五年级数学教案《分数与除法的关系》

时间:2024-04-03 07:40:12 教案 投诉 投稿
  • 相关推荐

五年级数学教案《分数与除法的关系》

  作为一名默默奉献的教育工作者,总归要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么应当如何写教案呢?下面是小编为大家整理的五年级数学教案《分数与除法的关系》,欢迎大家借鉴与参考,希望对大家有所帮助。

五年级数学教案《分数与除法的关系》

五年级数学教案《分数与除法的关系》1

  教学目标

  (1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

  (2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。

  教学重点、难点

  重点、难点:理解分数与除法的关系。

  教具、学具准备

  教学过程

一、复习铺垫

  1、口述下列分数的意义:

  2、口答列式计算。

  (1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?120÷12=10(人)

  (2)把12米长的钢管平均截成6段,每段长多少米?

  12÷6=2(米)

  归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。如果把(2)题的12米改成1米,如何列式?1÷6它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。

  出示课题“分数与除法的关系”。

  二、教学新知

  1、教学例2。

  把1米长的钢管,平均截成6段,每段长多少米?

  (1)边作图边讲解。

  “1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。所以1÷6=1/6(米)

  (2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)

  2、教学例3。

  把3只月饼平均分成4份,每份是多少?

  教学过程

  (1)读题后指名学生列式:3÷4

  (2)边讲解边出示图式

  (3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。

  第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。得出3÷4=3/4(只)

  小结:从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。

  3、归纳分数与除法的'关系。

  (1)观察例2、例3的算式。

  1÷6=1/6(米)

  3÷4=3/4(只)

  (2)思考分数与除法有什么关系?

  (3)结论:被除数÷除数=被除数/除数

  (4)练一练:课本P75第1题。

  把分数改写成除法算式。

  4/7=()÷()21/25=()÷()

  14/27=()÷()7÷()=7/()

  讨论7÷()=7/()在括号里能填什么数?能否填任何数?为什么?

  结论:在除法中,除数不能为零。在分数中,分母不能为零。

  三、练习反馈

  1、7分米是几分之几米?23分钟是几分之几小时?

  学生独立练习后集中反馈,说一说思考过程。

  小结:

  “7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。

  把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。

  2、练一练:

  课本P76第5题填在书上。

  四、课堂练习

  课本P76第2、3、4题。

  五、课后作业《作业本》

  学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。

五年级数学教案《分数与除法的关系》2

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的`关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

【五年级数学教案《分数与除法的关系》】相关文章:

《分数与除法的关系》教案03-03

《分数与除法的关系》教学反思04-05

分数与除法关系的应用教案08-26

《分数与除法的关系》数学教学反思10-07

《分数与除法的关系》教案12篇03-29

《分数除法》数学教案01-02

小学数学《分数与除法关系》教学反思10-06

《分数除法》数学教案(15篇)02-16

《分数除法》数学教案20篇10-12

《分数除法》数学教案(精选15篇)02-16