙子大约
有多少立方米?(结果保留两位小数)
具体解题过程让同学们自己大显身手,个别学生可以上讲台板演,然后教师作最后讲评。
【练习巩固】课件出示,师生共同完成。
一.判断。
1、圆柱体的体积一定比圆锥体的体积大。 ( )
2、圆锥的体积等于和它等底等高的圆柱体的。 ( ) 3、正方体、长方体、圆锥体的体积都等于底面积×高。( ) 。
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。( )
二.填表。
已 知 条 件 体积
圆锥底面半径2厘米,高9厘米
圆锥底面直径6厘米,高3厘米
圆锥底面周长6.28分米,高6分米
【拓展延伸】:
有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?
【质疑问难,总结升华】
通过这节课的学习,你们对圆锥的体积有哪些新的认识?请谈谈自己的感想和收获。
【作业布置】
课本25页第3、5、8题
小学数学《圆锥的体积》教案14
教学内容:教材第16~19页圆锥的认识和体积计算、例1。
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:
一、铺垫孕伏:
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
二、自主探究:
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。(见课本第17页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)
(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的`关系?
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积=底面积高
用字母表示:V=Sh
(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?
8.教学例l
(1)出示例1
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、巩固练习
1.做练习三第2题。
学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。
2.做练习三第4题。学生书面练习,小组交流,集体订正。
四、课堂小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
五、课堂作业
练习三第3题及数训。
六、板书:
圆锥
圆锥的特征:底面是圆,
侧面是一个曲面,展开是一个扇形。
它有一个顶点和一条高。
圆柱的体积=底面积高
圆锥的体积=圆柱体积
圆锥的体积=底面积高V=Sh
小学数学《圆锥的体积》教案15
教学目标:
1、知识与技能
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
教学重点:
掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
教学难点:
理解圆锥体积公式的推导过程。
教具学具:
不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
教学流程:
一、创设情境,提出问题
师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?
生:我选择底面的;
生:我选择高是的;
生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?
生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)
生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的`体积。
二、设疑激趣,探求新知
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的方法。)
生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?
教师根据学生的回答做出最后的评价;
生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?
师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?
小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
师:此种方法是否可行?
学生进行评价。
师:哪个小组还有更好的办法?
生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
通过学生的交流出现以下几种情况:
一是圆柱与圆锥等底不等高;
二是圆柱与圆锥等高不等底;
三是圆柱与圆锥不等底不等高;
四是圆柱与圆锥等底等高。
3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?
师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!
要求:
实验材料,任选沙、米、水中的一种。
实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)
师:
谁来汇报一下,你们组是怎样做实验的?
通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略
师:请看大屏幕,看数学小博士是怎样做的?(课件演示)
齐读结论:
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
(小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh
师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?
(噢!三种冰淇淋的体积原来一样大)
联系生活,拓展运用:
本练习共有三个层次:
1、基本练习
(1)判断对错,并说明理由。
圆柱的体积相当于圆锥体积的3倍。()
一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是()
一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()
(2)计算下面圆锥的体积。(单位:厘米)
s=25、12 h=2、5
r=4,h=6
2、变形练习
出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米
(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?
(2)、找一找这些计算方法有什么共同的特点?V锥=1/3Sh
(3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?
3、拓展练习
一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?
整理归纳,回顾体验
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)
【小学数学《圆锥的体积》教案】相关文章:
圆锥的体积教案02-13
《圆锥的体积》数学教学反思10-07
《圆锥的体积》教案范文01-06
圆锥的体积微课教案07-17
圆锥的体积教学反思10-06
《圆锥的体积》教学反思02-10
《圆锥的体积》教学设计03-07
圆锥的体积教学设计03-27
圆锥的体积教学反思04-06