高三数学公式总结

时间:2022-08-27 04:41:55 总结 投诉 投稿

高三数学公式总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它能使我们及时找出错误并改正,因此我们要做好归纳,写好总结。如何把总结做到重点突出呢?下面是小编收集整理的高三数学公式总结,希望能够帮助到大家。

高三数学公式总结

  高三数学公式总结1

  a(1)=a,a(n)为公差为r的等差数列

  通项公式:

  a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

  可用归纳法证明。

  n=1时,a(1)=a+(1-1)r=a。成立。

  假设n=k时,等差数列的`通项公式成立。a(k)=a+(k-1)r

  则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

  通项公式也成立。

  因此,由归纳法知,等差数列的通项公式是正确的。

  求和公式:

  S(n)=a(1)+a(2)+...+a(n)

  =a+(a+r)+...+[a+(n-1)r]

  =na+r[1+2+...+(n-1)]

  =na+n(n-1)r/2

  同样,可用归纳法证明求和公式。

  a(1)=a,a(n)为公比为r(r不等于0)的等比数列

  通项公式:

  a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

  可用归纳法证明等比数列的通项公式。

  求和公式:

  S(n)=a(1)+a(2)+...+a(n)

  =a+ar+...+ar^(n-1)

  =a[1+r+...+r^(n-1)]

  r不等于1时,

  S(n)=a[1-r^n]/[1-r]

  r=1时,

  S(n)=na.

  同样,可用归纳法证明求和公式。

  高三数学公式总结2

  一、对数函数

  log.a(MN)=logaM+logN

  loga(M/N)=logaM-logaN

  logaM^n=nlogaM(n=R)

  logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)

  二、简单几何体的面积与体积

  S直棱柱侧=c*h(底面周长乘以高)

  S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)

  设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h

  S圆柱侧=c*l

  S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l

  S圆锥侧=1/2*c*l=兀*r*l

  S球=4*兀*R^3

  V柱体=S*h

  V锥体=(1/3)*S*h

  V球=(4/3)*兀*R^3

  三、两直线的位置关系及距离公式

  (1)数轴上两点间的距离公式|AB|=|x2-x1|

  (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式

  |AB|=sqr[(x2-x1)^2+(y2-y1)^2]

  (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr

  (A^2+B^2)

  (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-

  C2|/sqr(A^2+B^2)

  同角三角函数的基本关系及诱导公式

  sin(2*k*兀+a)=sin(a)

  cos(2*k*兀+a)=cosa

  tan(2*兀+a)=tana

  sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

  sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

  sin(兀+a)=-sina

  sin(兀-a)=sina

  cos(兀+a)=-cosa

  cos(兀-a)=-cosa

  tan(兀+a)=tana

  四、二倍角公式及其变形使用

  1、二倍角公式

  sin2a=2*sina*cosa

  cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

  tan2a=(2*tana)/[1-(tana)^2]

  2、二倍角公式的变形

  (cosa)^2=(1+cos2a)/2

  (sina)^2=(1-cos2a)/2

  tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

  五、正弦定理和余弦定理

  正弦定理:

  a/sinA=b/sinB=c/sinC

  余弦定理:

  a^2=b^2+c^2-2bccosA

  b^2=a^2+c^2-2accosB

  c^2=a^2+b^2-2abcosC

  cosA=(b^2+c^2-a^2)/2bc

  cosB=(a^2+c^2-b^2)/2ac

  cosC=(a^2+b^2-c^2)/2ab

  tan(兀-a)=-tana

  sin(兀/2+a)=cosa

  sin(兀/2-a)=cosa

  cos(兀/2+a)=-sina

  cos(兀/2-a)=sina

  tan(兀/2+a)=-cota

  tan(兀/2-a)=cota

  (sina)^2+(cosa)^2=1

  sina/cosa=tana

  两角和与差的余弦公式

  cos(a-b)=cosa*cosb+sina*sinb

  cos(a-b)=cosa*cosb-sina*sinb

  两角和与差的正弦公式

  sin(a+b)=sina*cosb+cosa*sinb

  sin(a-b)=sina*cosb-cosa*sinb

  两角和与差的正切公式

  tan(a+b)=(tana+tanb)/(1-tana*tanb)

  tan(a-b)=(tana-tanb)/(1+tana*tanb)

  拓展阅读:高三如何恶补数学?这三个学霸的答案有上万人点赞!

  还有一个月高考了,数学成绩只有四五十分,其他科都还行,如果数学成绩能达到120,一本应该没问题了,数学一直不知道该怎样学,数学公式背完之后该怎样去复习,能提高到120吗?该怎样复习?希望大家给个建议或者制定个计划。

  要学会放弃

  作为大二数学系的学长,我想告诉你。

  第一,学会放弃。

  我当时高考是150分,10道选择,5道填空,6个大题。

  要明白大多数人是不需要做完所有的题,只要把简单题做对,中档题做好,难题可狂草,分一般不低,前8个选择,前3个填空,前4个大题做全对就已经能拿到大概100分了,再加最后两个选择可能猜对1个吧,填空能蒙对一个吧,最后两个大题动1.2个问吧,110+是妥妥的。

  不要再做那些难题,偏题,怪题了,没用。回归教材,抓住基础才是王道。

  第二,摆正心态。

  如果你不是追求清华北大上交复旦这样的国内顶尖大学,或许现在的学校排名参照往年没有达到那类学校的高度,那么还是静下心来钻基础吧,答主高考之前一直面对我只是普通一本的成绩妄想考人大,大把时间做难题,结果高考卷子下来题目爆简单,同考室还有提前半小时交卷的~~

  一不小心做得对的题粗心做错结果优势科目的数学只有120多,就加上惨不忍睹的英语,来到了现在这个学校,数学单科还没有我们班上那些我平时甩几十分的人高,所以说还是回归基础吧!

  第三,善于总结。

  前面的同志们都总结了许多方法了,我也不再赘述。对于基础题一定要“会一道题,会一类题”。

  第四,合理安排。

  各科还是都要学一学,不能偏科啊!答主就输在了英语在高中几乎完全不学,眼看着高二和我同在60分徘徊的同桌,在高三一年达到了120,而我还在60,这在数学简单的那年简直就是噩耗!!!最后别人上了某985,,说多了都是泪。所以说不要自己那科差就不学,前车之鉴。

  最后,肚里有货,心中不慌,认真学习才是王道,在老师的指引下(必须的!)做好该做的'学习任务,成绩提高时一定的,考试毕竟是考试,还得靠些运气不是?仰望星空与脚踏实地,有目标才可能实现。认真你可能输,但是你不认真,连输的机会都没有。祝你高考成功。

  不推荐刷题

  首先,做题是必须的,但不推荐刷题,高考是全面性的考试,花大量时间刷数学题会影响其他学科的复习,当然你其他学科都非常牛逼的当我没说。

  至于数学,首先要看书,书上的公式,例题,习题都会不会,这是一切的基础,书上的公式都不记得,做题肯定没办法啊。

  然后,认真对待每一次考试,高三应该会有很多次考试,每一次考完都要认真分析试卷,哪一题是不会的,哪一题是马虎而错的,做好记号,上课讲试卷时认真听,记下每个题的知识点,但是不要记答案,下课了找个本子,自己再重新改错,如果还是不会就去问,一定要所有题的改错都是自己思考后一步一步写下来的。

  至于分析试卷,其实不必找什么网上的人,把自己考试的卷子全部拿出来,如果上面的你都做了,看着记号,很快就能整理出自己的弱点,然后还是看书,找出不清楚的,再看改错本,每一步的思路要在脑中分析,重要的要记下来,思维的过程要慢慢养成。

  至于压轴题,我不清楚大家那边的卷子是什么情况,但是每次考试都

  一定要做!

  一定要做!

  一定要做!

  不是要让你一定做对,而是要把压轴题的时间算在考试中。一般选择填空各一道比较难的,大题最后两道比较难。选择填空的难题要控制时间,时间内能写就写,写不出来先蒙一个。倒数第二道大题,如果题主从现在开始坚持改错,再附加一些练习,应该问题不大,最后一道题,能写多少写多少,一般第一问都是送分的。记住,没办法写完整,但是过程也是分啊!

  总之,难度不是很大的大概100到110分左右(我是湖北的,大概是这么多,但是能保证全拿到的每次考试都不会很多),压轴题是能写多少写多少。

  准备改错本,分析错题知识点,课后自己改错,每一段时间把这段时间的试卷拿出来看看,再稍加一点课外练习(主要是高考真题),不要在偏题怪题上钻牛角尖,大概就是这样,要坚持下来!

  还有,不要检查,要的是一次做对,高考不会有什么时间检查的!

  写的比较凌乱,希望有帮助,重要的是坚持,多和老师交流,不要害怕老师,老师教那么多年书,肯定比我们有经验的!

  最后祝童鞋们一切顺利,考出好成绩!

  高三数学公式总结3

  阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘只有计算方法,没有简便公式的,只能硬算。

  例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。

  任何大于1的自然数n阶乘表示方法:

  n!=1×2×3×……×n

  或

  n!=n×(n-1)!

  n的'双阶乘:

  当n为奇数时表示不大于n的所有奇数的乘积

  如:7!!=1×3×5×7

  当n为偶数时表示不大于n的所有偶数的乘积(除0外)

  如:8!!=2×4×6×8

  小于0的整数-n的阶乘表示:

  (-n)!= 1 / (n+1)!

  以下列出0至20的阶乘:

  0!=1,注意(0的阶乘是存在的)

  1!=1,

  2!=2,

  3!=6,

  4!=24,

  5!=120,

  6!=720,

  7!=5,040,

  8!=40,320

  9!=362,880

  10!=3,628,800

  11!=39,916,800

  12!=479,001,600

  13!=6,227,020,800

  14!=87,178,291,200

  15!=1,307,674,368,000

  16!=20,922,789,888,000

  17!=355,687,428,096,000

  18!=6,402,373,705,728,000

  19!=121,645,100,408,832,000

  20!=2,432,902,008,176,640,000

  另外,数学家定义,0!=1,所以0!=1!

  高三数学公式总结4

  1.y=c(c为常数) y=0

  2.y=x^n y=nx^(n-1)

  3.y=a^x y=a^xlna

  y=e^x y=e^x

  4.y=logax y=logae/x

  y=lnx y=1/x

  5.y=sinx y=cosx

  6.y=cosx y=-sinx

  7.y=tanx y=1/cos^2x

  8.y=cotx y=-1/sin^2x

  9.y=arcsinx y=1/√1-x^2

  10.y=arccosx y=-1/√1-x^2

  11.y=arctanx y=1/1+x^2

  12.y=arccotx y=-1/1+x^2

  高三数学公式总结5

  【两角和公式】

  sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  【倍角公式】

  tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  【半角公式】

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

  【和差化积】

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

  高三数学公式总结6

  ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

  ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

  ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

  ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

  ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

  ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

  ⑺直线和圆的方程:直线的'方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

  ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

  ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

  ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

  ⑿导数:导数的概念、求导、导数的应用

  ⒀复数:复数的概念与运算

【高三数学公式总结】相关文章:

高三数学公式总结05-01

高三数学公式总结10-10

数学公式总结高三10-10

高三数学公式总结3篇05-01

高三数学公式总结6篇10-10

数学公式总结高三6篇10-10

初中数学公式总结03-09

高考数学公式总结10-04

初中数学公式总结7篇03-09