- 相关推荐
比例和比例尺的概念的整理和复习教案(通用10篇)
作为一名默默奉献的教育工作者,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。快来参考教案是怎么写的吧!下面是小编为大家收集的比例和比例尺的概念的整理和复习教案,欢迎阅读与收藏。
比例和比例尺的概念的整理和复习教案 篇1
教学内容
教科书第27页第1~3题,练习六第1~3题.
教学目的
1.回顾本单元的知识,进一步理解比和比例的意义及它们之间的区别,能较熟练地解比例.
2.进一步理解成正、反比例的量的意义及它们之间的相同点及不同点,能正确判断两种相关联的量成什么比例.
3.使学生再一次经历将一些实际问题抽象成代数问题的过程,体会事物之间的联系和区别;根据知识间的联系,渗透整理复习的方法.
教具、学具准备
自制多媒体课件.
教学过程
一、整理
1.说一说你在本单元都学了哪些知识?
让学生在小组内你一言我一语地说,对本单元的知识作一回顾,教师给足学生说的时间,再让每个小组派代表全班交流,教师随机把学生的发言(即各知识点)板书在黑板上.
2.完成知识结构图.
这些知识在我们的`脑中比较零散,不便于记忆和运用,请大家用你认为好的方式对这些知识加以整理.分小组讨论整理.
3.用实物展示屏进行展示交流.
4.揭示课题:这节课复习前两部分的知识.
二、复习
1.下面式子中,哪个是比?哪个是比例?比和比例有什么区别?
3∶8 4∶9=12∶27 7∶32=35∶10 0.25∶0.8
2.比例的基本性质是什么?什么叫解比例?解下面的比例.
∶=x∶20 =
= 3.9∶4=2.6∶x
学生在练习本上练习,指名板演.学生练习后讲评.
3.什么叫比例尺?怎么求图上距离?怎么求实际距离?
课件出示:在一幅比例尺是1∶12000000的地图上,量得南昌与北京的距离是20.5厘米,北京与南昌的实际距离是多少千米?
4.小山看一本《十万个为什么》.下表是每天看的页数与所需天数两种量相对应的数.
每天看的页数 3 5 8 10
所用的天数 40 24 15 12
表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?
5.课件出示:4个同学去买圆珠笔.下表是他们购买圆珠笔的枝数与总价两种量相对应的数.
购买圆珠笔的枝数 2 3 5 8
总价 0.50 0.75 1.25 2.00
表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?
6.说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?
梳理判断两种量是否成正(反)比例的思考步骤:
(1)先找出三种量,其中两种相关联的量和一个定量;
(2)根据两种相关联的量之间的数量关系,列出关系;
(3)根据正(反)比例的意义,作出结论.
三、分层练习,巩固提高
1.填空.
(1)妈妈用10元钱可以买3千克鸡蛋,总价与数量的比是( ),比值是( ).
(2)汽车3小时行180千米,路程与时间的比是( ),比值是( ).
(3)因为14∶21与0.8∶1.2的比值都等于( ),所以可以组成比例,( )∶( )=( )∶( ).
(4)根据比例的基本性质,把6∶2=0.9∶0.3写成乘法形式是( )×( )=( )×( )
(5)一幅设计图上注明的比例尺是:
在这幅图上量得长8厘米的线表示实际( )米;图上表示实际距离400米的线段长( )厘米.
(6)观察表中总价与本数的关系,并填空.
数量(本) 2 3 5 6 8 9 10
总价(元) 0.9 1.35 2.35
2.选择正确答案的字母填入括号里.
(1)时间一定,所行路程与速度( ).
(2)正方体的体积和棱长( ).
(3)全班人数一定,出勤率和出勤人数( ).
(4)单价一定,总价与数量( ).
(5)一篇文章的总字数一定,每行的字数与行数( ).
A.成正比例关系 B.成反比例关系 C.不成比例
3.判断下面各题中两个变量是否成比例,成什么比例.
(1)xy=,x与y( )比例;x=,x与y( )比例.
(2)3a=b,a与b( )比例;=,b与a( )比例.
(3)x-y=18,x与y( )比例.
4.独立练习.
完成练习六第1~3题.
比例和比例尺的概念的整理和复习教案 篇2
教学内容:
教材第111~112页比例的知识和比例尺的计算、“练一练”,练习二十一第9一14题,练习二十一后面的思考题。
教学要求:
1、使学生加深认识比例的意义和基本性质,能判断两个比能不能组成比例,能比较熟练地解比例。
2、使学生掌握比例尺的意义,能正确地进行有关比例尺的计算,培养学生运用知识的能力。
教学过程:
一、揭示课题
在复习了比的知识后,这节课复习比例的知识和比例尺的计算。(板书课题)
二、复习比例知识
1、复习比例的意义。
(1)提问:上面的比能组成哪些比例?为什么?
什么叫做比例?(板书:比例:表示两个比相等的式子。)你能说出比例里各部分的名称吗?(板书各部分名称)
(2)学生练习。
让学生在练习本上任意写一个比和一个比例。指名一人口答所写的比和比例,老师板书。提问:比和比例有什么区别?说明:比和比例的意义不同,比表示两个数相除的关系、比例表示两个比的相等关系;组成比和比例的项不同,比只有两项,比例有四项。
2、复习比例的基本性质。
(1)提问:比例的基本性质是什么?(板书;比例的基本性质:外项的积等于内项的积。)请同学们按照比例的基本性质,在课本第111页上根据0.4:3=2:15,写出内项积等于外项积的式子。追问:比例的基本性质和比的基本性质有什么不同?
(2)解比例。
学习比的基本性质有什么作用?(板书:解比例)做“练一练”第2题。指名四人板演,其余学生分两组,分别在练习本上做前两题和后两题。集体订正,选择两题让学生说一说第一步的依据。提问:大家总结一下解比例的过程。指出:解比例要先根据比例的基本性质,写成积相等的式子,再求出等式里未知的因数x。
三、复习比例尺计算
1、说明:应用比的知识或者解比例的方法可以计算比例尺的有关问题。(板书:比例尺)
2、复习比例尺的意义、
请同学们自己阅读第112页上关于比例尺的内容,进一步弄清什么是比例尺,比例尺有几种形式。提问:什么是比例尺?(板书:图上距离:实际距离=比例尺)比例尺有哪几种形式?谁来举一个数值比例尺的`例子,并且说明它实际表示什么意思?(根据学生举例板书出一个比例尺,让学生说说图上距离是实际距离的几分之一,实际距离是图上距离的多少倍)
3、学生讨论、操作。
如果学校平面图的比例尺是1:1000,它表示什么意思?图上1厘米表示实际距离多少?你能画出线段比例尺来表示它吗?(让学生画在练习本上,然后交换检查)
4、做“练一练”第3题。
请同学们做“练一练”第3题。指名一人板演,其余学生做在练习本上。集体订正,让学生说说是怎样想的。指出:求图上距离或实际距离,可以先设未知数为x,再根据比例尺的意义列出比例,然后解比例求出结果,也可以根据比的前项和后项的倍数关系来求出结果。
四、综合练习
1、归纳复习内容。
让学生说—说本节课复习的具体内容。
2、做练习二十一第9题。
学生先自己思考,然后指名口答。
3、做练习二十一第11题。
让学生写在练习本上。指名口答,老师板书。说说应怎样想。
4、做练习二十一第13题。
(1)做第(1)题。
指名板演,其余学生做在练习本上。集体订正。提问:怎样求一幅图的比例尺?
(2)讨论第(2)、(3)题。
提问:求出这幅图的比例尺后,下面两题可以怎样解答?
5、讨论练习二十一第14题。
让学生读题。这两题有什么相同和不同的地方?想一想,解答这两题应该有什么不同?(强调要注意份数与数量之间的对应关系)
五、讲解思考题
让学生读题。提问:如果照按比例分配问题思考,还需要知道什么条件?现在已知的比的条件怎样?你能应用比的基本性质,把这个比改写成甲数、乙数、丙数三个数的比吗?请大家课后先把这两个条件化成甲、乙、丙三个数的比,再自己试一试,求出三个数各是多少。
六、布置作业
课堂作业;练习二十一第12题(1)、(3)、(5),第13题(2)、(3),第14题。
家庭作业:练习二十一第12题(2)、(4)、(6)。
比例和比例尺的概念的整理和复习教案 篇3
教学目标:
1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。
2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。
3.理解比例尺的书写特征。
教学重点:
比例尺的意义。
教学难点:
将线段比例尺改写成数值比例尺。
教学过程:
一、引入
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?
请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的`时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
二、教学比例尺的意义。
1.什么是比例尺(自学书上内容,学生交流汇报)
出示图例1
在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2.介绍数值比例尺
让学生看图。
我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。
3.介绍线段比例尺
还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。
4.介绍放大比例尺
出示图例2
在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。
比例和比例尺的概念的整理和复习教案 篇4
教学内容:
六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。
教学目标:
1.使学生理解比例的意义。
2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。
3.培养学生分析问题、解决问题的能力和创新能力。
教学重点:
理解比例尺的意义。
教学难点:
根据比例尺求图上距离和实际距离。
教具准备:
多媒体课件一套。
教学过程:
一、问题的情景:
1. 出示邮票。问:你能同样大小的把它画在图纸上吗?
让同学们画一画,再拿出邮票的长,比一比,怎么样?
归纳:(同样长)得:图上的长和实际的长的比是1:1。
2. 教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?
如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?
3. 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?
4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。
板书:比例尺
二、问题解决:
5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。
6. 小组回报设计方案,教师选择以下四种方案。
(1).用9厘米表示9米
(2).用4.5厘米表示9米
(3).用3厘米表示9米
(4).用1厘米表示9米
7. 说说以上方案是图上距离比实际距离缩小了多少倍?
算一算,每幅图 图上距离和实际距离的比。
(1).9厘米9米=9900=1100
(2).4.5厘米9米=4.5900=1200
(3).3厘米9米=3900=1300
(4).1厘米9米=1900
8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。
齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。
比例尺怎样求:(看上述四个比例式得出):
图上距离实际距离=比例尺 或 图上距离
实际距离
9. 讨论汇报:上面四幅图,比例尺是多少图最大?
比例尺是多少图再小?为什么?
10. 练习:
(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。
(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。
(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?
(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的`比例尺?
(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?
上述四题分层练习,后讲评。
11. 比较(3)、(4)两题的比例尺有什么不同?
教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。
12. 比例尺有多少种表示方法?让生说一说
(常见的有:比的形式 分数的形式 线段形式)
三、问题的应用:
根据比例尺的关系式,求实际距离。
(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?
(学生独立解答,同时抽一生板演)
解:设上海到北京的实际距离为x厘米,
x=105000000
105000000厘米=1050千米。
答:上海到北京的实际距离大约是1050千米。
(2).分析讲述:
根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。
(先设x,再根据比例尺的计算公式列出方程。)
(3).图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。
(4)怎样设x,.教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。
(5)尝.试练习第57页试一试。
河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?
比例和比例尺的概念的整理和复习教案 篇5
教学内容:
比例尺
教学目的:
使学生理解比例尺的意义,掌握求比例尺,求实际距离和求图上距离的解题方法,并会运用这些方法解这类应用题。
教学重点:
掌握求比例尺的解题方法。
教学准备:
世界、中国地图。
教学过程:
复习
1、 复习提问:长度单位有哪些?它们之间相邻的进率是多少?
2、 什么叫做比?
3、 化简下面各比。
0.4/0.6 1/4:8 10厘米:100厘米 2米:140厘米
一、 导入新课
出示世界地图:让学生观察。
师:地图或其他平面图都是把实际距离缩小或方大一定的倍数画面的。利用这张地图,我可以很快告诉你两地之间的实际距离。你想知道哪两地间的实际距离呢?请同学们出题考老师。
学生提问,老师用直尺在地图上量出图上距离,再心算出实际距离后回答。
师:仅靠这把直尺是早不出两地实际距离的,还要用地图上的比例尺去计算。地图的这个尺与手中的尺不同。今天我们就来学习地图上的尺――比例尺。(板书课题)通过这节课的学习,大家就能掌握老师刚才的本领了。
二、教学
1. 教学例4,设计一座厂房,在平面图上用10厘米的距离表示地上10米的`距离。求图上距离和实际距离的比。
(1) 读题、理解题意。
求图上距离和实际距离的比是什么意思?图上距离是多少?实际距离是多少?它们的比呢?长度单位相同吗?单位不同怎么办?
(2) 学生边口答,师边板书如下:
图上距离/实际距离=10米/10厘米=1000/10=100/1
1、 归纳总结:根据刚才例4,说说什么叫比例尺?怎样求比例尺?谁是前项?谁是后项?
师:比例尺是表示图上距离与实际距离之间的倍数关系,是一个比,它不带计量单位。求比例尺时图上距离和实际一定要先化成同级单位后再化简。为了计算简便,通常把比例尺写成前项是1的比。如例4的比例尺应写成1:100或100/1。有时放大的比例尺后项为1。
3、练习。
(1) 下面这段话中的各比,哪些是比例尺,哪些不是?为什么?
把一块长50米,宽10米的长方形地,画在一幅平面图上,长画25厘米,宽画5厘米。那么图上长和实际长的比是200/1;图上宽与实际宽的比是200/1;图上周长与实际周长的比是200/1;图上面积与实际面积的比是40000/1;实际宽与实际长的比是5/1;实际长与图上长的比是200 :1。
(2) 课本第6页的做一做练习后讲评。
4、教学例5。
(1) 在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?
学生读题,理解题意,已知什么条件?要求什么问题?怎样得用比例尺的关系式来解答?用方程解,X该设什么单位?为什么?列式时,比例尺要用什么书写形式?
学生尝试练习后,对照课本检查。指名板演后,讲解。强调设实际距离是X厘米,算出实际距离的厘米数后,要再变成千米数。
(2) 练习:课本第7页的做一做,练后教师讲评。
三、巩固练习
例5有其他解法吗?怎样解?
提示:实际距离等于什么?图上距离等于什么?
四、 总结
比例和比例尺的概念的整理和复习教案 篇6
教学目标
1. 通过学习,初步了解比例尺的意义。
2. 认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。
3. 能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。
4.情感、态度、价值观:体会数学与日常生活的密切联系。
教学重、难点:
(1)理解比例尺的含义。
(2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。
教具学具
小黑板、课件、备一幅地图
教学过程
一、导入新课
同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:
1. 要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?
2. 随便在纸上画一个长方形,这一定是教室的平面图吗? 小组合作并完成汇报,在实物展示台上展示自己的作品。
教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。
揭示课题:今天我们一起来学习比例尺的知识。
二、学习新课
1.学习比例尺的意义。
(1)动手操作
请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。
学生们计算并汇报,集体订正。
一个教室长8米,宽7米,如果我们要画这个 教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设 计:
1、用几厘米表示8米和7米。
2、你设计的方案是图上距离比实际距离缩小了 多少倍?
3、算一算、每幅图的图上距离与实际距离的比。
同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。
请学生重复说一遍什么叫做比例尺。
板书:图上距离:实际距离=比例尺
请每个人算一算自己所画的教室的平面图的比例尺是多少。
(2)观察地图,自由交流。
课件出示世界地图、中国地图和学校的平面图,再请同学拿出自己事先准备的地图,在小组内观察、交流并思考:不同地图的比例尺有什么不同的地方?
引导学生充分发表意见,教师辅助讲解:
1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺 2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的'大小都不一样,这就是采用了大小不同的比例尺。
(3)学习不同的比例尺。
课件出示教材第49页的机器零件图,引导学生观察后提问:请你观察这幅图的比例尺,和我们刚才所观察的比例尺有什么不同之处?
在生产中,有时由于机器的零件比较小,这是就需要把实际的距离扩大一定的倍数以后,再画在图纸上这幅图就是这样的,比例尺2:1,你知道是什么意思吗?
补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。
(4)学习例1。
课件出示例1的题目,提问:线段比例尺怎么改写成数值比例尺?数值比例尺是怎么求的?图上距离和实际距离的单位不同该怎么办?
板书:图上距离:实际距离
=1cm:50km
=1cm:cm
=1:
请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。
2.知识运用。
(1)即时训练。
学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。
集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。
(2)拓展训练。
课件出示下列四个问题:
1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。
2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)
3眼镜上的螺丝钉长是3毫米,螺帽宽1毫米,假如你是技术员,请你画出它的平面图,你有什么困难?怎么办?
4这里有比例尺1:20、20:1和1:1,它们的意义相同吗?请举例说明。
请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。
3.教学例2。
多媒 图上距离 15cm 实际距离 450km
回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。
比例和比例尺的概念的整理和复习教案 篇7
教学目标:
使学生理解的含义,会根据线段比例尺图上距离或实际距离。
教学重难点:
根据线段比例尺求图和实际距离
教学过程
一、导入新课
上节我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,除了数值比例尺外,还有线段比例尺呢?这就是我们这节课要学习的内容。
二、新课
1、线段比例尺是在图上附有一条注有数量线段,用来表示和地面上相对应的实际距离,同学们可以翻开教科书第51页,看右下角有一幅地图,地图的下面就有一条线段比例尺,它上面有0、50和100几个数,还注明了长度单位“千米”,这些数和单位表示什么意思呢?
2、如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的.实际距离?让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米,再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?让学生说怎样列式。
50×5.5=275(千米)
3、你能不能把这个地图上的线段比例尺改写成数值比例尺?怎么改写?
三、课堂练习
完成练习十五的第4~8题
四、课堂小结
创意作业:
在地图上找出我们的家乡和北京,并计算出它们离多远。如果用50千米的线段比例尺,你能画出它们在图上的距离吗?同学们试一试。
比例和比例尺的概念的整理和复习教案 篇8
教学目标
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点
理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点
从不同的角度理解比例尺的意义。
教学准备
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图、一张方格纸。
教法学法
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
教学过程
一、 导入激趣
师:同学们,你们见过这个成语吗?(板书:以――当――)
生:以一当十。(指名回答)
师:那这样的话以三当几?以七当几?你是怎么算的?
生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)
师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?
生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。
师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。
二、 意义构建
1、师:如果要给我们教室画一个平面图,它应该是什么形状的?
生:长方形。
师:我们以前测量过教室的长、宽各是多少?
(生:长大约8米,宽大约6米 。 )
师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的?(展示生的作品)
(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是4:3。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)
引导学生汇报:
(1)直接写上“教室面积大约50平方米。”
(2)在图上标出“长8米、宽6米。”
(3) 标上“1厘米=1米”。
(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”
( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)
让生自学课本第30页什么是比例尺?
集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。
2、让学生议一议可以怎样理解比例尺所代表的意义。
图上的1厘米表示实际的多少?(注意单位要统一)
实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?
图上距离是实际距离的`多少分之一?把实际距离缩小多少倍就是图上距离?
图上距离相当于多少份?实际距离相当于多少份?
三、实际应用
(一)基本运用(小黑板出示)
1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。
判断下列几句话中,哪些比是比例尺,哪些不是.
(1)图上宽与图上长的比是1∶2 ( )
(2)图上宽与实际宽的比1/400是 ( )
(3)图上面积与实际面积的比是1 ∶160000( )
(4)实际长与图上长的比是400 ∶1 ( )
(5)图上长与实际宽的比是1 ∶200 ( )
通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。
2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。
3、深圳到上海的 距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。
在这个基本运用的过程中,鼓励学生用多种方法解。
4、生先独立完成课本第30页1至5题,然后集体订正。
(二)拓展延伸
1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?
2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。
四、课堂小结
师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?通过本节课的学习你知道什么叫比例尺了吗?如何求一幅图的比例尺?图上距离?实际距离呢?
五、布置作业(略)
六、板书设计
比例尺
以一当十
比
学生的图 1:100 或分数 图上距离:实际距离=比例尺
(贴) 1:200 或分数 前项一般为1
(强调比例尺的前项一般为1)
3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。
比例和比例尺的概念的整理和复习教案 篇9
课题
比例尺
教材分析
本节内容是在比的基础上教学的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。
学情分析
教学时我们从学生已有的生活经验出发。先是引导学生去寻找生活中的比例尺。六年级学生正处于具体形象思维向抽象逻辑思维的过度的阶段,因此结合学生的年龄和心理特点我设计了需要统一作图的标准这一环节让学生感受到比例尺在生活中的重要性。在本节课中我充分发挥信息技术辅助教学的优势引导学生在生动形象的情境中探究新知。创设富有挑战性的`问题情境生动有趣的练习情境使学生积极主动地参与到数学活动中去。
教学目标
(体现多维目标;体现学生思维能力培养)
1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。
2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。
3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。
重点、难点
教学重点:理解比例尺的意义。
教学难点:能熟练解答比例尺的有关问题。
教法、学法
学生独立思考,小组合作,教师引导
教 学 流 程
媒体运用
任务导学
明确
任务
出示:数值比例尺为1:100000000的中国地图和线段比例尺为1:500000的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?
老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?
同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?
课堂探究
自主
学习
师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。
今天这节课我们就来认识比例尺。(板书:认识比例尺)
师:关于比例尺,你想了解什么呢?
师:为了解决同学们提出的疑问,我们来做一个实验。
师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。
合作
探究
1、小组的同学互相讨论自己是怎么画的。
师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。
展示学生求的比。
师:这些比的前项代表什么?后项又代表什么呢?
师:像这样的比叫做比例尺,出示比例尺的定义。
师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)
生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺
师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?
2、探讨数值比例尺和线段比例尺的互化
呈现北京市地图让生找出“比例尺 ”
师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。
师:如何把这幅地图的线段比例尺改成数值比例尺?
小组的同学互相讨论尝试改写。
交流
展示
师生共同小结改写时要注意什么?
反馈拓展
拓展
提升
(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0
(2)比例尺是一个比,不带单位名称
(3)比的前项为1
评价
检测
1、我会判断
(1)比例尺是一种测量长度的尺子
(2)一副图的比例尺是80:1,表示把实际距离扩大80倍
(3)比例尺的后项一定比前项大
2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。
3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。
比例和比例尺的概念的整理和复习教案 篇10
【学习目标】
1、让学生在实践活动中体验生活中需要比例尺。
2、 通过观察、操作与交流,体会比例尺的实际意义,了解比例尺的含义。
3、 运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
【教学重点】
正确理解比例尺的含义。
【教学难点】
运用比例尺的有关知识,通过观察、操作与交流,体会比例尺的实际意义,解决生活中的一些实际问题
【教学过程】
一、画图产生疑问、引入新知
1、画图
师:同学们,今天我们在上新课前先来画一画图,请同学们翻开课堂练习本,拿出尺子。
请在本子上画出一条长5厘米的线段。
请在本子上画出一条长12厘米的线段。
请大家在本纸上画一条长1米的线段。(生面有难色)
师:怎么不画了?有什么疑问吗?(本子没有1米长)那该怎么办呢?
(把1米长的线段缩短后,画在本子上)(生画)
2、引入新知
师:说一说,你是怎么画的?(生:10厘米、5厘米、或1厘米长的表示(板书)
师:看来同学们的表示方法各不相同,像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。
师:但是如果把黑板上的数据1米擦去,只把本子上的2厘米、5厘米线段图给别人看,别人能知道你表示的实际距离是1米吗?那么今天,我就向大家介绍一位新朋友,它就是《比例尺》!(板书)
二、自主探究,理解比例尺的意义
1、理解比例尺意义
师:大家请看笑笑同学就根据比例尺的知识画出了他家的平面图,你看他图中的比例尺是?你知道1:100是什么意思吗?同学们思考一下,把你的想法跟同桌说一说(生思考交流)
生汇报:1表示图上距离、100表示实际距离
图上的1厘米的线段,表示实际的100厘米,
实际距离是图上距离的100倍。
师:对,图上的1厘米,表示实际的100厘米,因此比例尺实际上就等于图上距离与实际距离的比(板书:比例尺=图上距离/实际距离)生读一读
2、生活中的比例尺
师:生活中,你在哪些地方有见过比例尺?)黄老师也收集了一些,请同学们看一看(出示各图,分别让学生读出图中的比例尺并说出它们表示的意义)
3、自己写一个比例尺
师:现在你们自己在本子上写一个比例尺,并向同桌说一说它表示的意思
生汇报
4、总结比例尺的特点
师:我们现在初步的认识了比例尺,你有没有发现比例尺有什么样的特点?(生说)总结:是一个比; 图上距离和实际距离的单位是统一的;比例尺的前项一般为1
三、运用知识,尝试解决问题。
1、解决第2小题
师:同学们,笑笑按比例尺1:100画出了她家的平面图,他想带我们看看他的'卧室,请大家把书翻到30页,先请大家量出他卧室长宽的图上距离是多少吧?(课件)
(1) 量出笑笑卧室的长和宽
师:你们量出了笑笑卧室长是?宽是?那你们算出笑笑卧室实际的长和宽吗和面积吗?(课件出示)试一试,并把你的解题思路写在练习本上。
(2)算出笑笑算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。
a : 学生独立完成。(师巡视)
b : 学生汇报计算方法。(展示仪展示)
小结回顾
想一想,我们刚才在求笑笑卧室面积的过程中都经历了哪些程序?(先量出图上距离,在求出实际距离,然后才能算出面积)
2、解决笑笑家的总面积是多少平方米?
先让学生讨论一下,再汇报方法,然后再计算
学生汇报计算方法。(展示仪展示)
3、解决第4题
师:笑笑在设计图时还遇到了难题,我们一起来帮帮她吧!
(课件出示在父母卧室的南墙正中有一扇宽为2米的窗户,在平面图上标出来。)
(1)分析题意,让学生说一说(这道题什么意思呢?谁来说一说)
(1) 学生交流想法。
(2) 学生独立完成。
生1:2米=200厘米 200/100=2厘米
生2:200÷100=0.02米 0.02米=2厘米
师:同学们的表现都非常的出色,笑笑还为我们出了道难题,大家敢于应战吗?
4、解决第5题
(课件出示:笑笑的卧室长4米,画在图纸上,她用8厘米表示自己卧室的长。)
1、 图上1厘米表示的实际距离是多少厘米?
2、 她画的平面图的比例尺是多少?
生:小组合作、讨论、探究、反馈汇报。
四:全课总结
师:通过前面的学习,你能谈谈自己的收获
【比例和比例尺的概念的整理和复习教案】相关文章:
比例和比例尺教案11-29
整理和复习的教案08-28
《整理和复习》教学设计04-30
比和比例的教案02-09
比例尺教案02-17
表内乘法整理和复习12-01
《整理和复习》教学设计15篇06-15
比和比例的教案15篇05-10
《数据的收集和整理 》教案03-02