中考数学函数公式总结

时间:2022-05-27 05:44:16 总结 投诉 投稿
  • 相关推荐

中考数学函数公式总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它可以使我们更有效率,因此我们需要回头归纳,写一份总结了。那么总结有什么格式呢?下面是小编收集整理的中考数学函数公式总结,希望对大家有所帮助。

中考数学函数公式总结

中考数学函数公式总结1

  公式一:

  设为任意角,终边相同的角的同一三角函数的值相等

  k是整数 sin(2k)=sin

  cos(2k)=cos

  tan(2k)=tan

  cot(2k)=cot

  sec(2k)=sec

  csc(2k)=csc

  公式二:

  设为任意角,的'三角函数值与的三角函数值之间的关系 sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  sec()=-sec

  csc()=-csc

  公式三:

  任意角与 -的三角函数值之间的关系 sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  sec(-)=sec

  csc(-)=-csc

  公式四:

  利用公式二和公式三可以得到与的三角函数值之间的关系 sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  sec()=-sec

  csc()=csc

  公式五:

  利用公式一和公式三可以得到2与的三角函数值之间的关系 sin(2)=-sin

  cos(2)=cos

  tan(2)=-tan

  cot(2)=-cot

  sec(2)=sec

  csc(2)=-csc

  公式六:

  /2及3/2与的三角函数值之间的关系 sin(/2+)=cos

  cos(/2+)=-sin

  tan(/2+)=-cot

  cot(/2+)=-tan

  sec(/2+)=-csc

  csc(/2+)=sec

  sin(/2-)=cos

  cos(/2-)=sin

  tan(/2-)=cot

  cot(/2-)=tan

  sec(/2-)=csc

  csc(/2-)=sec

  sin(3/2+)=-cos

  cos(3/2+)=sin

  tan(3/2+)=-cot

  cot(3/2+)=-tan

  sec(3/2+)=csc

  csc(3/2+)=-sec

  sin(3/2-)=-cos

  cos(3/2-)=-sin

  tan(3/2-)=cot

  cot(3/2-)=tan

  sec(3/2-)=-csc

  csc(3/2-)=-sec

中考数学函数公式总结2

  圆与弧的公式:

  正n边形的每个内角都等于(n-2)180/n

  弧长计算公式:L=n兀R/180

  扇形面积公式:S扇形=n兀R^2/360=LR/2

  内公切线长=d-(R-r)外公切线长=d-(R+r)

  ①两圆外离dR+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(Rr)⑤两圆内含dr)

  定理相交两圆的连心线垂直平分两圆的公共弦

  定理把圆分成n(n3):⑴依次连结各分点所得的`多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4

  弧长计算公式:L=n兀R/180

  因式分解公式:

  公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

  平方差公式:a平方-b平方=(a+b)(a-b)

  完全平方和公式:(a+b)平方=a平方+2ab+b平方

  完全平方差公式:(a-b)平方=a平方-2ab+b平方

  两根式:ax^2+bx+c=a[x-(-b+(b^2-4ac))/2a][x-(-b-(b^2-4ac))/2a]两根式

  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)

  立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

  完全立方公式:a^33a^2b+3ab^2b^3=(ab)^3.

  扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)

  一元二次方程公式与判别式:

  一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac0 注:方程有两个不等的实根

  b2-4ac0 注:方程没有实根,有共轭复数根

  三角不等式:

  |a+b||a|+|b|

  |a-b||a|+|b|

  |a|=ab

  |a-b||a|-|b|-|a||a|

  等差数列公式:

  某些数列前n项和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/32016中考数学公式总结

  两角和公式:

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

  ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A)

  ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=((1-cosA)/2)sin(A/2)=-((1-cosA)/2)

  cos(A/2)=((1+cosA)/2)cos(A/2)=-((1+cosA)/2)

  tan(A/2)=((1-cosA)/((1+cosA))tan(A/2)=-((1-cosA)/((1+cosA))

  ctg(A/2)=((1+cosA)/((1-cosA))ctg(A/2)=-((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

中考数学函数公式总结3

  三角函数的公式

  关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。如:

  sin30°=1/2

  sin45°=√2/2

  sin60°=√3/2

  cos30°=√3/2

  cos45°=√2/2

  cos60°=1/2

  tan30°=√3/3

  tan45°=1

  tan60°=√3[1]

  cot30°=√3

  cot45°=1

  cot60°=√3/3

  其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

  ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。所以同学们还是要好好掌握。

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))

  tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))

  ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)

  2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)

  -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2

  cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB

  tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB

  - ctgA+ctgBsin(A+B)/sinAsinB

  锐角三角函数公式

  sin α=∠α的对边/斜边

  cos α=∠α的邻边/斜边

  tan α=∠α的对边/ ∠α的邻边

  cot α=∠α的邻边/ ∠α的对边

  倍角公式

  Sin2A=2SinA.CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2是sinA的`平方sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推导

  sin3a=sin(2a+a)=sin2acosa+cos2asina

  辅助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推导公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα

  =(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a

  =3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina__2sin[(60+a)/2]cos[(60°-a)/2]__2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a

  =4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa__2cos[(a+30°)/2]cos[(a-30°)/2]__{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  两角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化积

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  积化和差

  sinαsinβ = [cos(α-β)-cos(α+β)] /2

  cosαcosβ = [cos(α+β)+cos(α-β)]/2

  sinαcosβ = [sin(α+β)+sin(α-β)]/2

  cosαsinβ = [sin(α+β)-sin(α-β)]/2

  诱导公式

  sin(-α) = -sinα

  cos(-α) = cosα

  tan (—a)=-tanα

  sin(π/2-α) = cosα

  cos(π/2-α) = sinα

  sin(π/2+α) = cosα

  cos(π/2+α) = -sinα

  sin(π-α) = sinα

  cos(π-α) = -cosα

  sin(π+α) = -sinα

  cos(π+α) = -cosα

  tanA= sinA/cosA

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

  诱导公式记背诀窍:奇变偶不变,符号看象限

  万能公式

  sinα=2tan(α/2)/[1+tan^(α/2)]

  cosα=[1-tan^(α/2)]/1+tan^(α/2)]

  tanα=2tan(α/2)/[1-tan^(α/2)]

  其它公式

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

  (4)对于任意非直角三角形,总有

  tanA+tanB+tanC=tanAtanBtanC

  证:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得证

  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  (9)sinα+sin(α+2π/n)+sin(α+2π__2/n)+sin(α+2π__3/n)+……+sin[α+2π__(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π__2/n)+cos(α+2π__3/n)+……+cos[α+2π__(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  中考数学“函数”

  (1)关系式为整式时,函数定义域为全体实数;

  (2)关系式含有分式时,分式的分母不等于零;

  (3)关系式含有二次根式时,被开放方数大于等于零;

  (4)关系式中含有指数为零的式子时,底数不等于零;

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

  用待定系数法确定函数解析式的一般步骤

  (1)根据已知条件写出含有待定系数的函数关系式;

  (2)将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程

  (3)解方程得出未知系数的值;

  (4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。、一次函数的定义

  一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

  函数的表示方法

  列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

  解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

【中考数学函数公式总结】相关文章:

三角函数公式知识点总结08-04

初中数学公式总结03-09

高考数学公式总结06-07

高三数学公式总结05-01

高三数学公式总结06-11

高三数学公式总结08-27

数学公式总结高三06-11

初中数学函数教案02-23

初中数学公式总结7篇03-09

初中数学公式总结(7篇)03-09