高中物理知识点总结
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以给我们下一阶段的学习和工作生活做指导,因此我们要做好归纳,写好总结。那么你知道总结如何写吗?以下是小编整理的高中物理知识点总结,希望能够帮助到大家。
高中物理知识点总结 1
力学部分:
1、基本概念:
力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速
2、基本规律:
匀变速直线运动的基本规律(12个方程);
三力共点平衡的特点;
牛顿运动定律(牛顿第一、第二、第三定律);
万有引力定律;
天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);
动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);
动量守恒定律(四类守恒条件、方程、应用过程);
功能基本关系(功是能量转化的量度)
重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);
功能原理(非重力做功与物体机械能变化之间的关系);
机械能守恒定律(守恒条件、方程、应用步骤);
简谐运动的基本规律(两个理想化模型一次全振动四个过程五个量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;
简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;
3、基本运动类型:
运动类型受力特点备注
直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析
匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动
2.匀减速直线运动
曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向
合外力指向轨迹内侧
(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解
匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心
(合外力充当向心力)一般圆周运动的受力特点
向心力的受力分析
简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析
4、基本:
力的合成与分解(平行四边形、三角形、多边形、正交分解);
三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);
对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);
处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);
解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);
针对简谐运动的对称法、针对简谐波图像的描点法、平移法
5、常见题型:
合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。
斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。
动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。
竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。
人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。
动量机械能的综合题:
(1)单个物体应用动量定理、动能定理或机械能守恒的题型;
(2)系统应用动量定理的题型;
(3)系统综合运用动量、能量观点的题型:
①碰撞问题;
②爆炸(反冲)问题(包括静止原子核衰变问题);
③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);
④子弹射木块问题 高中英语;
⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);
⑥单摆类问题:
⑦工件皮带问题(水平传送带,倾斜传送带);
⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);
机械波的图像应用题:
(1)机械波的传播方向和质点振动方向的互推;
(2)依据给定状态能够画出两点间的基本波形图;
(3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;
(4)机械波的干涉、衍射问题及声波的多普勒效应。
电磁学部分:
1、基本概念:
电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速
2、基本规律:
电量平分原理(电荷守恒)
库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)
电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)
电场力做功的特点及与电势能变化的关系
电容的定义式及平行板电容器的决定式
部分电路欧姆定律(适用条件)
电阻定律
串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)
焦耳定律、电功(电功率)三个表达式的适用范围
闭合电路欧姆定律
基本电路的动态分析(串反并同)
电场线(磁感线)的特点
等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点
常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)
电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、)
电动机的三个功率(输入功率、损耗功率、输出功率)
电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)
安培定则、左手定则、楞次定律(三条表述)、右手定则
电磁感应的判定条件
感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线
通电自感现象和断电自感现象
正弦交流电的产生原理
电阻、感抗、容抗对交变电流的作用
变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)
3、常见仪器:
示波器、示波管、电流计、电流表(磁电式电流表的.原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。
4、实验部分:
(1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;
(2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);
(3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);
(4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);
(5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);
(6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);
(7)用多用电表测电阻及黑箱问题;
(8)练习使用示波器;
(9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;
(10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)
5、常见题型:
电场中移动电荷时的功能关系;
一条直线上三个点电荷的平衡问题;
带电粒子在匀强电场中的加速和偏转(示波器问题);
全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);
电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);
通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);
通电导线在匀强磁场中的平衡问题;
带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何求解;在有界磁场中的运动时间);
闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;
两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);
带电粒子在复合场中的运动(正交、平行两种情况):
①.重力场、匀强电场的复合场;
②.重力场、匀强磁场的复合场;
③.匀强电场、匀强磁场的复合场;
④.三场合一。
高中物理知识点总结 2
1、重力
由于地球的吸引而使物体受到的力叫做重力。物体受到的重力G与物体质量m的关系是G=mg,g称为重力加速度或自由落体加速度,与物体所处位置的高低和纬度有关。重力的方向竖直向下,在南北极或赤道上指向地心。物体各部分受到重力的等效作用点叫做重心,重心位置与物体的形状和质量分布有关。
2、万有引力
存在于自然界任何两个物体之间的力。万有引力F与两个物体的质量m1 、m2和它们之间距离r的关系是,G称为引力常量,适用于任何两个物体,其大小通常取。 万有引力的方向在两物体的连线上。
3、弹力
发生弹性形变的物体,由于要恢复原状而对与它接触的物体产生的力。弹簧的弹力F与其形变量x之间的关系是F=kx,k称为弹簧的劲度系数,单位为N/m,与弹簧的长短、粗细、材料和横截面积等因素有关。弹力的方向与形变的方向相反。弹簧都有弹性限度,超过弹性限度后,前述力与形变量的关系不再成立。
4、静摩擦力
两个相互接触的物体,当它们发生相对运动或具有相对运动的趋势时,在接触面产生阻碍相对运动或相对运动趋势的力叫做摩擦力。当两个物体间只有相对运动的趋势,而没有相对运动,这时的摩擦力叫做静摩擦力。两个物体间的静摩擦力有一个限度,两个物体刚刚开始相对运动时,它们之间的摩擦力称为最大静摩擦力。两个物体间实际发生的静摩擦力F在0和最大静摩擦力Fmax之间。静摩擦力的方向总是沿着接触面,并且跟物体相对运动趋势的方向相反。
5、滑动摩擦力
当一个物体在另一个物体表面滑动时,受到另一个物体阻碍它滑动的.力。滑动摩擦力的大小跟压力(两个物体表面间的垂直作用力)成正比。滑动摩擦力f与压力FN之间的关系是f=uFN,u称为动摩擦因数,与相互接触的两个物体的材料、接触面的情况有关。滑动摩擦力的方向总是沿着接触面,并且跟物体的相对运动方向相反。
6、静电力
静止的点电荷之间的力。静电力F与两个点电荷q1、q2和它们之间的距离r的关系是,k称为静电力常量,其大小为。两个点电荷带同种电荷时,它们之间的作用力为斥力;两个点电荷带异种电荷时,它们之间的作用力为引力。静电力也称库仑力。
7、电场力
试探电荷(带电体)在电场中受到的力。电场力F与试探电荷的电荷量q之间的关系是F=Eq,E称为电场强度,大小由电场本身决定,方向与正电荷所受电场力的方向相同,其单位为N/C。
8、安培力
通电导线在磁场中受到的力。当直导线与匀强磁场方向垂直时,导线所受安培力F与导线中电流强度I,导线的长度L,磁感应强度B之间的关系是F=BIL。安培力的方向可由左手定则确定。
9、洛伦兹力
带电粒子在磁场中运动时受到的力。当粒子运动的方向与磁感应强度方向垂直时,粒子所受的洛伦兹力与粒子的电荷量q,粒子运动的速度v,磁感应强度B之间的关系是F=qvB。安培力的方向可由左手定则确定。安培力是大量带电粒子所受洛伦兹力的宏观表现。
10、分子力
存在于分子间的作用力。分子力比较复杂,分子间同时存在着引力和斥力,当分子间距离为r0时,引力与斥力的合力为0,当r>r0时合力表现为引力,r 11、核力 存在于原子核内核子之间的一种力。核力是强相互作用的一种表现,在原子核尺度内,核力比库仑力大的多;核力是短程力,作用范围在之内。 总结 重力的本质是万有引力,是物体和地球之间万有引力的具体化,若不考虑地球自转的影响,地面上的物体所受的重力等于地球对物体的引力。弹力、摩擦力、静电力、电场力、安培力、洛伦兹力的本质是电磁相互作用。核力是一种强相互作用。还有一种基本相互作用称为弱相互作用,弱相互作用与放射现象有关。四种基本相互作用构筑了力的体系。 一、重力及其相互作用 1、力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。 按照力命名的依据不同,可以把力分为: ①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。) ②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。 力的作用效果: ①形变;②改变运动状态。 2、重力: 由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的.重心可用悬挂法确定, 注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。 3、四种基本相互作用 万用引力相互作用、电磁相互作用、强相互作用、弱相互作用 二、弹力: (1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。 (2)条件: ①接触; ②形变。但物体的形变不能超过弹性限度。 (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。) (4)大小: ①弹簧的弹力大小由F=kx计算, ②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定。 滑动摩擦力 1、两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。 2、在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。 3、滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN 4、μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。 5、滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。 6、条件:直接接触、相互挤压(弹力),相对运动/趋势。 7、摩擦力的大小与接触面积无关,与相对运动速度无关。 8、摩擦力可以是阻力,也可以是动力。 9、计算:公式法/二力平衡法。 研究静摩擦力 1、当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。 2、物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。 3、静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。 4、静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm 5、最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0) 6、静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。 重力势能 1.电势能的概念 (1)电势能 电荷在电场中具有的势能。 (2)电场力做功与电势能变化的关系 在电场中移动电荷时电场力所做的功在数值上等于电荷电势能的减少量,即WAB=εA-εB。 ①当电场力做正功时,即WAB>0,则εA>εB,电势能减少,电势能的减少量等于电场力所做的功,即Δε减=WAB。 ②当电场力做负功时,即WAB<0,则εA<εB,电势能在增加,增加的电势能等于电场力做功的绝对值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以说电势能在减少,只不过电势能的减少量为负值,即ε减=εA-εB=WAB。 说明:某一物理过程中其物理量的'增加量一定是该物理量的末状态值减去其初状态值,减少量一定是初状态值减去末状态值。 (3)零电势能点 在电场中规定的任何电荷在该点电势能为零的点。理论研究中通常取无限远点为零电势能点,实际应用中通常取大地为零电势能点。 说明: ①零电势能点的选择具有任意性。 ②电势能的数值具有相对性。 ③某一电荷在电场中确定两点间的电势能之差与零电势能点的选取无关。 2.电势的概念 (1)定义及定义式 电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。 (2)电势的单位:伏(V)。 (3)电势是标量。 (4)电势是反映电场能的性质的物理量。 (5)零电势点 规定的电势能为零的点叫零电势点。理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。 (6)电势具有相对性 电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的数值则不同。 (7)顺着电场线的方向电势越来越低。电场强度的方向是电势降低最快的方向。 (8)电势能与电势的关系:ε=qU。 知识点概述 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。这就是能量守恒定律,如今被人们普遍认同。 知识点总结 一、能量的转化与守恒 1.化学能:由于化学反应,物质的分子结构变化而产生的能量。 2.核能:由于核反应,物质的原子结构发生变化而产生的能量。 3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。 ●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。 即 E机械能1+E其它1=E机械能2+E其它2 ●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。 二、能源与社会 1.可再生能源:可以长期提供或可以再生的能源。 2.不可再生能源:一旦消耗就很难再生的能源。 3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。 三、开发新能源 1.太阳能 2.核能 3.核能发电 4、其它新能源:地热能、潮汐能、风能。 能源的分类和能量的转化 能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。 【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。 【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石油可用几十年,煤炭可用几百年),这些能源短期内不可能再生,因而人们对此有危机感是很自然的。 【新能源】指以新技术为基础,系统开发利用的能源。其中最引人注目的是太阳能的利用。据估计太阳辐射到地球表面的能量是目前全世界能量消费的1.3万倍。如何把这些能量收集起来为我们所用,是科学家们十分关心的问题。植物的光合作用是自然界“利用”太阳能极为成功的范例。它不仅为大地带来了郁郁葱葱的森林和养育万物的粮菜瓜果,地球蕴藏的煤、石油、天然气的起源也与此有关。寻找有效的光合作用的模拟体系、利用太阳能使水分解为氢气和氧气及直接将太阳能转变为电能等都是当今科学技术的重要课题,一直受到各国政府和工业界的支持与鼓励。 以上是从能源的使用进行分类的方法,若从物质运动的形式看,不同的运动形式,各有对应的能量,如机械能(包括动能和势能)、热能、电能、光能等等。各种形式的能量可以互相转化,如动能可与势能互相转化(建筑工地打夯的落锤的上、下运动所包括的能量转化过程);化学能可与电能互相转化(化学电池和电解就是实现这种转化的两种过程)。在能量相互转化过程中,尽管做功的效率因所用工具或技术不同而有差别,但是折算成同种能量时,其总值却是不变的,这就是能量转化和能量守恒定律,这是自然界中一条极为基本的定律(另一条为质量守恒定律),也是识破各式各样永动机的有力判据。在能量转化过程过中,未能做有用功的部分称为“无用功”,通常以热的形式表现。 物质体系中,分子的动能、势能、电子能量和核能等的总和称为内能。内能的绝对值至今尚无法直接测定,但体系状态发生变化时,内能的`变化以功或热的形式表现,它们是可以被精确测量的。体系的内能、热效应和功之间的关系式为: △E=Q+W 其中△E是体系内能的变化,Q是体系从外界吸收的热量,W是外界对体系所做的功。这就是著名的热力学第一定律的数学表达式,也就是能量守恒定律的数学表达式。应用上述公式时,要注意各种物理量的正、负号,即: △E──(+)体系内能增加, (-)体系内能体系减少; Q──(+)体系吸收热量, (-)体系放出能量; W──(+)外界对体系做功, (-)体系对外界做功。 例如1.00 g乙醇在78.3℃时气化,需吸收 854 J的热,这些乙醇由液态变成气态,在101 kPa压力下所做的体积膨胀功为63.2J,这是体系对外界所做的功,应为负值,所以该体系内能的变化△E=[854+(- 63.2)]J=+791J,△E为正值,即体系内能增加了791J。 能源的利用,其实就是能量的转化过程。如煤燃烧放热使蒸汽温度升高的过程就是化学能转化为蒸汽内能的过程;高温蒸汽推动发电机发电的过程是内能转化为电能的过程;电能通过电动机可转化为机械能;电能通过白炽灯泡或荧光灯管可转化为光能;电能通过电解槽可转化为化学能等等。柴草、煤炭、石油和天然气等常用能源所提供的能量都是随化学变化而产生的,多种新能源的利用也与化学变化有关。化学变化的实质是化学键的改组,所以了解化学键及键能等基本概念,将有助于加深对能源问题的认识。 一.时间和时刻: ①时刻的定义:时刻是指某一瞬时,是时间轴上的一点,相对于位置、瞬时速度、等状态量,一般说的“2秒末”,“速度2m/s”都是指时刻。 ②时间的定义:时间是指两个时刻之间的间隔,是时间轴上的一段,通常说的“几秒内”,“第几秒”都是指的时间。 二.位移和路程: ①位移的定义:位移表示质点在空间的位置变化,是矢量。位移用又向线段表示,位移的大小等于又向线段的长度,位移的方向由初始位置指向末位置。 ②路程的定义:路程是物体在空间运动轨迹的长度,是一个标量。在确定的两点间路程不是确定的,它与物体的具体运动过程有关。 三.位移与路程的关系: 位移和路程是在一段时间内发生的,是过程量,两者都和参考系的选取有关系。一般情况下位移的大小并不等于路程的大小。只有当物体做单方向的直线运动是两者才相等。 1、时刻和时间间隔 (1)时刻和时间间隔可以在时间轴上表示出来。时间轴上的每一点都表示一个不同的时刻,时间轴上一段线段表示的是一段时间间隔(画出一个时间轴加以说明)。 (2)在学校实验室里常用秒表,电磁打点计时器或频闪照相的方法测量时间。 2、路程和位移 (1)路程:质点实际运动轨迹的长度,它只有大小没有方向,是标量。 (2)位移:是表示质点位置变动的物理量,有大小和方向,是矢量。它是用一条自初始位置指向末位置的有向线段来表示,位移的大小等于质点始、末位置间的距离,位移的方向由初位置指向末位置,位移只取决于初、末位置,与运动路径无关。 (3)位移和路程的区别: (4)一般来说,位移的大小不等于路程。只有质点做方向不变的.无往返的直线运动时位移大小才等于路程。 3、矢量和标量 (1)矢量:既有大小、又有方向的物理量。 (2)标量:只有大小,没有方向的物理量。 4、直线运动的位置和位移:在直线运动中,两点的位置坐标之差值就表示物体的位移。 要想提高学习效率,首先要端正自己的学习态度.养成良好学习习惯,做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记,课后的练习要到位,多做题才能丰富自己的解题经验. 物理学科知识主要分力、电、光、热、原子物理五大部分。 力学是基础,电学与热学中的许多复杂问题都是与力学相结合的,因此一定要熟练掌握力学中的基本概念和基本规律,以便在复杂问题中灵活应用。力学可分为静力学、运动学、动力学以及振动和波。 静力学的核心是质点平衡,只要选择恰当的物体,认真分析物体受力,再用合成或正交分解的方法来解决即可。一般来说三力平衡用合成,画好力的合成的平行四边形后,选定半个四边形———三角形,进行解三角形的数学工作就行了。 运动学的核心是基本概念和几种特殊运动。基本概念中,要区分位移与路程,速度与速率,速度、速度变化与加速度。几种运动中,最简单的是匀变速直线运动,用匀变速直线运动的公式可直接解决;稍复杂的是匀变速曲线运动,只要将运动正交分解为两个匀变速直线运动后,再运用匀变速公式即可。对于匀速圆周运动,要知道,它既不是匀速运动(速度方向不断改变),也不是匀变速运动(加速度方向不断变化),解决它要用圆周运动的基本公式。 力学中最为复杂的是动力学部分,但是只要清楚动力学的3对主要矛盾:力与加速度、冲量与动量变化和功与能量变化,并在解决问题时选择恰当途径,许多问题可比较快捷地解决。一般来说,某一时刻的问题,只能用牛顿第二定律(力与加速度的关系)来解决。对于一个过程而言,若涉及时间可用动量定理;若涉及位移可用功能关系;若这个过程中的力是恒力,那么还可用牛顿第二定律加匀变速直线运动的公式来解决。但是这种方法,要涉及过程中每一阶段的物理量,计算起来相对麻烦。如果能用动量定理或机械能守恒来解就会方便得多,因为这是两个守恒定律,如果只关心过程的初末状态,就不必求解过程中的各个细节。那么在什么情况下才能用上述两个定律呢?只要体系所受合外力为零(该条件可放宽为:外力的冲量远小于内力的冲量)时,体系总动量守恒;若体系在某一方向所受合外力为零,那么体系在这一方向上的动量守恒。 振动和波这一部分是建立在运动学和动力学基础之上的,只不过加入了振动与波的一些特性,例如运动的周期性(解题时要注意通解,即符合要求的答案有多个),再如波的干涉和衍射现象等等。 热学有两大部分,分子运动论和气体性质。对于分子运动论,如果去为每条理论寻找实验基础,那么书上的各知识点自然就掌握了;对于气体性质,实质是研究一定质量的理想气体的四个状态参量(压强P、体积V、温度T和内能E)与两个过程量(外界对气体做功W和吸、放热Q)之间的关系。对于一定质量的理想气体首先有理想气体的状态方程:P V/T=C,以及热力学第一定律:外界对气体做功W与气体所吸热量Q之和等于气体的内能增量ΔE。其次,V与W有关系,若气体体积V增加,气体必对外做功;理想气体温度T与内能E有关,若理想气体温度升高,其分子平均平动动能必增大,而理想气体分子间无相互作用,因此分子势能不变,所以其体内能E必增大。这6个物理量的关系清楚了,热学本身的问题就解决了。至于热学和力学的综合问题,以力学为基础,将气体压力F用气体压强P和受力面积S表示,即,F=PS。 电学是物理学中的另一大部分,可分为:静电、恒定电流、电与磁、交流电和电磁振荡、电磁波5部分。 静电部分包括库仑定律、电场、场中物以及电容。电场这一概念比较抽象,但是电荷在电场中受力和能量变化是比较具体的,因此,引入电场强度(从电荷受力角度)和电势(从能量角度)描写电场,这样电场就可以和力学中的重力场(引力场)来类比学习了。但大家要注意,质点间是相互吸引的万有引力,而点电荷间有吸引力也有排斥力;关于电势能完全可以与重力势能对比:电场力做多少正功电势能就减少多少。为了使电场更加形象化,还人为加入了描述电场的图线———电场线和等势面,如果能熟练掌握这两种图线的性质,可以帮助你形象理解电场的性质。 场中物包括在电场中运动的带电粒子和在电场中静电平衡的导体。对于前者,可以完全按力学方法来处理,只是在粒子所受的各种机械力之外加上电场力罢了。对于后者要掌握两个有效的方法:画电场线和判断电势。 恒定电流部分的核心是5个基本概念(电动势、电流、电压、电阻与功率)和各种电路的欧姆定律以及电路的串并联关系。特别强调的是,基本概念中要着重理解电动势,知道它是描述电源做功能力的物理量,它的大小可以通俗理解为电源中的.非静电力将一库仑正电荷从电源的负极推至正极所做的功。对于功率一定要区分热功率与电功率,二者只有在电能完全转化为内能时才相等。欧姆定律的理解来源于功能关系,使用时一定要注意适用条件。 电与磁的核心是三件事:电生磁、磁生电和电磁生力,只要掌握这三件事的产生条件、大小、方向,这一部分的主要矛盾就抓住了。这一部分的难点在于因果变化是互动的,甲物理量的变化会引起乙物理量的变化,而乙反过来又影响甲,这一变化了的甲继续影响乙……这样周而复始。 交流电这一部分要特别注意变压器的原副线圈的电压、电流、电功率的因果关系,对于已经制作好的变压器,原线圈的电压决定副线圈的电压(电压在允许范围内变化),而副线圈的电流和功率决定原线圈的电流和功率。 电磁振荡、电磁波部分的难点在于LC振荡回路中的各物理量变化,只要弄清电感线圈和电容的性质,明确物理过程,掌握各物理量的变化规律,问题就不难解决。 在物理学科内,电学与力学结合最紧密、最复杂的题目往往是力电综合题,但运用的基本规律主要是力学部分的,只是在物体所受的重力、弹力、摩擦力之外,还有电场力、磁场力(安培力或洛仑兹力),大家要特别注意磁场力,它会随物体运动情况的改变而变化的。 通过学习物理,我们可以发现物理的知识和我们的生活息息相关。要想提高物理的学习效率,课前要做好预习工作,上课认真听课做好笔记,如果有不懂的地方及时寻求老师的帮助。课后一定要多做练习,通过做题来巩固学过的知识,丰富自己的解题经验。 功、功率、机械能和能源 1.做功两要素:力和物体在力的方向上发生位移 2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J) 3.物体做正功负功问题(将α理解为F与V所成的角,更为简单) (1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功, 如小球在水平桌面上滚动,桌面对球的支持力不做功。 (2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。 如人用力推车前进时,人的推力F对车做正功。 (3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。 如人用力阻碍车前进时,人的推力F对车做负功。 一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。 例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功 4.动能是标量,只有大小,没有方向。表达式 5.重力势能是标量,表达式 (1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。 (2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。 6.动能定理: W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度 解答思路: ①选取研究对象,明确它的.运动过程。 ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。 ③明确物体在过程始末状态的动能和。 ④列出动能定理的方程。 7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。) 解题思路: ①选取研究对象----物体系或物体 ②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。 ③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。 ④根据机械能守恒定律列方程,进行求解。 8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负 9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。 实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。 10、能量守恒定律及能量耗散 知识点总结 一、开普勒行星运动定律 (1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上, (2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积, (3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 二、万有引力定律 1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、 2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,称为引力常量、 3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、 三、万有引力定律的应用 1、解决天体(卫星)运动问题的基本思路 (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r. (2)在地球表面或地面附近的物体所受的.重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM. 2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3. (1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3 (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度、 3、人造卫星 (1)研究人造卫星的基本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、 (2)卫星的线速度、角速度、周期与半径的关系 ①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、 ②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、 ③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大 (3)人造卫星的超重与失重 ①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、 ②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下凡是与重力有关的力学现象都会停止发生、 (4)三种宇宙速度 ①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、若7.9 km/s≤v<11.2 km/s,物体绕地球运行、 ②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的最小发射速度、若11.2 km/s≤v<16.7 km/s,物体绕太阳运行、 ③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度、若v≥16.7 km/s,物体将脱离太阳系在宇宙空间运行、 题型: 1、求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1. 2、求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2. 3、近地卫星与同步卫星 (1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度、 (2)地球同步卫星的五个“一定” ①周期一定T=24 h. ②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定 ⑤向心加速度(a)一定 1、磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体; ②来源:天然磁体(磁铁矿石)、人造磁体; ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。 磁场的基本性质:对放入其中的磁体产生磁力的作用。 磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。 磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识: ①磁感线是假想的曲线,本身并不存在; ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向; ③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密; 3、地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 指南针:小磁针指南的`叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。 地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。 1电场基本规律 1、库仑定律 (1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。 (2)表达式:k=9.0×109N·m2/C2——静电力常量 (3)适用条件:真空中静止的点电荷。 2、电荷守恒定律 电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。 (1)三种带电方式:摩擦起电,感应起电,接触起电。 (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e= 1.6×10-19C——密立根测得e的值。 2电场能的性质 1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。 2、电势φ (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。 (2)定义式:φ——单位:伏(V)——带正负号计算 (3)特点: 1、电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。 2、电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。 3、电势的大小由电场本身决定,与Ep和q无关。 4、电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。 (4)电势高低的判断方法 1、根据电场线判断:沿着电场线电势降低。φA>φB 2、根据电势能判断: 正电荷:电势能大,电势高;电势能小,电势低。 负电荷:电势能大,电势低;电势能小,电势高。 结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。 3电势能Ep (1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。 (2)定义式:——带正负号计算 (3)特点: 1、电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。 2、电势能的变化量△Ep与零势能面的选择无关。 4电势差UAB (1)定义:电场中两点间的电势之差。也叫电压。 (2)定义式:UAB=φA-φB (3)特点: 1、电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。 2、单位:伏 3、电场中两点的电势差是确定的,与零势面的选择无关 4、U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。 5静电平衡状态 (1)定义:导体内不再有电荷定向移动的.稳定状态 (2)特点: 1、处于静电平衡状态的导体,内部场强处处为零。 2、感应电荷在导体内任何位置产生的电场都等于外电场在该处场强的大小相等,方向相反。 3、处于静电平衡状态的整个导体是个等势体,导体表面是个等势面。 4、电荷只分布在导体的外表面,在导体表面的分布与导体表面的弯曲程度有关,越弯曲,电荷分布越多。 6电场力做功WAB (1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即与初末位置的电势差有关。 (2)表达式:WAB=UABq—带正负号计算(适用于任何电场)WAB=Eqd—d沿电场方向的距离。——匀强电场 (3)电场力做功与电势能的关系WAB=-△Ep=EpA-EPB 结论:电场力做正功,电势能减少电场力做负功,电势能增加 7等势面 (1)定义:电势相等的点构成的面。 (2)特点: 等势面上各点电势相等,在等势面上移动电荷,电场力不做功。 等势面与电场线垂直 两等势面不相交 等势面的密集程度表示场强的大小:疏弱密强。 画等势面时,相邻等势面间的电势差相等。 (3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。 高中物理静电场公式总结 1.两种电荷、电荷守恒定律、元电荷:e=1.6×10-19C 2.库仑定律:F=kQ1Q2/r2 (在真空中) 3.电场强度:E=F/q(定义式、计算式) 4.真空点(源)电荷形成的电场E=kQ/r2 5.匀强电场的场强E=UAB/d 6.电场力:F=qE 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd 9.电势能:EA=qφA 10.电势能的变化ΔEAB=EB-EA 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) 13.平行板电容器的电容C=εr*S/4πkd=εS/d 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2 /2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2 /2,a=F/m=qE/m 高中物理的确难,实用口诀能帮忙。物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。 一、运动的描述 1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢s比t,a用δv与t比。 2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,δs等at平方。 3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。 二、力 1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。 2.分析受力要仔细,定量计算七种力;重力有无看 提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。 3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。 多力问题状态揭,正交分解来解决,三角函数能化解。 4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。 三、牛顿运动定律 1.f等ma,牛顿二定律,产生加速度,原因就是力。 合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。 2.n、t等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零 四、曲线运动、万有引力 1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。 2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心离。 3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。 五、机械能与能量 1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。 2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。 3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。 六、电场 1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kqq与r平方比。 2.电荷周围有电场,f比q定义场强。kq比r2点电荷,u比d是匀强电场。 电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。 场能性质是电势,场线方向电势降。场力做功是qu,动能定理不能忘。 4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。 七、恒定电流 1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。 正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。 2.电阻定律三因素,温度不变才得出,控制变量来论述,rl比s等电阻。 电流做功uit,电热i平方rt。电功率,w比t,电压乘电流也是。 3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。 4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。 路端电压内压降,和就等电动势,除于总阻电流是。 八、磁场 1.磁体周围有磁场,n极受力定方向;电流周围有磁场,安培定则定方向。 2.f比il是场强,φ等bs磁通量,磁通密度φ比s,磁场强度之名异。 3.bil安培力,相互垂直要注意。 4.洛仑兹力安培力,力往左甩别忘记。 九、电磁感应 1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。 感应电动势大小,磁通变化率知晓。 2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。 3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i向。 十、交流电 1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。 中性面计时是正弦,平行面计时是余弦。 2.nbsω是最大值,有效值用热量来计算。 3.变压器供交流用,恒定电流不能用。 理想变压器,初级ui值,次级ui值,相等是原理。 电压之比值,正比匝数比;电流之比值,反比匝数比。 运用变压比,若求某匝数,化为匝伏比,方便地算出。 远距输电用,升压降流送,否则耗损大,用户后降压。 十一、气态方程 研究气体定质量,确定状态找参量。绝对温度用大t,体积就是容积量。 压强分析封闭物,牛顿定律帮你忙。状态参量要找准,pv比t是恒量。 十二、热力学定律 1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。 正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。 2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。 十三、机械振动 1.简谐振动要牢记,o为起点算位移,回复力的.方向指,始终向平衡位置, 大小正比于位移,平衡位置u大极。 2.o点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4a路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。 到质心摆长行,单摆具有等时性。 3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。 十四、机械波 1.左行左坡上,右行右坡上。峰点谷点无方向。 2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。 3.不同时刻的图像,δt四分一或三,质点动向疑惑散,s等vt派用场。 十五、光学 1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。 反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。 2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。 十六、物理光学 1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗 2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。 十七、动量 1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。 2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。 十八、原子原子核 1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。 2.原子核,能改变,αβ两衰变。α粒是氦核,电子流是β射线。 γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。 裂变可造原子弹,还可用它来发电。轻核聚合是聚变,温度极高是条件。 变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。 知识点:力和运动 受力分析、物体的平衡及其条件,是每年必考知识点。 预计在20xx年高考中,本专题内容仍然是高考命题的重点和热点,从近几年的试题难度看,本专题单独命题,难度可能不大,重在对基础知识与基本应用的考查,其中卫星导航、航天工程、宇宙探测、体育运动、科技与生活热点问题要特别关注。 知识点:动量和能量 安徽省高考对本专题的知识点考查频率非常高,每年必考,对动能定理、机械能守恒定律、功能关系考查难度较大。 “动量和能量观点是贯穿整个物理学最基本的观点,动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,涉及面广、综合性强、能力要求高,多年的压轴题均与本专题知识有关。”杨坤预计,在20xx年高考中,会继续延续近两年的命题特点,一种可能是以功——功率、动能定理和机械能守恒定律为考查热点,主要以选择题的形式出现,考查考生对基本概念、规律的掌握情况和初步应用的能力。另一种可能是与牛顿运动定律、曲线运动、电场和电磁感应等知识综合起来考查,题型以计算题为主。考题紧密联系生产生活、现代科技等问题,如传送带的功率消耗、站台的节能设计、弹簧中的能量、碰撞中的动量守恒问题等。 知识点:带电粒子在电场和磁场中的运动 从历年来试题的难度上看,大多属于中等难度和较难的题,考题常以科学技术的具体问题为背景,考查从实际问题中获取并处理信息,解决实际问题的能力。 计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。 “20xx年高考理综物理试题仍将突出对电场和磁场中运动的考查,考查形式既可以是选择题也可以是计算题,选择题用来考查场的描述和性质、场力。” 杨坤分析,计算题主要考查带电粒子在电场、磁场中的.运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。其中电场和磁场知识与生产技术、生活实际、科学研究相结合,如示波管、质谱仪、回旋加速器、速度选择器和磁流体发电机等物理模型的应用问题要特别注意。 知识点:电磁感应和电路的分析、计算 在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。 考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题。 从近四年高考试卷知识点分布来看,高考对本专题的内容考查频率比较高,特别是电磁感应部分,每年必考。“对本专题知识点的考查,安徽省高考试题常以选择题的形式出现,但也有以计算题的形式出现的。”杨坤分析,对电路的考查则经常是与实验考查相结合,对串并联电路考查较浅,对交流电的考查相对来说较少而且偏易,对电磁感应的考查相对来说难度偏大,而且经常与其他知识点进行综合考查,不仅考查考生对基础知识和基本规律的掌握,还考查考生对基础知识和基本规律的理解与应用。 “预计在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。”杨坤老师强调,考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题,“在考试说明的题例中增加了滑轨类问题的实例,这或许是一个信号,希望能引起大家的注意。” 力是物体间的相互作用 1.力的国际单位是牛顿,用N表示; 2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3.力的示意图:用一个带箭头的线段表示力的方向; 4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等; 重力:由于地球对物体的吸引而使物体受到的力; a.重力不是万有引力而是万有引力的一个分力; b.重力的方向总是竖直向下的(垂直于水平面向下) c.测量重力的仪器是弹簧秤; d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; 弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; b.弹力包括:支持力、压力、推力、拉力等等; c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; d.在弹性限度内弹力跟形变量成正比;F=Kx 摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反; c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力; d.静摩擦力的大小等于使物体发生相对运动趋势的外力; 合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; a.合力与分力的作用效果相同; b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; c.合力大于或等于二分力之差,小于或等于二分力之和; d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法); 矢量 矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量) 标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量) 直线运动 物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零; (1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向; (2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向; (3)处于平衡状态的物体在任意两个相互垂直方向的合力为零; 机械运动 机械运动:一物体相对其它物体的位置变化。 1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止); 2.质点:只考虑物体的质量、不考虑其大小、形状的物体; (1)质点是一理想化模型; (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时; 如:研究地球绕太阳运动,火车从北京到上海; 3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段; 例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔; 4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线; (1)位移为零、路程不一定为零;路程为零,位移一定为零; (2)只有当质点作单向直线运动时,质点的位移才等于路程; (3)位移的国际单位是米,用m表示 5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移; (1)匀速直线运动的位移图像是一条与横轴平行的直线; (2)匀变速直线运动的位移图像是一条倾斜直线; (3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大; 6.速度是表示质点运动快慢的物理量 (1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度; (2)速率只表示速度的大小,是标量; 7.加速度:是描述物体速度变化快慢的物理量; (1)加速度的定义式:a=vt-v0/t (2)加速度的大小与物体速度大小无关; (3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零; (4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关; (5)加速度是矢量,加速度的方向和速度变化方向相同; (6)加速度的国际单位是m/s2 匀变速直线运动 1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at 注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值; (1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均; (2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均; 2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2 注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值; 3.推论:2as=vt2-v02 4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2 5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比; 自由落体运动 只在重力作用下从高处静止下落的物体所作的运动。 1.位移公式:h=1/2gt2 2.速度公式:vt=gt 3.推论:2gh=vt2 牛顿定律 1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。 a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态; b.力是该变物体速度的原因; c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变) d力是产生加速度的原因; 2.惯性:物体保持匀速直线运动或静止状态的`性质叫惯性。 a.一切物体都有惯性; b.惯性的大小由物体的质量决定; c.惯性是描述物体运动状态改变难易的物理量; 3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。 a.数学表达式:a=F合/m; b.加速度随力的产生而产生、变化而变化、消失而消失; c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。 d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N; 4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的; a.作用力和反作用力同时产生、同时变化、同时消失; b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上; 曲线运动·万有引力 曲线运动 质点的运动轨迹是曲线的运动 1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向 2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折; 3.曲线运动的特点 曲线运动一定是变速运动; 曲线运动的加速度(合外力)与其速度方向不在同一条直线上; 4.力的作用 力的方向与运动方向一致时,力改变速度的大小; 力的方向与运动方向垂直时,力改变速度的方向; 力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向; 运动的合成与分解 1.判断和运动的方法:物体实际所作的运动是合运动 2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等; 3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则; 平抛运动 被水平抛出的物体在在重力作用下所作的运动叫平抛运动。 1.平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动; 2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性; 3.求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动; 匀速圆周运动 质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动。 1.线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向; 2.角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t 3.角速度、线速度、周期、频率间的关系: (1)v=2πr/T; (2)ω=2π/T; (3)V=ωr; (4)f=1/T; 4.向心力: (1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。 (2)方向:总是指向圆心,与速度方向垂直。 (3)特点: ①只改变速度方向,不改变速度大小 ②是根据作用效果命名的。 (4)计算公式:F向=mv2/r=mω2r 5.向心加速度:a向=v2/r=ω2r 开普勒三定律 1.开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上; 说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆; 2.开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等; 3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等; 公式:R3/T2=K; 说明: (1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关; (2)当把行星的轨迹视为圆时,R表示愿的半径; (3)该公式亦适用与其它天体,如绕地球运动的卫星; 万有引力定律 自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比。 1.计算公式 F:两个物体之间的引力 G:万有引力常量 M1:物体1的质量 M2:物体2的质量 R:两个物体之间的距离 依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r的单位为米(m),常数G近似地等于 6.67×10^-11N·m^2/kg^2(牛顿平方米每二次方千克)。 2.解决天体运动问题的思路: (1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式; (2)应用在地球表面的物体万有引力等于重力; (3)如果要求密度,则用:m=ρV,V=4πR3/3 机械能 功 功等于力和物体沿力的方向的位移的乘积; 1.计算公式:w=Fs; 2.推论:w=Fscosθ,θ为力和位移间的夹角; 3.功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功; 功率 功率是表示物体做功快慢的物理量。 1.求平均功率:P=W/t; 2.求瞬时功率:p=Fv,当v是平均速度时,可求平均功率; 3.功、功率是标量; 功和能之间的关系 功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化; 动能定理 合外力做的功等于物体动能的变化。 1.数学表达式:w合=mvt2/2-mv02/2 2.适用范围:既可求恒力的功亦可求变力的功; 3.应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程; 4.应用动能定理解题的步骤: (1)对物体进行正确的受力分析,求出合外力及其做的功; (2)确定物体的初态和末态,表示出初、末态的动能; (3)应用动能定理建立方程、求解 重力势能 物体的重力势能等于物体的重量和它的速度的乘积。 1.重力势能用EP来表示; 2.重力势能的数学表达式:EP=mgh; 3.重力势能是标量,其国际单位是焦耳; 4.重力势能具有相对性:其大小和所选参考系有关; 5.重力做功与重力势能间的关系 (1)物体被举高,重力做负功,重力势能增加; (2)物体下落,重力做正功,重力势能减小; (3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关 机械能守恒定律 在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。 1.机械能守恒定律的适用条件:只有重力或弹簧弹力做功。 2.机械能守恒定律的数学表达式: 3.在只有重力或弹簧弹力做功时,物体的机械能处处相等; 4.应用机械能守恒定律的解题思路 (1)确定研究对象,和研究过程; (2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律; (3)恰当选择参考平面,表示出初、末状态的机械能; (4)应用机械能守恒定律,立方程、求解; 电路图画法: 1、电势法(结点法) (1)把电路中的电势相等的结点标上同样的字母。 (2)把电路中的结点从电源正极出发按电势由高到低排列。 (3)把原电路中的电阻接到相应的结点之间。 (4)把原电路中的电表接入到相应位置。 2、分支法(切断法) (1)顺着电流方向逐级分析,如果没有接入电源或电流方向不明可假设电流方向。 (2)每一支路的导体是串联关系。 (3)用切断电路的方法帮助判断,当切断某部分电路,其它电路同时也被断路的与它是串联关系;其它电路是通路的是并联关系。 三种产生电荷的方式: 1、摩擦起电: (1)正点荷:用绸子摩擦过的玻璃棒所带电荷; (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷; (3)实质:电子从一物体转移到另一物体; 2、接触起电: (1)实质:电荷从一物体移到另一物体; (2)两个完全相同的物体相互接触后电荷平分; (3)、电荷的中和:等量的'异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电; (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引; (2)实质:使导体的电荷从一部分移到另一部分; (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷 1、滑动摩擦力:一个物体在另一个物体表面上存在相对滑动的时候,要受到另一个物体阻碍它们相对滑动的力,这种力叫做滑动摩擦力. (1)产生条件: ①接触面是粗糙; ②两物体接触面上有压力; ③两物体间有相对滑动. (2)方向:总是沿着接触面的切线方向与相对运动方向相反. (3)大小-滑动摩擦定律 滑动摩擦力跟正压力成正比,也就跟一个物体对另一个物体表面的垂直作用力成正比。即其中的FN表示正压力,不一定等于重力G。为动摩擦因数,取决于两个物体的材料和接触面的粗糙程度,与接触面的面积无关。 2、静摩擦力:当一个物体在另一个物体表面上有相对运动趋势时,所受到的另一个物体对它的力,叫做静摩擦力. (1)产生条件: ①接触面是粗糙的; ②两物体有相对运动的趋势; ③两物体接触面上有压力. (2)方向:沿着接触面的切线方向与相对运动趋势方向相反. (3)大小:静摩擦力的大小与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0ffm,具体大小可由物体的运动状态结合动力学规律求解。 必须明确,静摩擦力大小不能用滑动摩擦定律F=FN计算,只有当静摩擦力达到最大值时,其最大值一般可认为等于滑动摩擦力,既Fm=FN 3、摩擦力与物体运动的关系 ①摩擦力的方向总是与物体间相对运动(或相对运动的趋势)的方向相反。而不一定与物体的运动方向相反。 如:课本上的皮带传动图。物体向上运动,但物体相对于皮带有向下滑动的趋势,故摩擦力向上。 ②摩擦力总是阻碍物体间的`相对运动的。而不一定是阻碍物体的运动的。 如上例,摩擦力阻碍了物体相对于皮带向下滑,但恰恰是摩擦力使物体向上运动。 注意:以上两种情况中,相对两个字一定不能少。 这牵涉到参照物的选择。一般情况下,我们说物体运动或静止,是以地面为参照物的。而牵涉到相对运动,实际上是规定了参照物。如A相对于B,则必须以B为参照物,而不能以地面或其它物体为参照物。 ③摩擦力不一定是阻力,也可以是动力。摩擦力不一定使物体减速,也可能使物体加速。 ④受静摩擦力的物体不一定静止,但一定保持相对静止。 ⑤滑动摩擦力的方向不一定与运动方向相反 【高中物理知识点总结】相关文章: 高中物理知识点总结03-21 高中物理知识点总结01-13 高中物理知识点总结07-25 高中物理知识点总结及公式08-29 高中物理重点知识点总结11-02 高中物理知识点总结 12篇11-02 高中物理必修二知识点总结10-31 高中物理知识点总结汇总06-26 高中物理知识点总结15篇05-25 高中物理知识点总结 3
高中物理知识点总结 4
高中物理知识点总结 5
高中物理知识点总结 6
高中物理知识点总结 7
高中物理知识点总结 8
高中物理知识点总结 9
高中物理知识点总结 10
高中物理知识点总结 11
高中物理知识点总结 12
高中物理知识点总结 13
高中物理知识点总结 14
高中物理知识点总结 15
高中物理知识点总结 16