整式的教案

时间:2024-04-24 17:32:26 教案 投诉 投稿

整式的教案

  作为一无名无私奉献的教育工作者,就有可能用到教案,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?以下是小编帮大家整理的整式的教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

整式的教案

整式的教案1

  一、教学目标

  (一)知识与技能

  1.能概括、理解单项式乘法法则。

  2.会进行单项式的乘法运算。

  (二)过程与方法

  探索单项式乘以单项式的运算法则,体会乘法交换律、结合律的作用和转化的思想。

  (三)情感、态度与价值观

  通过解决实际问题,体会数学知识的应用价值。促进学生在独立思考的基础上,能积极与他人合作交流,并且敢于发表自己的观点,以增强学生的自信,让他们在学习中体会成功的快乐,并且培养学生推理能力与计算能力。

  二、学情分析

  《整式的乘除与因式分解》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律的内容联系紧密,是对上述内容的拓展和延续,是对《整式的加减法》的后续学习,同时也是初中代数关于式的学习的重要内容。

  而本节课——单项式乘以单项式用到了有理数的乘法、幂的运算性质,且后续的多项式与单项式的乘法,都要转化为单项式乘法,并为因式分解的学习奠定基础,所以单项式乘以单项式将起到承前启后的作用,在整式乘除法中占有独特地位.

  因此在本节课教学中注重探讨单项式与单项式相乘的法则的形成过程。引导学生研究如何经过具体到抽象,特殊到一般,归纳概括得到性质。培养学生对知识的转化能力和学生对问题中所蕴藏的数学规律进行探索的兴趣。

  三、重点难点

  重点:单项式乘法法则及其应用。

  难点:理解运算法则及其探索过程,单项式与幂的混合运算。

  四、教学过程

  4.1第一学时

  教学活动

  活动1【讲授】单项式与单项式相乘

  (一)温故知新,创设情境,引入新课

  指出下列公式的名称

  同底数幂的乘法

  幂的乘方

  积的乘方

  (二)探究新知

  你会计算下列各式吗?

  (1) 4x3·5x2

  (2) -4x2y·5xy

  (3) -2x2y·(-3 xy2)

  (三)例题讲解

  例1. 4a2x5·(-3 x2)

  1.引导学生具体的分析例题。

  2.应用乘法的运算律,详细的解答例题。

  3.得出结论,重点强调:各系数的积做为积的系数;相同字母的指数的和作为积里这个字母的指数;对于只在一个单项式里出现的字母,则连同他的指数作为积的一个因式。

  从以上的运算过程中,和学生一起归纳出单项式与单项式相乘的法则吗?

  单项式与单项式相乘的法则:

  单项式与单项式相乘,把系数、同底数幂分别相乘;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

  注:单项式与单项式相乘结果仍然是单项式。

  (四)巧解巧练

  算一算

  【 设计意图】让学生学会使用单项式与单项式相乘的法则,灵活应用同底数幂相乘底数不变,指数相加的性质。

  (1) 3x2·5x3=15 x5

  引导学生一起解答,应用单项式乘单项式运算法则。

  解:(3*5)(x2 ·x3 )

  =15 x5

  (2)(-4a2b)·(-2a)= 8a3b

  引导学生一起解答,应用单项式乘单项式运算法则。

  解:【(-4)*(-2)】·(a2·a) ·b

  =8a3b

  (五)课堂小结

  单项式乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式。

  由单项式的乘法法则可以得到:单项式与单项式相乘实际上是转化为数与数,同底数幂相乘的运算. 本节利用乘法交换律、结合律和幂的运算性质研究单项式与单项式相乘的法则,在本节课教学中注重探讨单项式与单项式相乘的法则的形成过程,引导学生研究如何经过具体到抽象,特殊到一般,归纳概括得到性质。培养学生对知识的转化能力和学生对问题中所蕴藏的数学规律进行探索的兴趣。

  (六)布置作业

  P99 (1、2)

  P104 ( 3 )

  (七)板书设计:

  14.1.4 单项式乘单项式

  1.温故知新

  2.例题讲解

  3.巧解巧练

  4.算一算

  (1)3x2·5x3=15 x5

  (2)(-4a2b)·(-2a)= 8a3b

  五、教学反思

  本节课学生的积极性很高,课前的自主探究学习很充分,从通过温故知新以及学生通过具体的练习,从而探讨出乘法法则到自己独立应用法则,学生的思维一直处于积极活动的状态。在探讨法则的过程中,学生也出现了一些错误,这时提醒学生考虑自己每一步的算理,做到步步有理有据,培养学生严密的思维能力和解决问题的能力。利用法则提炼出解题步骤是很有必要的,使学生既理解了法则,又能灵活应用法则,找到学习的方法,提高了学生学习数学的积极性。

  从本节课学生的学习来看,学生对于应用单乘单法则问题不大,但是做错题的几率很大,原因主要是幂的三个运算法则及合并同类项在混合应用时学生特别容易出错,这方面还要利用以后单项式乘以多项式及多项式乘以多项式的教学让学生更加熟练的应用各种法则,明确每一步的算理,那么如何解决好这个问题,应从以下几方面来加强:

  (一)关注对教学难点的教学。新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

  (二)关注对学生学习方法的指导。建构主义学习理论认为,学生的'学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。利用错题和“小老师”的方法,激励了学生们学习数学的兴趣。

  (三)把握启发引导的发散性和针对性。教学目标的多样性决定了教学中教师在启发引导时不能“牵着学生的鼻子走”,应该让学生有充分展示自己思维的角度与方法,体会到前面所学的幂的运算在本节课的重要性。使学生从具体的对数的思考引领到对整个幂的运算中内在规律的思考上来。

  通过本节课的教学实践,我再次体会到:学生才是课堂的主人。教师是引导者,是参与者。本课中各知识点均是学生通过探索发现的,让学生充分经历探索与发现的过程。通过练习训练又对法则进行了更深刻的理解,这也是学生学习能力的体现。在今后的教学中要继续注重引导学生自我探索与自我发现,注重挖掘教材的能力生长点,挖掘教材的内涵,着眼于学生的终身需要,为学生的终身发展奠定基础。

整式的教案2

  教学目标:

  知识目标:使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

  能力目标:培养学生快速运算的能力.

  情感目标:培养学生耐心细致的学习习惯.

  教学重点与难点:多项式除以单项式的法则是本节的重难点.

  教学过程:

  一、复习提问

  1.计算并回答问题:

  (1)4a3b4c÷2a2b2c;(2)(a2b2c)÷3ab2

  (3)以上的计算是什么运算?能否叙述这种运算法则?

  2.计算并回答问题:

  (1)3x(x2x+1);(2)4a(a2a+2)

  3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.

  说明:希望学生能写出

  2×3=6,(2的3倍是6)

  3×2=6,(3的2倍是6)

  6÷2=3,(6是2的3倍)

  6÷3=2.(6是3的2倍)

  然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.

  二、新课引入

  对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

  1.法则的推导.

  引例:(8x312x2+4x)÷4x=(?)

  分析:

  利用除法是乘法的逆运算的规定,我们可将上式化为4x·(?)=8x312x2+4x

  然后充分利用单项式乘多项式的.运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

  解:(8x312x2+4x)÷4x

  =8x3÷4x12x2÷4x+4x÷4x

  =2x23x+4x.

  思考题:(8x312x2+4x)÷(4x)=?

整式的教案3

  知识目标:

  (1)使学生在掌握合并同类项的基础上,掌握去括号法则。

  (2)正确地进行简单的整式加减运算。

  能力目标:培养学生基本的运算技巧和能力。

  情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。

  教学重点、难点:

  重点 去括号法则。 教学

  难点 正确运用去括号法则,减少运算中的符号错误。

  教学用具: 多媒体

  教 学 过 程 :

  (一)、情景引入

  1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133

  你出生于8月份,你家有3口人

  2、猜数游戏的'数学原理常常与代数式的运算有关

  3、知识梳理

  -2x+3y-4z 共有 项,其中第三项是: 。

  1、写出 2a2b 的一个同类项:

  2、已知4a2b3与a2mbn-1是同类项,则m= ____,n=_____.

  (二)实践应用, 拓展延

  如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。

  2、用分配律计算:

  (1) +(a-b+c)

  (2) -(a-b+c)

  3、代数式运算的去括号法则:

  括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号

  4、顺口溜

  去括号,看符号

  是+号,不变号

  是-号,全变号

  5、辩一辩:指出下列各式是否正确?如果错误,请指出原因.

  (1) a-(b-c+d) = a-b+c+d

  (2) -(a-b)+(-c+d)= a+b-c-d

  (3) a-3(b-2c)=a-3b+2c

  (4) x-2(-y-3z+1)=x-2y+6z

  6.注意:(1)去括号时应将括号前面的符号连同括号一起去掉.

  (2)要注意括号前面是 -号时,去掉括号后, 括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号

  (3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘.

  7:练一练

  (三)作业

整式的教案4

  一、教材分析

  整式是在以前已经学习了有理数、列代数式的基础上引进的,是代数式中最基本的式子。引进整式是实际的需要,也是学习后续内容(如:整式的运算、分式、方程等)的需要。本课主要是学习整式的有关概念,正确区分单项式和多项式是学习的关键。另外,从具体的实际问题出发,归纳出相关的数学概念,是本节的一个突出特点,因此,使学生知道认识事物的过程是:由特殊到一般,又由一般到特殊,在不断重复中得到提高,培养学生初步的认识规律。

  二、教学目标

  1、知识与技能:使学生理解并掌握单项式、多项式和整式的概念,知道它们之间的区别与联系,掌握单项式的系数、次数,多项式的项、常数项和次数等概念。

  2、数学思考:经历思考、探究、归纳的过程,通过个性与共性的分析发展学生的概括那力,培养学生“特殊——一般——特殊”的认识规律。

  3、解决问题:正确区分单项式和多项式,能用单项式或多项式解决相关问题。

  4、情感态度与价值观:通过师生合作,联系实际,激发学生学好数学的热情及与人合作的精神和用数学的意识。

  三、教学重、难点

  1、重点:知道什么是单项式和多项式及整式

  2、难点:识别单项式系数与次数,多项式的项数及次数

  四、教学方法:

  “引导——发现——概括”法

  五、教、学具

  1、教具:幻灯片、图片

  2、学具:

  六、教学媒体:

  投影仪

  七、教学过程

【活动一】解答有关问题,归纳一般特点

  问题1、填空

  (1)边长为x的正方形的周长为;

  (2)一辆汽车的.速度是v千米/时,行驶t小时所走过的路程为千米;

  (3)设正方体的棱长为a,则它的表面积为,体积为;

  (4)设n表示一个数,则它的相反数是。

  教师:提出问题并引导学生解答

  学生:独立解答或讨论解答

  教师关注:

  ①列代数式的正确性;

  ②学生能否在独立思考的前提下参与讨论。

  设计意图:

  ①通过解决问题激发学生的求知欲;

  ②通过几个具体的问题初步感受这种特殊的代数式的存在。

  问题2、观察上面结果,你能发现它们有什么共同的特点吗?

  学生:分析——讨论——概括

  教师:

  1、巡视指导与提示

  ① 4x=4·x;

  ② vt=v·t;

  ③ 6a2=6·a·a;

  ④ a3=a·a·a;

  ⑤ —n=—1·n

  2、肯定学生的发现并适时给出单项式及其系数、次数的概念

  教师重点关注:

  ①能否发现积的形式;

  ②学生参与讨论的积极性;

  ③语言概括能力及对单项式的理解程度。

  设计意图:通过讨论培养学生与人合作的意识,使学生经历由具体到一般的认识过程,发展学生的创造力及语言概括能力。

  问题3、判断给出的代数式是否是单项式,若是单项式,请指出它的系数与次数。(教师给出式子,如6a2,a3,—n等或由学生说式子,其他同学抢答)

  教师:给定问题,并评价学生的结论

  学生:或提出问题或抢答问题

  教师重点关注:学生参与的积极性与对单项式的有关概念的理解程度

  设计意图:帮助学生理解单项式及其有关概念

  【活动二】通过类比定义多项式及其有关概念

  问题1、填空

  (1)温度由t℃下降5℃后是℃;

  (2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,那么买3个篮球、5个排球、2个足球共需要元;

  (3)如图①三角尺的面积为(π取3、14);

  (4)图②是一所住宅的建筑平面图,它的建筑面积是米2。

  图①

  教师:提出问题并引导学生解答

  学生:独立解答、成果展示、互相评价

  教师关注:

  ①结果的正确性;

  ②学生能否独立完成。

  设计意图:

  ①通过解决问题激发学生的求知欲;

  ②通过几个具体的问题初步感受这种特殊的代数式的存在,及与前面单项式的区别。

  问题2、观察上面结果,你能发现它们有什么共同的特点吗?

  学生:分析——讨论——概括

  教师:巡视指导并定义多项式及项、常数项、次数和整式的概念。

  教师重点关注:能否通过类比的方法发现出它们的共同特征,从而定义多项式。

  设计意图:通过类比的方式解决相关问题从而达到区别单项式与多项式的目的,使学生进一步经历由具体到一般的认识过程。

  问题3、判断给出的代数式是否是多项式,若是多项式,请指出它的项和次数。

  (过程同活动一的问题3)

  【活动三】巩固练习

  问题1、用整式填空,并指出单项式的系数与次数以及多项式的次数和项。

  (1)每包书有12册,n包书有册;

  (2)底边为a,高为h的三角形的面积为;

  (3)图中阴影部分的面积为。

  学生独立完成,互相评价。教师重点关注学生能否正确区分单项式和多项式,能否正确指出单项式的系数与次数以及多项式的次数和项。能否通过互相评价纠正错误。

  【活动四】小结与作业

  1、小结:这节课我们学习了哪些知识?你有哪些收获?你能说一说吗?

  教师引导学生回忆所学内容,学生回忆、交流。教师重点关注学生是否能全面回答(知识、能力、思想方法、认识规律、合作精神等)

  设计意图:教师要努力使学生自己回顾、总结、梳理所学的知识,完善认知结构。

  2、作业:

  ①课本60页2、4题;

  ②写数学日记;

  (数学日记涉及到的内容:了解到了那些知识,应用知识能解决那些问题,那些内容还没有掌握或模糊,那些内容尚需要讨论,掌握了那些数学思想方法等。)

  八、教学反思:略

整式的教案5

  新课指南

  1.知识与技能:(1)在具体情境中了解代数式及代数式的值的含义;(2)掌握整式、同类项及合并同类项法则和去括号法则;(3)培养学生用字母表示数和探索数学规律的能力.

  2.过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式.在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题.

  3.情感态度与价值观:通过对整式加减的`学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.

  4.重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的法则.难点是探索规律的过程及用代数式表示规律的方法,以及准确识别整式的项、系数等知识.

  教材解读精华要义

  数学与生活

  如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块.

  思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖.综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块.这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的例子吗?

  知识详解

  知识点1代数式

  用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.

  例如:5,a,(a+b),ab,a2-2ab+b2等等.

  知识点2列代数式时应该注意的问题

  (1)数与字母、字母与字母相乘时常省略“×”号或用“·”.

  如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

  (2)数字通常写在字母前面.

  如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

  (3)带分数与字母相乘时要化成假分数.

  如:2×ab=ab,切勿错误写成“2ab”.

  (4)除法常写成分数的形式.

  如:S÷x=.

整式的教案6

  一、素质教育目标

  (一)知识教学点

  1.理解:整式的加减实质就是去括号,合并同类项.

  2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤.

  3.运用:能够正确地进行整式的加减运算.

  (二)能力训练点

  1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力.

  2.培养学生用代数方法解几何问题的思路.

  (三)德育渗透点

  渗透教学知识来源于生活,又要为生活而服务的辩证观点.

  (四)美育渗透点

  整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美.

  二、学法引导

  1.教学方法:以旧引新,通过自己操作发现解题规律.

  2.学生学法:练习→总结步骤→练习

  三、重点、难点、疑点及解决办法

  整式加减运算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师出示探索性练习,学生解答归纳整式加减运算的一般步骤,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习引入

  (出示投影1)

  化简下列各式

  (1)

  ;

  (2)

  ;

  (3)

  .

  学生活动:同桌两位同学出一个学生在胶片上化简,另一个学生在练习本上完成,然后把几个学生的演算胶片用投影打出,其他学生一起来给打分.不对的,由学生找出错在哪里,错误的原因是什么.

  师提出问题:上述三个数学式子,同学们讨论一下,怎样用数学语言进行叙述呢?(把每个括号看作一个整体)

  学生活动:同桌同学互相讨论、研究,若讨论的.结果、语句认为比较通顺者可以举手回答,同学们再互相更正.(学生回答时,教师用彩笔把运算符号写在胶片上显示出来,以引起注意.)

  【教法说明】前两节去括号、合并同类项的内容,其实就是整式加减内容的一部分,复习上述知识,学生可以很轻松地就过渡到整式加减这一节内容上来,使新旧知识很自然地衔接起来.

  师提出问题:上述式子中,每个括号内的式子是什么式子?(整式)从而引出课题,并板书.

  [板书]

  【教法说明】以合并同类项、去括号为铺垫,从而引出本节知识,可以说是自然顺畅,学生不会感到整式加减法陌生.

  (二)探求新知,讲授新课

整式的教案7

  教学目标

  ①过实例体验整式加减的意义

  ②掌握整式的简单加减运算

  ③会运用整式的加减解决简单的实际问题

  教学重点

  本节的教学重点是整式的加减运算。

  教学难点

  例3的问题情境比较复杂,还涉及含有字母的代数式的大小比较,是本节教学的难点

  教学方法

  讲练法

  教学用具

  教学过程

  集体备课稿个案补充

  一、新课引入

  甲、乙两个零件截面的面积哪一个比较大?大多少?把结果填在下面的横线上。

  a1.5a

  vb2b

  b

  甲乙

  截面甲的`面积是

  截面乙的面积是

  甲、乙的、两个截面面积的差是()—()=

  本引例让学生思考后回答,教师引导,让学生知道:1、作差法是比较大小的一种很好的方法;2、在解决这个实际问题时,将问题转化成两个整式的差,从而得以解决;3、整式的加减可以归结为去括号和合并同类项。

  二、讲授新课

  例1求整式3x+4y与2x-2y-1的和

  教师教会学生1、列式(注意整体性);2、去括号(特别是减法);3、有同类项就合并同类项(至少不能合并为止)。

  变式练习:求3x+4y与2x-2y-1的差(学生做,两个学生板演)。

  三、课堂练习(课本“做一做”)

  1、填空:

  (1)3x与-5y的和是,3x与-5y的差是;

  (2)a-b,b-c,c-a三个多项式的和是。

  2、先化简,再求值:3x^2-[x^2-2(3x-x^2)],其中x=-7。

  四、典例分析

  例2小红家的收入分农业收入和其他收入两部分,今年农业收入是其他收入的1.5倍。预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的全年总收入是增加,还是减少?

  这个例题是本节课的难带内,教师可以设置下列问题:

  1、分析题目的已知量与未知量,及相互间的关系;

  2、选哪个未知量用字母来表示比较方?其他未知量怎么表示?

  3、填空:设小红家今年其他收入为a元,则

  (1)今年农业收入为元;

  (2)预计明年农业收入为元;

  (3)预计明年其他收入为元;

  (4)今年全年总收入为元;

  (5)预计明年全年总收入为元。

  4、增加还是减少?怎么判断?

  教师总结:在解决实际问题时,我们经常把其中的一个量或几个量先用字母表示,然后列出数式,这是运用数学解决实际问题的一个重要策略。

  五、教学反馈(课本“课内练习”)

  1、计算:

  (1)3/2x^2-(-1/2x^2)+(-2x^2);

  (2)2(x-3x^2+1)-3(2x^2-x-2).

  2、先化简,再求值:

  (1)5x-[3x-x(2x-3)],其中x=1/2;

  (2)5(3a^2b-ab^2)—(ab^2+3a^2b),其中a=1/2,b=-1。

  3,如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少bcm,第三条边比第一条边的2倍少bcm,求这个三角形的周长。

  六.探究活动

  猜数游戏:游戏甲方把自己的出生年月份乘以2,加10,再把和乘5,再加上他家的人口数(小于10),将这样所得的结果告诉游戏乙方,乙方就能猜出甲方出生于何月,及他家有几口人。

  本题有较大的难度,采取合作学习这种方式进行,启发学生利用本节中例2的解题策略及思想方法来分析这个题目。

  教师可作以下工作:1、学生做甲方,教师做乙方猜测,让学生明白其中的奥秘(甲方告诉的结果的个位数字就是他家的人口数,结果减去人口数再减去50后除以10得到他的出生月份);2、组内积极展开游戏,并讨论这个游戏的原理是什么。(设甲方出生月份为x,家中人口数为y人,甲方告诉的结果是k(已知数),则结果k=5(2ax+10)+y=10x+50+y,所以结果k的个位数字是y,则(k-y-50)/10=x)。

  七、小结、布置作业

整式的教案8

  1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;

  2.理解整式除法运算的算理,发展有条理的思考及表达能力.教学重点:可以通过单项式与单项式的乘法来理解单项式的.除法,要确实弄清单项式除法的含义,会进行单项式除法运算.教学难点:确实弄清单项式除法的含义,会进行单项式除法运算.教学过程:

  一、探索练习,计算下列各题,并说明你的理由.

  (1)

  (2)

  (3)

  提醒:可以用类似于分数约分的方法来计算.

  讨论:通过上面的计算,该如何进行单项式除以单项式的运算?

  结论:

  单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.

  二、例题讲解:

  1.计算:(1);(2);

  (3).

  做巩固练习1.

  2.月球距离地球大约3.84×105千米,一架飞机的速度约为8×102千米/时,如果乘坐此飞机飞行这么远的距离,大约需要多少时间?

  做巩固练习2.三、巩固练习:

  1.计算:

  (1);(2);

  (3);(4).

  2.计算:

  (1);

  (2).

  小结:弄清单项式除法的含义,会进行单项式除法运算.

  作业:课本P41习题1.15:1、2、4.

  教学后记:

整式的教案9

  【学习目标】

  1.理解同底数幂的乘法法则.

  2.运用同底数幂的乘法法则解决一些实际问题.

  3.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.

  4.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律

  【学习方法】自主探究与合作交流

  【学习重点】正确理解同底数幂的乘法法则.

  【学习难点】正确理解和应用同底数幂的乘法法则.

  整式的乘除:测试

  1.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:

  (1)把这个数加上2后平方;

  (2)然后再减去4;

  (3)再除以原来所想的'那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?

  《整式的乘除》单元练习

  1.长为2x,宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后拼成一个正方形.

  (1)你认为图2中的阴影部分的正方形的边长等于x-y;

  (2)试用两种不同的方法求图2中阴影部分的面积.

  方法1:(x-y)2;方法2:(x+y)2-4xy.

  (3)根据图2你能写出下列三个代数式之间的等量关系吗?

  (x+y)2,(x-y)2,4xy:(x-y)2=(x+y)2-4xy.

  (4)根据(3)题中的等量关系,解决如下问题:

  若x+y=4,xy=3,求(x-y)2.

  解:(x-y)2=(x+y)2-4xy=42-12=4.

  2.(16分)如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.

  (1)表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数;

  (2)用含n的代数式表示:第n行的第一个数是(n-1)2+1,最后一个数是n2,第n行共有(2n-1)个数;

  (3)求第n行各数之和.

  解:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n行各数之和等于(2n-1)(n2-n+1)=2n3-3n2+3n-1.

整式的教案10

  【教学目标和要求】

  知识与技能目标

  理解单项式及单项式系数、次数的概念.会准确迅速地确定一个单项式的系数和次数.

  过程与方法目标

  初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

  情感态度价值观目标

  通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

  【教学重点和难点】

  重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立。

  【教学过程】

  一、情景引入:

  1.你坐过火车吗………. 青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:

  (1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  (2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

  (3)回顾以前所学的知识,你还能举出用字母表示

  数或数量关系的例子吗?

  例1.用含有字母的式子填空

  1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

  (2)某产品前年的产量是n件,去年的产量是前年产量的'm倍,用式子表示去年的产量;

  (3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

  (4)用式子表示数n的相反数.

  (数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔。)

  活动一:请学生观察所列代数式包含哪些运算,有何共同运算特征。

  由小组讨论后,经小组推荐人员回答,教师适当点拨。

  (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

  二、学习新知:

  1.单项式:

  通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即数与字母的积 ,像这样的式子叫做单项式.

  然后教师补充,单独一个数或一个字母也是单项式,如2、-3,、a

  2.练习:判断例1中所列式子在哪些是单项式?

  ?(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

  3.单项式系数和次数:

  直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。从而引入单项式系数的概念并板书,接着让学生说出这个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

  例2:用单项式填空,并指出它们的系数和次数.

  (1)、每包书有12册,n包书有_____册.

  (2)、底边长为a,高为h的三角形的面积是_____,(3)、一个长方体的长和宽都是a,高为h,它的体积是_____.

  (4)、一台电视机原价为a元,现按原价的九折出售,这台电视机现在的售价为____元

  (5)、一个长方形的长为0.9,宽为a,面积是____

  字母表示数后,同一个式子可以表示不同的含义,你能赋予 0.9a 一个含义吗?

  通过其中的例题及练习,强调应注意以下几点:

  ①圆周率π是常数;

  ②当一个单项式的系数是1或-1时,“1”通常省略不写;

  ③单项式次数只与字母指数有关。

  三、课堂小结

  ①单项式及单项式的系数、次数。

  ②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

  ③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

  四、课堂作业: 课本第59页:1,2。

整式的教案11

  考考你:

  1 (1)如图,用代数式表示阴影部分的面积s;(2)如果a=2,b=4,求s的值。

  2 四川大地震时,某校305位同学参加了捐款活动,在活动中有 的同学每人捐a元,其余同学每人捐(a+1)元,(1)你能用代数式表示他们一共捐款多少元吗?(2)如果a=5,求一共捐款多少元?(3)如果a=8,求一共捐款多少元?(引入题)

  二 合作交流,探究新知

  1 代 数式的概念

  根据上面两题,请你说说什么叫代数式的值吗?

  用_____代替代数式中的____按照代数式指明的运算,计算出的______叫作_________.

  思考:(1)上面2题中,用a=5与a=8代替代数式中的`字母得到的值相等吗?(2)上面2题中,a可以等于负数吗?

  温馨提示:(1)代数式中字 母取不同的值,代数式的值一般是不同的,因此代数式的值一定要交待是字母取几的值。形式:“当…时,…=…”,(2)求代数式的值时,字母的取值一定要使实际问题有意义,当代数式是分式时,字母的取值不能使分母为0,如:

  中的t不能等于0, 中的字母x不能等于 。

  2 怎 么求代数的值

  做一做:

  1 根据下面给的x的值,你 能算出代数式-2x+9的值吗?

  (1)x=0.5 (2) x=-2,

  2 计算代数式 的值:( 1)当a= -4,b=3;(2)当a= ,b= -2

  思考:(1)现在你能归纳求代数的值有哪些步骤了吗?(第一步:___________________

  第二步:________________________________________________________________)

  (2) 把代数式中的字母用负数代替时,或者用分数代替,且是求幂时,应该注意什么?

  (__________________________________)

  三 应用迁移,巩 固提高

  1 先化简再代入求值

  例1 当a= -2时,求代数式的值。

  2 整体代入

  例2 已知: ,求代数式 的值

  例3 当x= -5 时,代数式 的值是3,求当x= 5时,代数式 的值。

  3 灵活处理

  例4 已知 ,则

  例5 已知a+b+c=0,求代数式(a+b)(b+c)(c+a)+abc的值

  四,堂练习,巩固提高

  P 75 练习 1 2

  五 反思小结,拓展提高

  这一节 ,我 们学 习了什么?

整式的教案12

  知识与技能:

  1.理解单项式、单项式的系数、单项式的次数的概念;

  2.能判断一个代数式是否为单项式;

  3.会指出单项式的系数、单项式的次数。

  过程与方法:通过单项式、多项式和整式的概念,知道他们与代数式之间的关系和区别。

  情感态度与价值观:经历在具体情境中用代数式表示数量关系的过程,发展符号感。

  教学重点:单项式、单项式的系数、单项式的次数的概念。

  教学难点:单项式、单项式的系数、单项式的次数的.概念。

  教学用具:电脑,Powerpoint幻灯片,实物展示台

  教材分析:人们对具体事物的认识,一般要经历从具体到抽象,在从抽象到具体,不断往复,逐步提高的过程。本节中,整式的概念、单项式的概念和次数,既是由数到式的抽象与升华,又是以后学习同类项,整式加减,乘除等知识的基础。同时也为以后学习分式运算、一次方程和函数等知识奠定了基础。另外,通过以往学习的经验,学生对单项式、单项式的系数、单项式的次数等概念的理解和掌握都有一定的难度。更重要的是通过单项式的系数的不同表现形式的教学,培养学生的符号意识和有条理地思考和语言表达能力。

  教学方法:讲练结合法

  课时安排:2课时

  第一课时教学过程设计

  环节问题与情境师生行为设计意图

  活动1:(出示幻灯片)

  请根据下列情境书写代数式:

  1.一辆汽车以60千米/时的速度行驶了c千米,则这辆汽车的行驶时间为______小时。

  2.长方形的长为m,宽为n,则两个这样的长方形的面积是______。教师出示幻灯片,学生思考,然后回答。

  学生回答:或都正确,教师充分给予肯定。

  学生解答,教师点评,并给予鼓励。运用贴近学生生活的实例激发学生探究的兴趣。感受代数式的实际背景。同时启迪学生实际生活离不开数学。

  3.电冰箱包装箱的形状是长方体,如果包装箱的底面形状是边长为a米的正方形,包装箱的高为h米,那么它的体积是______米3。

  4.x的立方的相反数是______。

整式的教案13

  1.使学生熟练地确定单项式的系数、次数,多项式的项数、次数及项;

  2.理解单项式、多项式、整式的概念,会把某一多项式按某一字母进行升幂或降幂排列;

  3.理解同类项的概念,掌握合并同类项的法则,能够熟练地合并同类项;

  4.会去括号和添括号;

  5.熟练进行整式加减运算;教学重点:结合知识要点进行基础训练,整式的加减复习教案 韩龙华。教学难点:立足基础训练,拓展思维空间。教学过程:

  (1)整式的分类:单项式、多项式、整式

  (2)单项式的系数、次数:单项式中的数字因数叫做这个单项式的.系数;单项式中所有字母的指数的和叫做这个单项式的次数。注意:单独一个数或字母也是单项式;单项式的系数不能写成带分数,要写成假分数;字母的书写次序要按英文次序

  (3)多项式的项数和次数:多项式里,次数最高的项的次数就是这个多项式的次数,教案《整式的加减复习教案 韩龙华》。

  (4)同类项:所含字母相同,相同字母的指数也相同,符合这两个条件的项称为同类项。注意两相同两无关;

  (5)合并同类项的法则:把系数相加,字母和字母的指数不变。

  (6)去括号法则:括号前面是“+”号,把括号和它前面的“+”去掉,括号里各项都不变符号。括号前面是“—”号,把括号和它前面的“—”去掉,括号里各项都改变符号。括号前面带系数的,按乘法分配律计算。

  (7)添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“—”号,括到括号里的各项都改变符号。

  (8)整式的加减步骤:如果有括号,就先去括号,再合并同类项。注意:用多项式进行列式时,要用括号把它括起来,作为一个整体来使用。

  (9)求代数式的值:如果能化简,就先化简,再代入求值;代入数字求值时,分数、负数的乘方要加括号;切记要先代入后计算。

  (10)升幂与降幂的排列:2课堂训练1.单项式-x2a+1y3与2x3yb+1合并后结果为x3y3,则a+b=.2.单项式5x2y、3y2x、-4xy2、yx2的和为。3.3b3-(2ab2+4a2b-a3)=3b3+a3-。4.若x2+xy=3,-xy+y2=5,则x2+y2=, x2+2xy-y2=,5.如果m是三次多项式,n是三次多项式,则m+n的次数是()A. 六次B. 不高于三次C. 三次D. 不低于三次6.化简求值:(1)(x-2y)-2(2y-x)(2)(4a+3a2-3-3a3)-(-a+4a3)其中a=-2(3)若A=4a3b-5b2,B= -3a2b2+2b2且A+B+C=0,求C。

整式的教案14

  一,教学目标

  1,知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数。

  2,过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力。

  3,情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想。

  二,教学设想

  本节属于概念教学课,力图体现概念形成的过程。本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。

  三,教材分析

  本章属于《全日制义务教育数学课程标准(实验稿)》中的数与代数领域。整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的.概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受。

  四,重点,难点

  教学重点:单项式,单项式系数及单项式次数概念。

  教学难点:区别单项式的系数和次数。

  五,教学方法

  通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的发现和接受,进而完成知识内化,使书本知识成为自己的知识。

  六,教学过程

  教师活动

  学生活动

  设计意图

  一,创设情境,激趣导入

  问题1:举世瞩目的青藏铁路于20xx年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路。今天我们就来探讨这条铁路上有关路程的问题:

  青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:

  列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢

  分析:根据速度,时间和路程的关系:

  路程=速度*时间则

  它2小时行驶的路程:100*2=200(千米)

  它3小时行驶的路程:100*3=300(千米)

  它t小时行驶的路程:100*t=100t(千米)

  点示:字母t表示时间,用含有字母t的式子100t表示路程。

  注意:在含有字母的式子中如果出乘号,通常将号写作。或省略不写。

  问题2:用含有字母的式子填空。解答教科书第54面思考题。

  (1)6a2,a3(2)2。5x(3)vt(4)—n

  由此引和新课。

  二,合作交流,探索新知

  1,单项式概念的探索。

  ①以上几个式子有什么共同特征

  分析:6a2是6。a。a的乘积。

  a3是a。a。a的乘积。

  2。5x是2。5。x的乘积。

  vt是v。t的乘积。

  —n是—1。n的乘积。

  归纳:都表示数与字母的积。

  ②引出单项式的概念:

  教学活动

  倾听

  思考

  分析

  思考

  师生互动

  列式解答

  倾听

  理解

  思考

  归纳

  倾听

  理解概念

  举例集体评议

  学生活动

  从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用。

  由浅入深,对新知识的掌握起着循序渐进的作用。

  培养学生的分析能力及表达。

  及时强调让学生对新知识掌握得更加完整。

  培养学生的分析,思考及归纳能力

  加深对概念的了解

  培养学生的评价能力

  为概念的引出

  设计意图

  表示数或字母的积的代数式叫做单项式。特别的,单独一个数或一个字母也叫做单项式。如Z,a等。

  ③让学生举出单项式的例子。

  2,单项式系数和次数的探索。

  问题1:以上单项式有什么结构特点

  总结:由数字因数和字母因数两部分组成。

  问题2:分别说出它们的数字因数和各字母的指数。

  教师归纳:

  单项式中的数字因数,叫做单项式的系数。

  一个单项式中,所有字母的指数的和,叫做这个单项式的次数。

  交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数(教师巡视指导,请各别学生展示交流成果。)

  思考

  总结

  思考

  倾听

  理解

  记忆

  同桌交流

  学习

  展示成果

  做好铺垫

  理解概念,为下一步利用概念解决问题作好铺垫。

  在学生形成解题思维之后,手让学生完成给学生自我展示的空间。

  3,例题教学

  教科书55页例1

  学生独立解决后互相交流,最后教师归纳并在黑板上加以规范。

  三,练习巩固,熟练技能。

  1,教科书第56页练习第1,2题。

  2,下列各式:—x+3,6x,其中是单项式的是。

  四,总结反思,拓展延伸。

  1,让学生谈谈本节课的收获。

  2,通过今天的学习,你想进一步探究的问题是什么

  思考

  独立完成

  师生互动

  独立完成

  集全评议

  谈谈本节课的收获

  培养学生思考及解决问题的能力

  检验学生对知识的掌握程度。

  通过总结,再次加深学生对知识的掌握程度,给学生充分发挥的空间。

  七,板书设计

  2。1整式

  一,青藏铁路问题(略)

  二,单项式的概念

  单项式系数及次数的概念。

  三,例题讲解

  八,点评

  本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程。让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少。

整式的教案15

  知识与技能:

  1、 在现实情境中理解整式的加减实际就是合并同类项,有意识地培养他们有条理的思考和语言表达能力。

  2、 了解同类项的定义及合并法则,且会运用此法则进行整式加减运算。

  3、 知道在求多项式的值时,一般先合并同类项再代入数值进行计算。

  过程与方法:

  通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。

  情感与态度与价值观:

  通过学生自主学习探究出合并同类项的定义和法则,培养了学生的自学能力和探究精神,提高学习兴趣。感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。

  教学重点:

  熟练地进行合并同类项,化简代数式。

  教学难点:

  如何判断同类项,正确合并同类项。

  教学用具:多媒体或小黑板、

  教学过程:

  一、创设情景

  问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余部分刷油漆,请根据图中的.尺寸,算出:(1)甲乙油漆面积的和。(2)甲比乙油漆面积大多少。

  (处理方式:①学生思考片刻 ②找学生代表交流自己的解答 ③教师汇总学生的解答)

  板书:

  (1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )

  (2) (2ab-πr2)-(ab-πr2)

  (此时提问学生:这3个式子都是什么式子?在学生回答的基础上引出课题—从本节课开始来学习:2.3整式的加减。并板书)

  二、探求新知

  教师自问:如何计算(1)和(2)两个式子呢?

  接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)

  1、同类项的概念

  观察多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。

  学生交流、讨论。

  ③ 师生总结:(这就是我们今天所要介绍的同类项,此时板书:1.同类项的概念)

  所含字母相同并且相同字母的指数也相同的项叫做同类项。

  几个常数项也是同类项。

  强调:①所含字母相同 ②相同字母的指数也相同 简称“两同”。

  ③系数可以不同 ④字母的顺序可以不同 简称“两不同”。

  合起来简称为:“两同两不同”。

  例如:2a与- a 4 b a2、与-2a2b (注意“两同两不同”。)

  ④温馨提示:生活中也有类似的现象;让学生列举。

  2、找朋友

  发给每组5位同学各一张小卡片(已写好多项式的项),教师手里留一张,当教师亮出自己的卡片,请好朋友(是同类项的为好朋友)上讲台,说一说为什么认为自己是好朋友。

  3、议一议

  课本71页练习1(说明为什么)

【整式的教案】相关文章:

整式教案09-19

整式加减教案11-27

初中整式教案02-25

初中备课教案:整式08-26

小学数学《整式的加减》教案10-07

整式加减教学反思10-06

整式加减的教学反思10-06

整式的加减教学反思10-06

《整式的乘法》教学反思09-20