通项公式方法总结

时间:2022-07-14 06:51:07 总结 投诉 投稿
  • 相关推荐

通项公式方法总结

  总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它能够给人努力工作的动力,为此要我们写一份总结。你想知道总结怎么写吗?以下是小编精心整理的通项公式方法总结,欢迎大家借鉴与参考,希望对大家有所帮助。

通项公式方法总结

通项公式方法总结1

  一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。

  例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。

  解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。

  二、已知数列的前n项和,用公式

  S1 (n=1)

  Sn-Sn-1 (n2)

  例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5

  (A) 9 (B) 8 (C) 7 (D) 6

  解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8选(B)

  此类题在解时要注意考虑n=1的情况。

  三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。

  例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。

  解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-}是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,

  再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,

  - (n=1)

  - (n2)

  四、用累加、累积的方法求通项公式

  对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。

  例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式

  解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0

  又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,

  又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)

  五、用构造数列方法求通项公式

  题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的'高考热点,因此既是重点也是难点。

  例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……

  (1)求{an}通项公式(2)略

  解:由an+1=(--1)(an+2)得到an+1--=(--1)(an--)

  ∴{an--}是首项为a1--,公比为--1的等比数列。

  由a1=2得an--=(--1)n-1(2--),于是an=(--1)n-1(2--)+-

  又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。

  证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数)

  由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1,

  所以数列{an-n}是首项为1,公比为4的等比数列。

  若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。

  又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略

  解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1

通项公式方法总结2

  不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。求数列通项公式的题型很多,不同的题型有不同的解决方法。下面结合教学实践,谈谈求数列通项公式的解题思路。

  一、已知数列的前几项

  已知数列的前几项,求通项公式。通过观察找规律,分析出数列的项与项数之间的关系,从而求出通项公式。这种方法称为观察法,也即是归纳推理。

  例1、求数列的通项公式

  (1)0,22——1/3,32——1/4,42+1/5……

  (2)9,99,999,……

  分析:(1)0=12——1/2,每一项的分子是项数的平方减去1,分母是项数加上1,n2——1/n+1=n——1,其实,该数列各项可化简为0,1,2,3,……,易知an=n——1。

  (2)各项可拆成10-1,102-1,103-1,……,an=10n——1。

  此题型主要通过让学生观察、试验、归纳推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生的思维能力。

  二、已知数列的前n项和Sn

  已知数列的前n项和Sn,求通项公式an,主要通过an与Sn的关系转化,即an -{ S1(n=1) Sn -Sn——1(n≥2)

  例2、已知数列{an }的前n项和Sn=2n+3,求an

  分析:Sn=a1+a2 +……+an——1+an

  Sn——1=a1+a2 +……+an——1

  上两式相减得 Sn -Sn——1=an

  解:当n=1时,a1=S1=5

  当n≥2时,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1

  ∵n=1不适合上式

  ∴an ={5(n=1) 2n——1(n≥2)

  三、已知an与Sn关系

  已知数列的第n项an与前n项和Sn间的`关系:Sn=f(an),求an。一般的思路是先将Sn与an的关系转化为an与an——1的关系,再根据与的关系特征分为如下几种类型。不同的类型,要用不同的方法解决。

  (1)an=an——1+k。数列属等差数列,直接代公式可求通项公式。

  例3、已知数列{an},满足a1=3,an=an——1+8,求an。

  分析:由已知条件可知数列是以3为首项,8为公差的等差数列,直接代公式可求得an=8n-5。

  (2)an=kan——1(k为常数)。数列属等比数列,直接代公式可求通项公式。

  例4、数列{an}的前n项和Sn,a1=1,an+1=2Sn+1(n∈N+)

  求数列{an}的通项公式。

  分析:根据an与Sn的关系,将an+1=2Sn+1转化为an与an+1的关系。

  解:由an+1=2Sn+1

  得an=2Sn-1+1(n≥2)

  两式相减,得an+1-an=2an

  ∴an+1=3an (n≥2)

  ∵a2=2Sn+1=3

  ∴a2=3a1

  ∴{an}是以1为首项,3为公比的等比数列

  ∴an=3n-1

  (3)an+1=an+f(n),用叠加法

  思路:令n=1,2,3,……,n-1

  得a2=a1+f(1)

  a3=a2+f(2)

  a4=a3+f(3)

  ……

  +)an=an——1+f(n-1)

  an=a1+f(1)+f(2)+…+f(n-1)

  例5、若数列{an}满足a1=2,an+1=an+2n

  则{an}的通项公式=( )

  解:∵an+1=an+2n

  ∴a2 =a1+2×1

  a3=a2+2×2

  a4=a3+2×3

  ……

  +)an=an——1+2(n-1)

  an=a1+2(1+2+3+…+n-1)

  =2+2×(1+n-1)(n-1)

  =n2-n+2

  (4)an+1=f(n)an,用累积法

  思路:令n=1,2,3,……,n-1

  得a2 =f(1)a1 a3=f(2)a2 a4=f(3)a3

  ……

  ×)an=f(n-1)an-1

  an=a1·f(1)·f(2)·f(3)……f(n-1)

  例6、若数列{an}满足a1=1,an+1=2n+an,则an=( )

  解:∵an+1=2nan ∴a2 =21a1

  a3=22a2 a4=23a3

  ……

  ×) an=2n——1·an——1

  an=2·22·23·……·2n-1a1=2n(n-1)/2

  (5)an=pan——1+q, an=pan——1+f(n)

  an+1=an+p·qn(pq≠0),

  an=p(an——1)q, an+1=ran/pan+q=(pr≠0,q≠r)

  (p、q、r为常数)

  这些类型均可用构造法或迭代法。

  ①an=pan——1+q (p、q为常数)

  构造法:将原数列的各项均加上一个常数,构成一个等比数列,然后,求出该等比数列的通项公式,再还原为所求数列的通项公式。

  将关系式两边都加上x

  得an+x=Pan——1+q+x

  =P(an——1 + q+x/p)

  令x=q+x/p,得x=q/p-1

  ∴an+q/p-1=P(an——1+q/p-1)

  ∴{an+q/p-1}是以a1+q/p-1为首项,P为公比的等比数列。

  ∴an+q/p-1=(a1+q/p-1)Pn-1

  ∴an=(a1+q/p-1)Pn-1-q/p-1

  迭代法:an=p(an——1+q)=p(pan-2+q)+q

  =p2((pan-3+q)+pq+q……

  例7、数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+)求an

  解析:由Sn=2an-n 得Sn-1=2an-1-(n-1) (n≥2,n∈N+)

  两式相减得an=2an-1+1

  两边加1得an+1=2(an-1+1) (n≥2,n∈N+)

  构造成以2为公比的等比数列{an+1}

  ②an=Pan-1+f(n)

  例8、数列{an}中,a1为常数,且an=-2an-1+3n-1(≥2,n∈N)

  证明:an=(-2)n-1a1+3n+(-1)n·3·2n-1/5

  分析:这道题是证明题,最简单的方法当然是数学归纳法,现用构造法和迭代法来证明。

  方法一:构造公比为-2的等比数列{an+λ·3n}

  用比较系数法可求得λ=-1/5

  方法二:构造等差型数列{an/(-2)n}。由已知两边同以(-2)n,得an/(-2)n=an-1/(-2)n=1/3·(-3/2)n,用叠加法处理。

  方法三:迭代法。

  an=-2an-1+3n-1=-2(-2an-2+3n-2)+3n-1

  =(-2)2an-2+(-2)·3n-2+3n-1

  =(-2)2(-2an-3+3n-3)+(-2)·3n-2+3n-1

  =(-2)3an-3+(-2)·3n-3+(-2)·3n-2+3n-1

  =(-2)n-1a1+(-2)n-1·3+(-2)n-3·+32+……+(-2)·3n-2+3n-1

  =(-2)n-1a1+3n+(-1)n-2·3·2n-1/5

  ③an+1=λan+p·qn(pq≠0)

  (ⅰ)当λ=qn+1时,等式两边同除以,就可构造出一个等差数列{an/qn}。

  例9、在数列{an}中,a1=4,an+1+2n+1,求an。

  分析:在an+1=2an+2n+1两边同除以2n+1,得an+1/2n+1=an/2n+1

  ∴{an/2n}是以a1/2=2为首项,1为公差的等差数列。

  (ⅱ)当λ≠q时,等式两边同除以qn+1,令bn=an/qn,得bn+1=λ/qbn+p,再构造成等比数列求bn,从而求出an。

  例10、已知a1=1,an=3an-1+2n-1,求an

  分析:从an=3an-1+2n-1两边都除以2n,

  得an/2n=3/2 an-1/2n-1+1/2

  令an/2n=bn

  则bn=3/2bn-1+1/2

  ④an=p(an——1)q(p、q为常数)

  例11、已知an=1/a an——12,首项a1,求an。

  方法一:将已知两边取对数

  得lgan=2lgan——1-lga

  令bn=lgan

  得bn=2bn-1-lga,再构造成等比数列求bn,从而求出an。

  方法二:迭代法

  an=1/a a2n——1=1/a (1/a a2n——2)2=1/a3 a4n——2

  =1/a3 (1/a a2n——3)4=1/a7·an——38=a·(an——3/a)23

  =……=a·(a1/a)2n——1

  ⑤an+1=ran/pan+q(p、q、r为常数,pr≠0,q≠r)

  将等式两边取倒数,得1/an+1=q/r·1/an+p/r,再构造成等比数列求an。

  例12、在{an}中,a1=1,an+1=an/an+2,求an

  解:∵an+1=an/an+2

  ∴1/an+1=2·1/an+1

  两边加上1,得1/an+1+1=2(1/an+1)

  ∴{1/an+1}是以1/an+1=2为首项,2为公比的等比数列

  ∴ 1/an+1=2×2n-1=2n

  ∴an=1/2n-1

  以上罗列出求数列通项公式的解题思路虽然很清晰,但是一般考生对第三项中的5种类型题用构选法和迭代法都比较困难的。遇到此情况,可转化为第一种类型解决,即从an与Sn的关系式求出数列的前几项,用观察法求an。

【通项公式方法总结】相关文章:

初中物理公式总结08-10

物理公式高二总结03-17

初三物理公式总结03-10

初中数学公式总结03-09

初三物理公式总结08-02

初中物理公式知识总结03-09

(实用)初中物理公式总结07-06

高二物理公式总结02-09

高考数学公式总结10-04