小学数学知识点总结

时间:2023-02-25 17:05:14 总结 投诉 投稿

小学数学知识点总结大全

  总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,写总结有利于我们学习和工作能力的提高,因此好好准备一份总结吧。总结怎么写才不会千篇一律呢?以下是小编收集整理的小学数学知识点总结,希望能够帮助到大家。

小学数学知识点总结大全

  小学数学知识点总结 篇1

  1.奇偶性

  问题

  奇+奇=偶奇×奇=奇

  奇+偶=奇奇×偶=偶

  偶+偶=偶偶×偶=偶

  2.位值原则

  形如:abc=100a+10b+c

  3.数的整除特征:

  整除数特征

  2末尾是0、2、4、6、8

  3各数位上数字的和是3的倍数

  5末尾是0或5

  9各数位上数字的和是9的倍数

  11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

  4和25末两位数是4(或25)的倍数

  8和125末三位数是8(或125)的倍数

  7、11、13末三位数与前几位数的`差是7(或11或13)的倍数

  4.整除性质

  ①如果c|a、c|b,那么c|(ab)。

  ②如果bc|a,那么b|a,c|a。

  ③如果b|a,c|a,且(b,c)=1,那么bc|a。

  ④如果c|b,b|a,那么c|a.

  ⑤a个连续自然数中必恰有一个数能被a整除。

  5.带余除法

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

  小学生奥数知识点

  数列求和:

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示。

  基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an=a1+(n-1)d;

  通项=首项+(项数一1)×公差;

  数列和公式:sn,=(a1+an)×n÷2;

  数列和=(首项+末项)×项数÷2;

  项数公式:n=(an+a1)÷d+1;

  项数=(末项-首项)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式

  小学奥数几何知识点整理

  鸟头定理即共角定理。

  燕尾定理即共边定理的一种。

  共角定理:

  若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

  共边定理:

  有一条公共边的三角形叫做共边三角形。

  共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM

  这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

  为了避开相似,我们用相应的底,高的比来推出三角形面积的比。

  例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

  很显然,三角形ABD和ACD面积之比是1:2

  因为共边,所以两个对应高之比是1:2

  而四个小三角形也会存在类似关系

  三角形ABE和三角形ACE的面积比是1:2

  三角形BED和三角形CED的面积比也是1:2

  所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

  以上是根据共边后,高之比等于三角形面积之比证明所得。

  必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

  小学数学知识点总结 篇2

  第一单元长度单位

  1、常用的长度单位:米、厘米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。

  4、米和厘米的关系:1米=100厘米100厘米=1米

  5、线段

  ⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

  ⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。

  ⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  6、填上合适的长度单位。

  小明身高1(米)30(厘米)

  练习本宽13(厘米)

  铅笔长17(厘米)

  黑板长2(米)图钉长1(厘米)

  一张床长2(米)一口井深3(米)

  学校进行100(米)赛跑

  教学楼高25(米)宝宝身高80(厘米)

  跳绳长2(米)一棵树高3(米)

  一把钥匙长5(厘米)

  一个文具盒长24(厘米)

  讲台高90(厘米)

  门高2(米)教室长12(米)

  筷子长20(厘米)

  一棵小树苗高1(米)

  小朋友的头围48厘米

  爸爸的身高1米75厘米或175厘米

  小朋友的身高120厘米或1米20厘米

  第二单元100以内的加法和减法

  一、两位数加两位数

  1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

  2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

  3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

  4、和=加数+加数

  一个加数=和-另一个加数

  二、两位数减两位数

  1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

  2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

  3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

  4、差=被减数-减数

  被减数=减数+差

  减数=被减数+差

  三、连加、连减和加减混合

  1、连加、连减

  连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

  ①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

  ②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

  2、加减混合

  加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

  3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

  四、解决问题(应用题)

  1、步骤:①先读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。

  2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

  3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

  4、关于提问题的题目,可以这样提问:

  ①…….和……一共…….?

  ②……比……..多多少/几……?

  ③……比……..少多少/几……?

  第三单元元角的初步认识

  1、角的初步认识

  (1)角是由一个顶点和两条边组成的;

  (2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。

  (3)角的大小与边的'长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。

  2、直角的初步认识

  (1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。

  (2)画直角的方法:①先画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。

  (3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。

  (4)所有的直角都一样大

  (5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。

  小学数学知识点总结 篇3

  一生活中的数

  (一)本单元知识网络:

  (二)各课知识点:

  可爱的校园(数数)

  知识点:

  1、按一定顺序手口一致地数出每种物体的个数。

  2、能用1-10各数正确地表述物体的数量。

  快乐的家园(10以内数的认识)

  知识点:

  1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。

  2、在数数过程中认识1-10数的符号表示方法。

  3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。

  玩具(1~5的认识与书写)

  知识点:

  1、能正确数出5以内物体的个数。

  2、会正确书写1-5的数字。

  小猫钓鱼(0的认识)

  知识点:

  1、认识“0”的产生,理解“0”的.含义,0即可以表示一个物体也没有,也可以表示起点和分界点。

  2、学会读、写“0”。

  文具(6~10的认识与书写)

  知识点:

  1、能正确数出数量是6-10的物体的个数。

  2、会读写6—10的数字。

  小学数学知识点总结 篇4

  加法交换律 a+b=b+a

  结合律 (a+b)+c=a+(b+c)

  减法性质 a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交换律 a×b=b×a

  结合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性质 a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.

  推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.

  一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.

  ■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.

  推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.

  被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.

  ■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的'除法中要注意余数.

  如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.

  小学数学知识点总结 篇5

  ■用字母表示数

  用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.

  ■用字母表示数的注意事项

  1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.

  2、当1和任何字母相乘时,“ 1” 省略不写.

  3、数字和字母相乘时,将数字写在字母前面.

  ■含有字母的式子及求值

  求含有字母的式子的值或利用公式求值,应注意书写格式

  ■等式与方程

  表示相等关系的式子叫等式.

  含有未知数的等式叫方程.

  判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.

  ■方程的解和解方程

  使方程左右两边相等的未知数的`值,叫方程的解.

  求方程的解的过程叫解方程.

  ■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.

  ■解方程的方法

  1、直接运用四则运算中各部分之间的关系去解.如x-8=12

  加数+加数=和 一个加数=和-另一个加数

  被减数-减数=差 减数=被减数-差 被减数=差+减数

  被乘数×乘数=积 一个因数=积÷另一个因数

  被除数÷除数=商 除数=被除数÷商 被除数=除数×商

  2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

  先把3x看作一个数,然后再解.

  3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

  要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.

  4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20

  先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.

  小学数学知识点总结 篇6

  ■比和比例应用题

  在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.

  ■解题策略

  按比例分配的有关习题,在解答时,要善于找准分配的'总量和分配的比,然后把分配的比转化成分数或份数来进行解答

  ■正、反比例应用题的解题策略

  1、审题,找出题中相关联的两个量

  2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.

  3、设未知数,列比例式

  4、解比例式

  5、检验,写答语

  小学数学知识点总结 篇7

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的'面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

  小学数学知识点总结 篇8

  通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

  小小运动会

  1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。

  2、经历与他人交流各自算法的'过程,体会算法多样化。

  3、体会长方形、正方形、三角形和圆在生活中的普遍存在。

  4、能利用图形设计美丽的图案。

  小学数学知识点总结 篇9

  1、用竖式计算两位数加法时:①相同数位对齐,加号写在高位下行之前。

  ②用尺子画横线。

  ③从个位加起

  ④如果个位满10,向十位进1,写在个位、十位之间,

  不进位不写1

  用竖式计算两位数减法时:①相同数位对齐,减号写在高位下行之前。

  ②用尺子画横线。

  ③从个位减起

  ④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点

  ⑤得数写在横式上

  2、估算:把一个接近整十整百的数看作整十整百来计算。

  方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”

  如:49+42≈9028+45+24≈10098—17≈80

  50 4030 50 20100 20更深一步的估计是能够估出比80大

  注:当问题里出现“大约”两个字时,就需要估算。

  3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。

  4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。

  方法:①根据已知,判断出与要求的未知,谁多谁少②求多的用加法,求少的用减法

  基数和序数的区别

  一、意思不同

  基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。

  二、用处不同

  基数可以比较大小,可以进行运算。

  例如:

  设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

  序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

  三、写法

  基数:1、2、3

  序数:第1、第2、第3

  数与计算知识点

  1、分数乘法:分数乘法的意义与整数乘法的.意义相同,就是求几个相同加数和的简便运算。

  2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

  3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  4、分数乘整数:数形结合、转化化归

  5、倒数:乘积是1的两个数叫做互为倒数。

  小学数学知识点总结 篇10

  (一)口算除法

  1、整十数除整十数或几百几十的数的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

  2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

  (二)笔算除法

  1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的'前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。

  2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。

  3、商一位数:

  (1)两位数除以整十数,如:62÷30;

  (2)三位数除以整十数,如:364÷70

  (3)两位数除以两位数,如:90÷29(把29看做30来试商)

  (4)三位数除以两位数,如:324÷81(把81看做80来试商)

  (5)三位数除以两位数,如:104÷26(把26看做25来试商)

  (6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)

  (7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

  4、商两位数:(三位数除以两位数)

  (1)前两位有余数,如:576÷18

  (2)前两位没有余数,如:930÷31

  5、判断商的位数的方法:

  被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

  (三)商的变化规律

  1、商变化:

  (1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

  (2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

  2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

  (四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13

  小学数学知识点总结 篇11

  【时分秒】

  1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。

  2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。

  3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

  4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

  5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

  6、公式(每两个相邻的时间单位之间的进率是60):

  1时=60分

  1分=60秒

  7、常用的时间单位:时、分、秒、年、月、日、世纪等。

  1世纪=100年

  1年=12个月

  【分数的初步认识】

  1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

  几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。

  ②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。

  5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

  【测量】

  1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:

  ①进率是10:

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  ②进率是100:

  1米=100厘米

  1分米=100毫米

  ③进率是1000:

  1千米=1000米

  1公里==1000米

  5、当我们表示物体有多重时,通常要用到质量单位。在生活中,称比较轻的物品质量,可以用克做单位;称一般物品的质量,常用千克做单位;计量较重或大物品的质量,通常用吨做单位。

  6、相邻两个质量单位的进率是1000。

  1吨=1000千克

  1千克=1000克

  【万以内的加法和减法】

  1、读数和写数:

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续两个0,都只读一个0。

  2、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数位上的数,如果位上的数相同,就比较下一位,以此类推。

  3、求一个数的近似数:看数的后面一位,如果是0~4就用四舍法,如果是5~9就用五入法。

  4、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

  【倍的认识】

  1、倍的意义:要知道两个数的`关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

  2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数。

  3、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。

  【长方形和正方形】

  1、有4条直的边和4个角封闭的图形叫做四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等;

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式:

  长方形的周长=(长+宽)×2=长×2+宽×2

  长方形的长=周长÷2—宽

  长方形的宽=周长÷2—长

  正方形的周长=边长×4

  正方形的边长=周长÷4

  【多位数乘一位数】

  1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。

  2、

  ①0和任何数相乘都得0;

  ②1和任何不是0的数相乘还得原来的数。

  3、三位数乘一位数,积有可能是三位数,也有可能是四位数。

  4、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  5、一个因数中间有0的乘法:

  ①0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

  8、减法的验算方法:

  ①用被减数减去差,看结果是不是等于减数;

  ②用差加减数,看结果是不是等于被减数。

  9、加法的验算方法:

  ①交换两个加数的位置再算一遍;

  ②用和减一个加数,看结果是不是等于另一个加数。

  学习困难的原因

  1、学习自觉性较差

  初中生学习自觉性较差,缺少解题的积极性,解题时不注重步骤、过程。

  2、学习意志薄弱

  数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。

  3、无兴趣学习或兴趣低

  一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。

  4、没有养成良好的数学学习习惯

  有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。

  所以同学们要注意自己是否存在以上问题,要想办法及时解决。

  数学的概念

  数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

  小学数学知识点总结 篇12

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,

  10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

  万以内的加法和减法

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

  的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。

  的三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式被减数=减数+差

  和=加数+另一个加数

  减数=被减数—差

  加数=和—另一个加数

  差=被减数—减数

  符号/是什么意思数学

  /在数学中是“除”的意思。例如:4/5我们可以说4除以5或者四分之五。数学符号的.发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。

  实数知识点

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样

  ③每一个实数都可以在数轴上的一个点来表示。

  小学数学知识点总结 篇13

  1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的图形。

  2、学会观察,能在生活中找出基本的形状,会举例。

  3、能区分出面和体的`关系,体会“面在体上”。

  4、能找出一组图形的规律。

  5、能在复杂的图案中找出基本的图形。

  小学数学知识点总结 篇14

  1、上、下

  (1)在具体场景中理解上、下的含义及其相对性。

  (2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。

  (3)培养学生初步的空间观念。

  2、前、后

  (1)在具体场景中理解前、后、最×的含义,以及前后的相对性。

  (2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。

  (3)培养学生初步的空间观念。

  加减法

  (一)本单元知识网络:

  (二)各课知识点:

  有几枝铅笔(加法的认识)

  知识点:

  1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

  2、初步尝试选择恰当的方法进行5以内的加法口算。

  3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。

  有几辆车(初步认识加法的交换律)

  3、左、右(1)在具体场景中理解左、右的`含义及其相对性。

  (2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。

  (3)培养学生初步的空间观念。

  4、位置

  (1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。

  (2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。

  (3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。

  小学数学知识点总结 篇15

  1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。

  2.结合自己的`生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。

  3.体会数概念与现实生活的密切联系。

  4.认识各种面值的人民币,并会进行简单的计算。

  5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

  6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

  小学数学知识点总结 篇16

  准备课

  1、数一数

  数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

  2、比多少

  同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

  比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

  比较两种物体的多或少时,可以用一一对应的方法。

  位置

  1、认识上、下

  体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

  2、认识前、后

  体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

  同一物体,相对于不同的参照物,前后位置关系也会发生变化。

  从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

  3、认识左、右

  以自己的左手、右手所在的.位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

  要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

  学好数学的方法和技巧总结

  主动预习

  预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

  因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  让数学课学与练结合

  在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

  单项式书写格式

  1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。

  2、π是常数,因此也可以作为系数。它不是未知数。

  3、若系数是带分数,要化成假分数。

  4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

  5、在单项式中字母不可以做分母,分子可以。

  6、单独的数“0”的系数是零,次数也是零。

  7、常数的系数是它本身,次数为零。

  8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。

  小学数学知识点总结 篇17

  第一章————除法

  1、用乘法口诀做除法,余数一定要比除数小;

  2、应用题中,除数和余数的单位不一样;

  商的单位是问题的单位,余数的单位和被除数的单位相同;

  3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

  第二章————方向与位置(认识方向)

  1、地图上的方向口诀:上北下南,左西右东;

  辨认方向时要画方向标。

  2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

  “小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。

  3、太阳早上从东边升起,西边落下;

  指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

  4、当吹东南风时,红旗往()飘;

  吹西北风时,红旗往()飘。

  第三章————生活中的'大数(认识10000以内的数)

  1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

  2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。

  3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

  4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。

  5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

  末尾不管有几个“0”,都不读;

  写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

  6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。

  7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

  8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

  位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

  第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

  2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

  3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

  4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。

  第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

  2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

  3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

  如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

  4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

  5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

  980-()=760(用980-760计算)

  6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

  7、减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

  第六章————认识角1、每个角都是由1个顶点和2条边组成;

  2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

  3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

  4、正方形有四个直角,四条边都相等;

  长方形有四条边,四个直角,长方形的对边相等;

  5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

  第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;

  2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

  3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

  4、时针走一大格是1小时,走一圈是12小时;

  5、时、分、秒相邻单位的进率是60;

  1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

  7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

  第八章————统计1、记录并学会计算,谁多,谁少。

  小学数学知识点总结 篇18

  1.如果是谁拿到最后一个谁就赢,那么公式就是:

  总数÷(小数+大数)=商……余数,余数就是要求的答案,比如下面的第1题。

  如果是谁拿到最后一个谁就输,那么公式就是

  2.(总数-1)÷(小数+大数)=商……余数,余数就是要求的答案,比如下面的第2题

  练习

  1.箱子里装了16个球,乐乐和聪聪轮流从中拿1个球或者2个球,谁拿到最后一个球谁就获胜?如果聪聪先拿,第一次应该拿几个球才能确保获胜?每人轮流从中拿1个或者2个,那么作为聪聪就要首先保证他和乐乐拿的球数的和是2+1=3,也就是乐乐拿一个聪聪就拿2个,乐乐拿2个,聪聪拿1个,16÷(2+1)=5…… 1,所以聪聪先拿走剩下的一个,那么剩下的无论乐乐拿1个还是2个,聪聪只要保证和他的和是3个就可以了。

  2.试卷:54张扑克牌,甲乙两人轮流拿,每人每次只拿1---4张,谁拿到最后一张谁就输,若甲先拿牌,怎样拿牌保证甲获胜

  问题关键:是保证获胜,因此我们用的方法必须确保甲一定获胜。

  要想保证甲获胜,首先得保证甲拿到的是第53张牌,那么乙肯定拿到是第54张牌,乙肯定就输了,而每人轮流是拿1-4张,那么为了确保获胜,必须保证甲和乙拿的牌数的和是5,也就是如果乙拿1张,甲就拿4张,乙拿2张,甲就拿3张,乙拿3张,甲就拿2张,乙拿4张,甲就拿1张,和是5,53里边有几个5呢?(54-1)÷(1+4)=10…… 3,所以甲先把多余的3张先拿走,剩下的无论乙怎么拿,只要每次保证每次拿的张数的和是5就可以了。

  分数乘法意义

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的'和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  世界最大的数和最小的数

  最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

  目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

  没有最小的数字,但有最小的自然数,就是“0”。

  小学数学知识点总结 篇19

  【数学公式】

  数量关系计算公式

  1、单价×数量=总价

  2、单产量×数量=总产量

  3、速度×时间=路程

  4、工效×时间=工作总量

  5、加数+加数=和

  6、一个加数=和—另一个加数

  7、被减数—减数=差

  8、减数=被减数—差

  9、被减数=减数+差

  10、因数×因数=积

  11、一个因数=积÷另一个因数

  12、被除数÷除数=商

  13、除数=被除数÷商

  14、被除数=商×除数

  15、有余数的除法:被除数=商×除数+余数

  一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  1公里=1千米

  1千米=1000米

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  1平方米=100平方分米

  1平方分米=100平方厘米

  【珠算读写数】

  小小珠算真神奇,读数写数最容易。

  四位一级是关键,读写都从高位起。

  级前中0读一个,级末有0不读起。

  亿级万级仿个级,读完后面加单位。

  一级一级往下写,珠不靠梁0占位。

  【多位数的大小比较】

  多位数大小看位数,位数多的数就大。

  位数相同看高位,高位数大数就大。

  【分数大小的比较】

  分数大小的比较,分子、分母要记好。

  分母相同看分子,分子大的分数大。

  分子相同看分母,分母大的分数小。

  【列方程解应用题】

  列方程解应用题,抓住关键去分析。

  已知条件换成数,未知条件换字母。

  找齐相关代数式,连接起来读一读。

  【计量单位对口歌】

  小朋友,快排队,手拉手对单位。看谁说得快又对。

  人民币单位元、角、分,进率是10要牢记。

  1元得10角,1角得10分,1元等于100分。

  米、分米、厘米和毫米。

  单位是千米。

  1米=10分米,1分米=10厘米,1厘米=10毫米。

  米和千米也相临,进率1000是特例。

  吨与千克还有克,进率1000要牢记。

  形体单位更容易,相临100是面积,相临1000是体积。

  大单位,小单位,大小换算有规律。

  从大到小乘进率,小数点向右移;从小到大除以进率,小数点向左移。

  进率是10移一位,进率100移两位,进率1000移三位。以此类推。

  【分解质因数】

  分解质因数,方法是短除。

  除数是质数,商也是质数。

  表示的形式很简单:合数=质数×质数

  公约数、公倍数与互质数

  公约数,公倍数,关键要把“公”记住。

  公有的约数叫做公约数,公约数中的,就叫公约数。

  如果公约数只有1,它们就叫互质数。

  公有的倍数叫做公倍数。公倍数中最小的,就叫最小公倍数。

  求法有区别,千万别失误。

  短除只把除数乘,是求公约数。

  除数和商要连乘,是求最小公倍数。

  【垂直平分线定理

  性质定理:在垂直平分线上的'点到该线段两端点的距离相等;

  判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  【基本函数有哪些

  正弦:sine余弦:cosine(简写cos)

  正切:tangent(简写tan)

  余切:cotangent(简写cot)

  正割:secant(简写sec)

  余割:cosecant(简写csc)

  小学数学知识点总结 篇20

  (一)笔算两位数加法,要记三条

  1、相同数位对齐;

  2、从个位加起;

  3、个位满10向十位进1。

  (二)笔算两位数减法,要记三条

  1、相同数位对齐;

  2、从个位减起;

  3、个位不够减从十位退1,在个位加10再减。

  (三)混合运算计算法则

  1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

  2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

  3、算式里有括号的要先算括号里面的。

  (四)四位数的读法

  1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;

  2、中间有一个0或两个0只读一个“零”;

  3、末位不管有几个0都不读。

  (五)四位数写法

  1、从高位起,按照顺序写;

  2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

  (六)四位数减法也要注意三条

  1、相同数位对齐;

  2、从个位减起;

  3、哪一位数不够减,从前位退1,在本位加10再减。

  (七)一位数乘多位数乘法法则

  1、从个位起,用一位数依次乘多位数中的每一位数;

  2、哪一位上乘得的积满几十就向前进几。

  (八)除数是一位数的除法法则

  1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;

  2、除数除到哪一位,就把商写在那一位上面;

  3、每求出一位商,余下的数必须比除数小。

  (九)一个因数是两位数的乘法法则

  1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

  2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

  3、然后把两次乘得的数加起来。

  (十)除数是两位数的除法法则

  1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,

  2、除到被除数的哪一位就在哪一位上面写商;

  3、每求出一位商,余下的数必须比除数小。

  (十一)万级数的读法法则

  1、先读万级,再读个级;

  2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  (十二)多位数的读法法则

  1、从高位起,一级一级往下读;

  2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

  3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

  (十三)小数大小的比较

  比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

  (十四)小数加减法计算法则

  计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

  (十五)小数乘法的计算法则

  计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

  (十六)除数是整数除法的法则

  除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  (十七)除数是小数的除法运算法则

  除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

  (十八)解答应用题步骤

  1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

  2、确定每一步该怎样算,列出算式,算出得数;

  3、进行检验,写出答案。

  (十九)列方程解应用题的一般步骤

  1、弄清题意,找出未知数,并用X表示;

  2、找出应用题中数量之间的相等关系,列方程;

  3、解方程;

  4、检验、写出答案。

  (二十)同分母分数加减的法则

  同分母分数相加减,分母不变,只把分子相加减。

  (二十一)同分母带分数加减的法则

  带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  (二十二)异分母分数加减的法则

  异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

  (二十三)分数乘以整数的计算法则

  分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  (二十四)分数乘以分数的计算法则

  分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

  (二十五)一个数除以分数的计算法则

  一个数除以分数,等于这个数乘以除数的倒数。

  (二十六)把小数化成百分数和把百分数化成小数的方法

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

  把百分数化成小数,把百分号去掉,同时小数点向左移动两位。

  (二十七)把分数化成百分数和把百分数化成分数的方法

  把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;

  把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

  【小学数学口决定义归类】

  1、什么是图形的周长?

  围成一个图形所有边长的总和就是这个图形的周长。

  2、什么是面积?

  物体的表面或围成的平面图形的大小叫做他们的面积。

  3、加法各部分的关系:

  一个加数=和—另一个加数

  4、减法各部分的关系:

  减数=被减数—差被减数=减数+差

  5、乘法各部分之间的关系:

  一个因数=积÷另一个因数

  6、除法各部分之间的关系:

  除数=被除数÷商被除数=商×除数

  7、角

  (1)什么是角?

  从一点引出两条射线所组成的图形叫做角。

  (2)什么是角的顶点?

  围成角的端点叫顶点。

  (3)什么是角的边?

  围成角的射线叫角的边。

  (4)什么是直角?

  度数为90°的角是直角。

  (5)什么是平角?

  角的两条边成一条直线,这样的角叫平角。

  (6)什么是锐角?

  小于90°的角是锐角。

  (7)什么是钝角?

  大于90°而小于180°的角是钝角。

  (8)什么是周角?

  一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°。

  8、(1)什么是互相垂直?什么是垂线?什么是垂足?

  两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  (2)什么是点到直线的距离?

  从直线外一点向一条直线引垂线,点和垂足之间的.距离叫做这点到直线的距离。

  9、三角形

  (1)什么是三角形?

  有三条线段围成的图形叫三角形。

  (2)什么是三角形的边?

  围成三角形的每条线段叫三角形的边。

  (3)什么是三角形的顶点?

  每两条线段的交点叫三角形的顶点。

  (4)什么是锐角三角形?

  三个角都是锐角的三角形叫锐角三角形。

  (5)什么是直角三角形?

  有一个角是直角的三角形叫直角三角形。

  (6)什么是钝角三角形?

  有一个角是钝角的三角形叫钝角三角形。

  (7)什么是等腰三角形?

  两条边相等的三角形叫等腰三角形。

  (8)什么是等腰三角形的腰?

  有等腰三角形里,相等的两个边叫做等腰三角形的腰。

  (9)什么是等腰三角形的顶点?

  两腰的交点叫做等腰三角形的顶点。

  (10)什么是等腰三角形的底?

  在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。

  (11)什么是等腰三角形的底角?

  底边上两个相等的角叫等腰三角形的底角。

  (12)什么是等边三角形?

  三条边都相等的三角形叫等边三角形,也叫正三角形。

  (13)什么是三角形的高?什么叫三角形的底?

  从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。

  (14)三角形的内角和是多少度?

  三角形内角和是180°。

  10、四边形

  (1)什么是四边形?

  有四条线段围成的图形叫四边形。

  (2)什么是平等四边形?

  两组对边分别平行的四边形叫做平行四边形。

  (3)什么是平行四边形的高?

  从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

  (4)什么是梯形?

  只有一组对边平行的四边形叫做梯形。

  (5)什么是梯形的底?

  在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

  (6)什么是梯形的腰?

  在梯形里,不平等的一组对边叫梯形的腰。

  (7)什么是梯形的高?

  从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

  (8)什么是等腰梯形?

  两腰相等的梯形叫做等腰梯形。

  11、什么是自然数?

  用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。

  12、什么是四舍五入法?

  求一个数的近似数时,看被省略的尾数位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

  13、加法意义和运算定律

  (1)什么是加法?

  把两个数合并成一个数的运算叫加法。

  (2)什么是加数?

  相加的两个数叫加数。

  (3)什么是和?

  加数相加的结果叫和。

  (4)什么是加法交换律?

  两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

  14、什么是减法?

  已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。

  15、什么是被减数?什么是减数?什么叫差?

  在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。

  16、加法各部分间的关系:

  和=加数+加数加数=和—另一加数

  17、减法各部分间的关系:

  差=被减数—减数减数=被减数—差被减数=减数+差

  18、乘法

  (1)什么是乘法?

  求几个相同加数的和的简便运算叫乘法。

  (2)什么是因数?

  相乘的两个数叫因数。

  (3)什么是积?

  因数相乘所得的数叫积。

  (4)什么是乘法交换律?

  两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

  (5)什么是乘法结合律?

  三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

  19、除法

  (1)什么是除法?

  已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

  (2)什么是被除数?

  在除法中,已知的积叫被除数。

  (3)什么是除数?

  在除法中,已知的一个因数叫除数。

  (4)什么是商?

  在除法中,求出的未知因数叫商。

  20、乘法各部分的关系:

  积=因数×因数一个因数=积÷另一个因数

  21、(1)除法各部分间的关系:

  商=被除数÷除数除数=被除数÷商

  (2)有余数的除法各部分间的关系:

  被除数=商×除数+余数

  22、什么是名数?

  通常量得的数和单位名称合起来的数叫名数。

  23、什么是单名数?

  只带有一个单位名称的数叫单名数。

  24、什么是复名数?

  有两个或两个以上单位名称的数叫复名数。

  25、什么是小数?

  仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。

  26、什么是小数的基本性质?

  小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。

  27、什么是有限小数?

  小数部分的位数是有限的小数叫有限小数。

  28、什么是无限小数?

  小数部分的位数是无限的小数叫无限小数。

  29、什么是循环节?

  一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。

  30、什么是纯循环小数?

  循环节从小数第一位开始的叫纯循环小数。

  31、什么是混循环小数?

  循环节不是从小数部分第一位开始的叫做混循环小数。

  32、什么是四则运算?

  我们把学过的加、减、乘、除四种运算统称四则运算。

  33、什么是方程?

  含有未知数的等式叫方程。

  34、什么是解方程?

  求方程解的过程叫解方程。

  35、什么是倍数?什么叫约数?

  如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。

  36、什么样的数能被2整除?

  个位上是0、2、4、6、8的数都能被2整除。

  37、什么是偶数?

  能被2整除的数叫偶数。

  38、什么是奇数?

  不能被2整除的数叫奇数。

  39、什么样的数能被5整除?

  个位上是0或5的数能被5整除。

  40、什么样的数能被3整除?

  一个数的各位上的和能被3整除,这个数就能被3整除。

  41、什么是质数(或素数)?

  一个数如果只有1和它本身两个约数,这样的数叫质数。

  42、什么是合数?

  一个数除了1和它本身还有别的约数,这样的数叫合数。

  43、什么是质因数?

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

  44、什么是分解质因数?

  把一个合数用质因数相乘的形式表示出来叫做分解质因数。

  45、什么是公约数?什么叫公约数?

  几个数公有的约数叫公约数。其中的一个叫公约数。

  46、什么是互质数?

  公约数只有1的两个数叫互质数。

  47、什么是公倍数?什么是最小公倍数?

  几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。

  48、分数

  (1)什么是分数?

  把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。

  (2)什么是分数线?

  在分数里中间的横线叫分数线。

  (3)什么是分母?

  分数线下面的部分叫分母。

  (4)什么是分子?

  分数线上面的部分叫分子。

  (5)什么是分数单位?

  把单位“1”平均分成若干份,表示其中的一份叫分数单位。

  49、怎么比较分数大小?

  (1)分母相同的两个分数,分子大的分数比较大。

  (2)分子相同的两个分数,分母小的分子比较大。

  (3)什么是真分数?

  分子比分母小的分数叫真分数。

  (4)什么是假分数?

  分子比分母大或者分子和分母相等的分数叫假分数。

  (5)什么是带分数?

  由整分数和真分数合成的数通常叫带分数。

  (6)什么是分数的基本性质?

  分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

  (7)什么是约分?

  把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

  (8)什么是最简分数?

  分子、分母是互质数的分数叫最简分数。

  50、比

  (1)什么是比?

  两个数相除又叫两个数的比。

  (2)什么是比的前项?

  比号前面的数叫比的前项。

  (3)什么是比的后项?

  比号后面的数叫比的后项。

  (4)什么是比值?

  比的前项除以后项所得的商叫比值。

  (5)什么是比的基本性质?

  比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

  51、长方体和正方体

  (1)什么是棱?

  两个面相交的边叫棱。

  (2)什么是顶点?

  三条棱相交的点叫顶点。

  (3)什么是长方体的长、宽、高?

  相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

  (4)什么是正方体(立方体)?

  长宽高都相等的长方体叫正方体(或立方体)。

  (5)什么是长方体的表面积?

  长方体_个面的总面积叫长方体的表面积。

  (6)什么是物体体积?

  物体所占空间的大小叫做物体的体积。

  52、圆

  (1)什么是圆心?

  圆中心的点叫圆心。

  (2)什么是半径?

  连接圆心和圆上任意一点的线段叫半径。

  (3)什么是直径?

  通过圆心、并且两端都在圆上的线段叫直径。

  (4)什么是圆的周长?

  围成圆的曲线叫圆的周长。

  (5)什么是圆周率?

  我们把圆的周长和直径的比值叫圆周率。

  (6)什么是圆的面积?

  圆所围平面的大小叫圆的面积。

  (7)什么是扇形?

  一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。

  (8)什么是弧?

  在圆上两点之间的部分叫弧。

  (9)什么是圆心角?

  顶点在圆心上的角叫圆心角。

  (10)什么是对称图形?

  如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。

  小学数学知识点总结 篇21

  1.长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

  其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

  米:国际单位制中长度的标准单位是“米”,用符号“m”表示。

  分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

  厘米:长度单位,简写符号为:cm。

  毫米:英文缩写为mm

  (1厘米=10毫米=0.1分米=0.01米=0.00001千米)

  2.进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

  以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

  在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

  3.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

  4.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

  1不能够减去2,所以必须向高位的5借位。

  5.连加:多个数字连续相加叫做连加。例如:28+24+23=85

  6.连减:多个数字连续相减叫做连减。例如:85-40-26=19

  7.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

  苏教版小学数学学习方法

  学习数学方法一:课前预习:

  一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。

  学习数学方法二:课后复习:

  同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。

  学习数学方法三:涉猎课外习题:

  想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。

  学习数学方法四:记笔记:

  这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的.东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。

  苏教版小学数学学习技巧

  列表记忆

  就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三

  重点记忆

  随着年龄的增长,所学的数学知识也越来越多,学生要想全面记住,既浪费时间且记忆效果不佳。因此,要让学生学会记忆重点内容,学生在记住了重点内容的基础上,再通过推导、联想等方法便可记住其他内容了。比如,学习常见的数量关系:工作效率×工作时间=工作量。工作量÷工作效率=工作时间;工作量+工作时间=工作效率。这三者关系中只要记住了第一个数量关系,后面两个数量关系就可根据乘法和除法的关系推导出来。这样去记,减轻了学生记忆的负担,提高了记忆的效率。

  小学数学知识点总结 篇22

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的'互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙

  求乙比甲少百分之几:(甲-乙)÷甲

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)

  5、折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣、成数=几分之几、百分之几、小数

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八点五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半价

  6、利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和教育储蓄的利息不纳税

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%

【小学数学知识点总结】相关文章:

小学数学知识点总结08-01

数学的知识点总结08-22

小学数学知识点总结(精选15篇)08-23

小学数学知识点总结精选15篇08-23

数学高考知识点总结08-26

数学中考知识点总结08-23

数学圆知识点总结04-09

初中数学的知识点总结01-12

小学数学知识点总结(通用16篇)08-25

小学数学知识点总结(通用17篇)08-26