二年级数学知识点总结

时间:2022-07-21 18:03:23 总结 投诉 投稿

二年级数学知识点总结

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它是增长才干的一种好办法,不妨坐下来好好写写总结吧。我们该怎么去写总结呢?以下是小编帮大家整理的二年级数学知识点总结,希望对大家有所帮助。

二年级数学知识点总结

二年级数学知识点总结1

  1、常用的长度单位:米、厘米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几, 这个物体的长度就是几厘米。

  4、米和厘米的关系:1米=100厘米 100厘米=1米

  5、线段

  ⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

  ⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的`上面也点一个点,然后把这两个点连起来。

  ⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  6、填上合适的长度单位。

  小明身高1(米)30(厘米) 练习本宽13(厘米) 铅笔长17(厘米)

  黑板长2(米) 图钉长1(厘米) 一张床长2(米)

  一口井深3(米) 学校进行100(米)赛跑 教学楼高25(米)

  宝宝身高80(厘米) 跳绳长2(米) 一棵树高3(米)

  一把钥匙长5(厘米) 一个文具盒长24(厘米) 讲台高90(厘米)

  门高2(米) 教室长12(米) 筷子长20(厘米)

二年级数学知识点总结2

  竖式除法

  1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。

  2、进一步体会除法的意义。

  有余数的除法

  1、体会有余数除法的意义。

  2、积累正确的试商方法。

  4、能用竖式正确计算有余数除法,了解余数一定要比除数小。

  5、能运用有余数除法的`知识解决一些简单的实际问题。

  分苹果(竖式除法)

  知识点:

  1、掌握表内除法竖式的书写格式。

  2、掌握除法竖式的写法和每一步所表示的含义。

  分橘子(有余数的除法(一))

  知识点:

  1、体会有余数除法的意义。

  2、会用竖式表示有余数的除法,了解余数一定要比除数小。

  分草莓(有余数的除法(二))

  知识点:

  1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。

  2、能运用有余数除法的知识解决一些简单的实际问题。

  租船(有余数除法的应用(一))

  知识点:

  灵活运用有余数的除法的有关知识解决生活中的简单实际问题。

  派车(有余数除法的应用(二))

  知识点:

  灵活运用有余数除法及相关知识解决生活中的简单实际问题。

二年级数学知识点总结3

  1、乘法的含义

  乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的写法和读法

  ⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。

  如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

  ⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。

  3、乘法算式中各部分的名称及实际表示的意义

  在乘法算式里,乘号前面的数和乘号后面的`数都叫做“乘数”;等号后面的得数叫做“积”。

  4、乘法算式所表示的意义

  求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。

  5、加法写成乘法时,加法的和与乘法的积相同。

  6、乘法算式中,两个乘数交换位置,积不变。

  7、算式各部分名称及计算公式。

  乘法:乘数×乘数=积

  加法:加数+加数=和

  和—加数=加数

  减法:被减数—减数=差

  被减数=差+减数

  减数=被减数—差

  8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。

  如:1×9=10—1 9×5=50—5

  9、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14

  10、“几和几相加”与“几个几相加”有区别

  求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)

  求几个几相加,用几乘几。

  如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8

  2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64

  11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。

  “5+5+5”写成乘法算式是(3×5=15)或(5×3=15),

  都可以用口诀(三五十五)来计算,表示(3)个(5)相加

  3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15

  第五单元观察物体

  1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

  2、观察物体时,要抓住物体的特征来判断。

  3、观察长方体的某一面,看到的可能是长方形或正方形。观察正方形的某一面,看到的都是正方形

  4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形

  第七单元认识时间

  1、认识时间

  (1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;

  (2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。

  (3)时针走1大格分针要走一圈,所以1时=60分;

  (4)半小时=30分,一刻钟=15分钟

  (5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。

  2、运用知识解决问题

  (1)要按着时间的先后顺序安排事件,时间上不能重复。

  (2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。

  (3)时针和分针能形成直角的时刻是3时和9时。

  第八单元数学广角-搭配

  1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。

  2、借用连线或者符号解答问题比较简单。

  3、排列与顺序有关,组合与顺序无关。

二年级数学知识点总结4

  第一章————除法

  1、用乘法口诀做除法,余数一定要比除数小;

  2、应用题中,除数和余数的单位不一样;

  商的单位是问题的单位,余数的单位和被除数的单位相同;

  3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

  第二章————方向与位置(认识方向)

  1、地图上的方向口诀:上北下南,左西右东;

  辨认方向时要画方向标。

  2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

  “小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。

  3、太阳早上从东边升起,西边落下;

  指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

  4、当吹东南风时,红旗往()飘;

  吹西北风时,红旗往()飘。

  第三章————生活中的大数(认识10000以内的数)

  1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

  2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。

  3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

  4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。

  5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

  末尾不管有几个“0”,都不读;

  写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

  6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。

  7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

  8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

  位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

  第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

  2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

  3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

  4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。

  第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

  2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

  3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

  如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

  4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

  5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

  980-()=760(用980-760计算)

  6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

  7、减法的'验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

  第六章————认识角1、每个角都是由1个顶点和2条边组成;

  2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

  3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

  4、正方形有四个直角,四条边都相等;

  长方形有四条边,四个直角,长方形的对边相等;

  5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

  第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;

  2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

  3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

  4、时针走一大格是1小时,走一圈是12小时;

  5、时、分、秒相邻单位的进率是60;

  1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

  7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

  第八章————统计1、记录并学会计算,谁多,谁少。

二年级数学知识点总结5

  小学二年级数学知识点

  1、表内除法的知识点:

  (1)理解平均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商被除数÷商=除数除数×商=被除数

  2、除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

  3、除法的性质

  一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)

  4、除法公式

  (1)被除数÷除数=商

  (2)被除数÷商=除数

  (3)除数×商=被除数

  5、被除数

  除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数

  小学二年级数学《四边形的认识》知识点

  长方形与正方形

  知识点:

  1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。

  2、初步了解长方形、正方形之间的联系:正方形是特殊的长方形。

  3、能在方格纸上画出长方形与正方形。

  平行四边形

  知识点:

  1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。

  2、初步了解长方形是特殊的平行四边形。

  小学二年级数学《有余数的除法》知识点

  一、有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的.乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  二、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

二年级数学知识点总结6

  一、解决问题

  知识点

  教学要求

  教学难点

  教学建议

  1、加减混合应用题

  正确分析数量关系,正确确定算法。会用加法、减法两步运算解决问题。

  分析数量之间的关系。确定单位名称。

  1、培养学生初步的应用意识,提高解决问题的能力。让学生应用已有的知识经验,把所学的数学知识应用到实际生活中去,解决身边的数学问题,是培养学生初步的应用意识的.一个重要途径。因此,在数学教学中创设与生活密切相关的生活情境,引导学生从现实情境中发现问题、提出问题、解决问题就显得尤为重要。

  2、理解数学问题的基本含义,会用一定的方法分析解决问题。

  3、了解小括号的作用,学会使用小括号列综合算式。

  通过对比两种列式形式,进一步理解分步和综合列式的内在联系。

  4、培养学生多角度观察问题,解决问题的能力。要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

  2、连减应用题(两种方法解决)

  1、正确分析数量关系,正确确定算法。会用连减的两步运算解决问题。

  2、了解小括号的作用正确应用小括号。

  分析数量之间的关系。确定单位名称。

  3、乘加、乘减应用题

  正确分析数量关系,正确确定算法。会用乘加、乘减两步运算解决问题。

  信息中数量关系的把握。确定单位名称。

  二、表内除法(一)

  知识点

  教学要求

  教学难点

  教学建议

  1、除法的初步认识。

  (1)平均分

  (2)除法

  1、掌握平均分的方法,知道什么时候用除法计算。

  2、会读、写除法算式,知道除法算式中各部分的名称。

  正确读、写除法算式。

  1、在充分的动手操作中理解“平均分”的含义。

  2、创设情境或通过直观演示、操作,让学生初步理解乘、除法的关系。

  2、用2--6口诀求商

  1、理解求商思路,掌握求商方法。

  2、正确、熟练地用2—6的乘法口诀求商。

  掌握求商方法,正确熟练的用口诀求商。

  加强用口诀求商的基本练习。为了使学生用口诀求商的计算能力达到一定的熟练程度应在练习中适当增加形式多样的用乘法口诀求商的练习,以形成必要的计算技能。

二年级数学知识点总结7

  第一单元 数据整理与收集

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  4.数据收集---整理---分析表格。

  第二单元 表内除法(一)

  1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。

  除法就是用来解决平均分问题的。

  2.平均分里有两种情况:

  (1)把一些东西平均分成几份,求每份是多少;用除法计算,

  总数÷份数=每份数

  例:24本练习本,平均分给6人,每人分多少本?

  列式:24÷6=4

  (2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

  例:24本练习本,每人4本,能分给多少人?

  列式:24÷4=6

  3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

  除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

  例如:12÷4=3读作(12除以4等于3)

  例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。

  4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

  被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)

  5.用2~6的乘法口诀求商

  1、求商的方法:

  (1)用平均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘的被除数。

  一句口诀可以写四个算式。(乘数相同的除外)。

  例:用“三八二十四”这句口诀

  A、24÷3=8 B、3×8=24

  C、24÷3=8 D、24÷8=3

  计算方法:12÷4=( )时,想:( )四十二,所以商是( ).

  6.解决问题

  1、解决有关平均分问题的方法:

  总数÷每份数=份数、总数÷份数=每份数、

  因数×因数=积、一个因数=积÷另一个因数

  2、用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

  (3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。

  (4)24里面有( )个4,,20里面有( )个5。(用除法计算。)

  (5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?

  第三单元 图形的运动

  1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

  成轴对称图形的汉字:

  一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。

  2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

  (记住:平移只能上下移动或左右移动)

  3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)

  (一)填空

  1、汽车在笔直的公路上行驶,车身的运动是( )现象

  2、教室门的打开和关闭,门的运动是( )现象。

  A.平移 B旋转 C平移和旋转

  3、下面( )的运动是平移。

  A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠

  第四单元 表内除法(二)

  这单元主要是考口算题。有以下几种形式:

  1、用7、8、9的乘法口诀求商

  求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。

  例.直接口算:28÷4 8÷8

  2、解决问题

  求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。

  例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );

  第五单元 混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分布计算,也可以列综合算式。

  请画出先算哪一步,再算哪一步(并标上1和2)

  1、同级运算的类型:

  例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4

  2、不同级运算的类型:

  例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8

  3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。

  例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8

  4.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。

  例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________

  5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

  例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?

  先算____________________再算____________________

  例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?

  6.练习十三 第4题 (重点)

  1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?

  2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?

  3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

  4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?

  第六单元 有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的.有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  例:43÷7=()…( )余数可能是( )或者余数最大是( )

  (2)至少问题(进一法):商+1

  例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。

  (3)最多问题(去尾法)

  例:小丽有10元钱,买3元一个的面包,最多能买几个?

  课例:

  1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  第七单元 万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如453 < 1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219

  补充:

  1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。

  2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。

  3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。

  例:2647=( )+( )+( )+( )

  4、用估算策略解决问题。

  96页 例13(估大)

  练习19 第8题(估小)

  第八单元 克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、

  1斤=10两、1两=50克)

  5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

二年级数学知识点总结8

  本单元与第二单元考察内容大同小异。

  第五单元混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分步计算,也可以列综合算式。

  4、带小括号运算的类型:

  方法:算式里有括号的,要先算括号里面的。

  5.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。

  当需要替换的是第二个数,必要时还需要加上小括号。

  第六单元有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的'乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  (2)至少问题(进一法):商+1

  22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  (3)最多问题(去尾法)

  茵苗有10元,每个面包3元,茵苗最多能买几个?

  本单元有一道难题,就是已知几月几日是星期几,要求几月几日是星期几。这一部分难度比较大,家长们可以先自行观看教学视频,自己先弄明白了,再给孩子讲解。

  第七单元万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。

  5、认识算盘,一颗上珠是5,一颗下珠是1。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;

  最小三位数是100,最大的三位数是999;

  最小四位数是1000,最大的四位数是9999;

  最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如999<1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。

  第八单元克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克1kg=1000g.进率是1000。

  5、计算或者比较大小时,如果单位不同,就需要把单位统一,一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

  物品的重量和物品的材质没有关系:1千克的棉花和1千克的铁一样重。

  第九单元数学广角-推理

  1、有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。

  推理时,先根据条件确定必然情况,再用排除法确定其他情况。

  2、填数游戏和扫雷游戏

  当然,这么多的内容,当然不是让孩子一下子就记住。寒假期间,孩子要先把乘法口诀背熟,能够根据乘法口诀写出四道算式或两道算式。

  此外,还可以做一些加减混合、乘加、乘减的应用题。

  小学二年级下册数学必背内容

  (一)有余数的除法

  ①商要对着被除数的个位。②余数要比除数小。

  被除数÷除数=商…….余数

  被除数=除数×商+余数

  1、()÷()=5……6,除数最小是(),被除数最小是()。

  2、在应用题中,余数单位和被除数单位相同。

  (二)万以内数的认识

  1、数位顺序表按(从右往左)的顺序,依次是(个位)、(十位)、(百位)、(千位)、(万位)。

  2、10个一是十,10个十是一百,10个一百是一千,10个一千是一万。

  3、计数单位有:一、十、百、千、万,相邻两个计数单位间的进率是10.

  4、最小的一位数是1,最大的一位数是9;最小的两位数是10,最大的两位数是99;最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999;最大的五位数是10000.

  5、读数、写数都从高位起。

  (三)长度单位

  1、1千米=(1000)米

  1米=(10)分米,1分米=(10)厘米,1厘米=(10)毫米,

  1米=(100)厘米,1分米=(100)毫米。

  2、长度单位转换时,大单位转小单位,数字增大(添“0”),小单位转大单位,数字减小(去“0”)。

  3、手臂打开大约1米;(1拃)长大约10厘米,也是1分米;

  (2分硬币)大约有1毫米厚;10张纸的厚度大约1毫米。

  4、在表示较远距离时,用(千米)作单位,如(各类交通工具的时速),(马拉松长跑的路程),(铁路长),(两个城市间的路程)等。

  5、用米作单位常见的有描述(树高)、(楼高)、(桥长)等。

  (四)三位数的加法和减法

  1、求“和”用加法;求“差”用减法;求“积”用乘法;求“商”用除法。

  2、加数=和-另一个加数

  被减数—减数=差

  被减数=减数+差

  减数=被减数-差

  3、笔算三位数加减法时,从(个位)算起,相加满十向(前一)位进1。相减,不够减向(前一)位借1,借1作10。

  (五)图形

  1、长方形:4条边,(对边)相等,4个角都是(直角)。较长的边叫长(2条长),较短的边叫宽(2条宽)。

  2、正方形:(四条边)都相等,4个角都是(直角)。

  3、平行四边形:有4条边,(对边)相等;有4个角,(对角)相等;有2个钝角和2个锐角,还具有不稳定性。

  (六)时间单位

  1、钟面上有(12)个大格,(60)个小格。

  时针走(1大格)是(1时);

  分针走(1小格)是(1分),走一大格是(5分)。

  秒针走(1小格)是1秒,走一大格是(5秒)。

  2、时针走(1大格)是(1时),这时分针正好走(1圈),是(60)分,所以1时=(60)分。

  3、分针走(1小格)是(1分),这时秒针正好走(1圈),是(60)秒。所以1分=(60)秒。

  4、结束时间-开始时间=经过时间

  结束时间-经过时间=开始时间

  开始时间+经过时间=结束时间

  5、在求时间时,可以列竖式计算。

  减法时:要先算(分减分),再算(时减时),当“分”不够减时,向(时)借1当60分,60分与原来的“分”合在一起再减。

  加法时:先算(分加分),再算(时加时),当分加分超过60分时,要把其中的60分转化为1时。

  7时10分-3是50分=()2时40分+3时50分=()

  6、通常下午的时间转化成24时计时法,例如

  下午3时20分就是(15时20分)

  7、描述50米、100米跑步的时间要用(秒)作单位。

  8、时针从数字3走到数字8经过时间是()。

  分针从数字3走到数字8经过时间是()。

  秒针从数字3走到数字8经过时间是()。

二年级数学知识点总结9

  一、100以内的笔算加法和减法

  1.用竖式计算两位数加法时:

  ①相同数位对齐。

  ②从个位加起。

  ③如果个位满10,向十位进1。

  2.用竖式计算两位数减法时:

  ①相同数位对齐。

  ②从个位减起。

  ③如果个位不够减,从十位退1,个位加10再减,计算时十位要记得减去退掉的1。

  3.划线一定要用尺子,抄错数是一个严重的问题。

  4.求“一个已知数”比“另一个已知数”多多少.少多少?

  要弄清楚数量之间的关系,知道谁比谁多,谁比谁少,再分析用加法还是减法。

  5.连加连减和加减混合时注意加减号,不要混乱。

  二、平行四边形的初步认识

  1.长方形、正方形和平行四边形都是(四)边形。

  2.搭一个五边形,最少要用(五)根小棒。

  3.从正方形的纸上剪去一个三角形,剩下的图形可能是三角形,可能是(四)边形,也可能是(五)边形。

  4.一个图形是几边形它就有几条边。

  三.表内乘法(一)

  1.几个相同数连加除了用加法表示外,还可以用乘法表示。用乘法表示更加简捷。

  2.相同加数相加写成乘法时,用相同加数×相同加数的个数或相同加数的个数×相同加数。如:5+5+5+5 表示:5×4或4×5

  3.加法写成乘法时,加法的和与乘法的积相同。

  4.乘法算式中,两个乘数交换位置,积不变。

  5.算式各部分名称及计算公式。乘法:

  3 × 4 = 12

  (乘数) × (乘数) = (积)

  6.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

  7.乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:

  加法:3+3+3+3+2=14

  乘加:3×4+2=14

  乘减:3×5-1=14

  8.熟练地背诵1-6的乘法口诀,顺着背、倒着背、竖背等多种方法。

  9.乘法口诀关系到下册的除法的计算,务必背熟。

  10.乘法、乘加、乘减、加减的应用,要求学生首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。

  四、表内除法

  1.初步理解除法的含义,初步体会除法和乘法的联系,能正确读、写除法算式,知道出发算式中各部分的名称,比较熟练地运用2~9的乘法口诀口算有关的除法。

  2.平均分:每份分得同样多,叫作平均分。

  平均分的两种分法:

  分法1:平均分成几份,每份分得几个;

  分法2:按每几个一份的分,平均分成几份。

  如:有10个苹果,分法1:平均分成5份,每份分得2个;分法2:按每2个一份的分,平均分成5份。

  五、米和厘米

  1.常用的长度单位:米、厘米。

  2.要知道物体的长度,可以用(尺)来量。

  2.测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3.测量时:把尺的“0”刻度对准物体的左端,再看纸条的右端对着几,对着几就是几厘米。

  4. 1米=100厘米 ,100厘米=1米。

  在计算长度单位时,先看单位是否相同,不同则要先把单位化成一样的'单位再加减。如:

  1米-40厘米=60厘米(100厘米 -40厘米=60厘米)

  5.线段的特点:

  ①线段是直的。

  ②线段有两个端点。

  ③线段是可以测量出长度的。

  6.画线段要从尺的(0)刻度开始画起,画到题目要求的数字那里。

  比如:要求画一条5厘米长的线段。就从0开始,画到5结束。

  例题:

  (1)从刻度0到7是( 7 )厘米。

  就直接用7-0=7厘米。括号就填7厘米。

  (2)2到8是(6 )厘米。

  就直接用8-2=6厘米。括号就填6厘米。

  7.画一条比6厘米短3厘米的线段。

  就是求比6厘米短3厘米是多少?

  6-3=3厘米。所以题目要求就是画一条3厘米长的线段。

  8.例题:

  任意画一个由三条线段围成的图形。就是要求画一个三角形。

  六、表内乘法和表内除法(二)

  1.加法写成乘法时,加法的和与乘法的积相同。

  2.乘法算式中,两个乘数交换位置,积不变。

  3.算式各部分名称及计算公式。

  乘法:

  3 × 4 = 12

  (乘数) × (乘数) = (积)

  4.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

  5.乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  6.熟练地背诵1-6的乘法口诀,顺着背、倒着背、竖背等多种方法。

  7.乘法口诀关系到下册的除法的计算,务必背熟。

  8.乘法、乘加、乘减、加减的应用,要求首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。

  9.用表内乘法求商。

  七、观察物

  1.从前.后.左.右不同的位置观察到的物体形状不一样。

  2.根据立体图形判断平面图形,根据平面图形判断立体图形。

二年级数学知识点总结10

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  4.数据收集---整理---分析表格。

  在绘制表格或者图形的时候,要注意每个小格代表的数量是多少。

二年级数学知识点总结11

  1.平均分的含义:把一些物品分成几份,每份分得同样多,叫做平均分。

  除法就是用来解决平均分问题的。

  2.平均分里有两种情况:

  (1)把一些东西平均分成几份,求每份是多少;用除法计算,

  总数÷份数=每份数

  (2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

  3、除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

  除法算式各部分名称:在除法算式中,除号前面的`数就被除数,除号后面的数叫除数,所得的数叫商。

  被除数÷除数=商。

  被除数÷商=除数

  除数×商=被除数。

  4.用2~6的乘法口诀求商

  1、求商的方法:

  (1)用平均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘的被除数。

  一句口诀可以写四个算式。(乘数相同的除外)。

  5、解决问题

  解决有关平均分问题的方法:

  总数÷每份数=份数总数÷份数=每份数

  用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

  第三单元图形的运动

  1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。(剪纸游戏)

  成轴对称图形的字母:

  ABCDEHIKMOTUVWXY

  2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。平移只能上下移动或左右移动。

  3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。例如:旋转木马、转动的风扇、转动的车轮等。

二年级数学知识点总结12

  一、学习目标:

  1.初步经历长度单位形成的过程,体会统一长度单位的必要性,知道长度单位的作用;

  2.在具体情境下,进一步体会加法的意义,理解相同数位上的数才能相加的道理;

  3.探索并掌握两位数加两位数不时位加法的计算方法,初步掌握笔算加法的法则,能熟练的计算;

  4.初步认识角,知道角的各部分名称,初步学会用尺画角;

  5.能够正确理解乘法的含义;认识乘号、因数、会读写乘法算式;

  6.理解7的乘法口诀的来源和意义;初步掌握7的乘法口诀。

  二、学习难点:

  1.学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的必要性;

  2.理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;

  3.理解相同数位上的数才能相加的道理,即笔算中的“对位”问题;

  4.学生初步认识角,知道角的各部分名称,初步学会用尺画角;初步学会用尺画角;

  5.初步理解乘法的含义,知道求几个相同加数的和时,用乘法表示比较简便,认识乘号、会读,写乘法算式;

  6.使学生理解7的乘法口诀的来源和意义;初步掌握7的乘法口诀,能运用7的口诀正确进行计算。

  三、知识点概括总结:

  1.长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

  其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

  米:国际单位制中长度的标准单位是“米”,用符号“m”表示。

  分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

  厘米:长度单位,简写符号为:cm。

  毫米:英文缩写为mm

  (1厘米=10毫米=0.1分米=0.01米=0.00001千米)

  2.进位:加法运算中,每一数位上的`数等于基数时向前一位数进一。

  以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

  在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

  3.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

  4.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

  1不能够减去2,所以必须向高位的5借位。

  5.连加:多个数字连续相加叫做连加。例如:28+24+23=85

  6.连减:多个数字连续相减叫做连减。例如:85-40-26=19

  7.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

二年级数学知识点总结13

  第一章勾股定理

  1、探索勾股定理

  ①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2

  2、一定是直角三角形吗

  ①如果三角形的三边长a b c满足a2+b2=c2,那么这个三角形一定是直角三角形

  3、勾股定理的应用

  第二章实数

  1、认识无理数

  ①有理数:总是可以用有限小数和无限循环小数表示

  ②无理数:无限不循环小数

  2、平方根

  ①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

  ②特别地,我们规定:0的算数平方根是0

  ③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

  ④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

  ⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

  ⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

  3、立方根

  ①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

  ②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

  ③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

  4、估算

  ①估算,一般结果是相对复杂的小数,估算有精确位数

  5、用计算机开平方

  6、实数

  ①实数:有理数和无理数的统称

  ②实数也可以分为正实数、0、负实数

  ③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

  7、二次根式

  ①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

  ② =(a≥0,b≥0),=(a≥0,b>0)

  ③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

  ④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

  第三章位置与坐标

  1、确定位置

  ①在平面内,确定一个物体的位置一般需要两个数据

  2、平面直角坐标系

  ①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

  ②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

  ③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

  ④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

  ⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

  3、轴对称与坐标变化

  ①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

  第四章一次函数

  1、函数

  ①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

  ②表示函数的方法一般有:列表法、关系式法和图象法

  ③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值

  2、一次函数与正比例函数

  ①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

  3、一次函数的图像

  ①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

  ②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

  ③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

  ④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小

  4、一次函数的应用

  ①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

  第五章二元一次方程组

  1、认识二元一次方程组

  ①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

  ②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

  ③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

  2、求解二元一次方程组

  ①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

  ②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

  3、应用二元一次方程组

  ①鸡兔同笼

  4、应用二元一次方程组

  ①增减收支

  5、应用二元一次方程组

  ①里程碑上的数

  6、二元一次方程组与一次函数

  ①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

  ②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

  7、用二元一次方程组确定一次函数表达式

  ①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

  8、三元一次方程组

  ①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

  ②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

  ③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。

  第六章数据的分析

  1、平均数

  ①一般地,对于n个数x1x2.....xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

  ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

  2、中位数与众数

  ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

  ②一组数据中出现次数最多的那个数据叫做这组数据的众数

  ③平均数、中位数和众数都是描述数据集中趋势的统计量

  ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

  ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

  ⑥各个数据重复次数大致相等时,众数往往没有特别意义

  3、从统计图分析数据的集中趋势

  4、数据的离散程度

  ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

  ②数学上,数据的离散程度还可以用方差或标准差刻画

  ③方差是各个数据与平均数差的平方的平均数

  ④其中是x1x2......xn平均数,s2是方差,而标准差就是方差的算术平方根

  ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  第七章平行线的证明

  1、为什么要证明

  ①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

  2、定义与命题

  ①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

  ②判断一件事情的句子,叫做命题

  ③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

  ④正确的.命题称为真命题,不正确的命题称为假命题

  ⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

  ⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

  ⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

  a.本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

  b.两点之间线段最短

  c.同一平面内,过一点有且只有一条直线与已知直线垂直

  d.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

  e.过直线外一点有且只有一条直线与这条直线平行

  f.两边及其夹角分别相等的两个三角形全等

  g.两角及其夹边分别相等的两个三角形全等

  h.三边分别相等的两个三角形全等

  ⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

  ⑨ 定理:同角(等角)的补角相等

  同角(等角)的余角相等

  三角形的任意两边之和大于第三边

  对顶角相等

  3、平行线的判定

  ① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

  ② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

  4、平行线的性质

  ① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

  ② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

  ③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

  ④ 定理:平行于同一条直线的两条直线平行

  5、三角形内角和定理

  ① 三角形内角和定理:三角形的内角和等于180°

  ② 定理:三角形的一个外角等于和它不相邻的两个内角的和

  定理:三角形的一个外角大于任何一个和它不相邻的内角

  ③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。

  初二数学上册知识点汇总

  (一)运用公式法:

  我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

  (二)平方差公式

  1.平方差公式

  (1)式子: a2—b2=(a+b)(a—b)

  (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

  (三)因式分解

  1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

  2.因式分解,必须进行到每一个多项式因式不能再分解为止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反过来,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2—2ab+b2 =(a—b)2

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

  把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。

  上面两个公式叫完全平方公式。

  (2)完全平方式的形式和特点

  ①项数:三项

  ②有两项是两个数的的平方和,这两项的符号相同。

  ③有一项是这两个数的积的两倍。

  (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

  (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

  (五)分组分解法

  我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

  如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)×(a +b)。

  这种利用分组来分解因式的方法叫做分组分解法。从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

  (六)提公因式法

  1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

  2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

  1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

  2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

  ① 列出常数项分解成两个因数的积各种可能情况;

  ②尝试其中的哪两个因数的和恰好等于一次项系数。

  3.将原多项式分解成(x+q)(x+p)的形式。

  (七)分式的乘除法

  1.把一个分式的分子与分母的公因式约去,叫做分式的约分。

  2.分式进行约分的目的是要把这个分式化为最简分式。

  3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。

  4.分式约分中注意正确运用乘方的符号法则,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

  5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按—1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。

  6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

  (八)分数的加减法

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

  4.通分的依据:分式的基本性质。

  5.通分的关键:确定几个分式的公分母。

  通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

  6.类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

  8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

  9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

  10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

  11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。

  12.作为最后结果,如果是分式则应该是最简分式。

  (九)含有字母系数的一元一次方程

  1.含有字母系数的一元一次方程

  引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

  在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

  含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零

二年级数学知识点总结14

  第一单元长度单位

  1、常用的长度单位:米、厘米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。

  4、米和厘米的关系:1米=100厘米100厘米=1米

  5、线段

  ⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

  ⑵画线段的方法:先用笔对准尺子的`’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。

  ⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  6、填上合适的长度单位。

  小明身高1(米)30(厘米)

  练习本宽13(厘米)

  铅笔长17(厘米)

  黑板长2(米)图钉长1(厘米)

  一张床长2(米)一口井深3(米)

  学校进行100(米)赛跑

  教学楼高25(米)宝宝身高80(厘米)

  跳绳长2(米)一棵树高3(米)

  一把钥匙长5(厘米)

  一个文具盒长24(厘米)

  讲台高90(厘米)

  门高2(米)教室长12(米)

  筷子长20(厘米)

  一棵小树苗高1(米)

  小朋友的头围48厘米

  爸爸的身高1米75厘米或175厘米

  小朋友的身高120厘米或1米20厘米

  第二单元100以内的加法和减法

  一、两位数加两位数

  1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

  2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

  3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

  4、和=加数+加数

  一个加数=和-另一个加数

  二、两位数减两位数

  1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

  2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

  3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

  4、差=被减数-减数

  被减数=减数+差

  减数=被减数+差

  三、连加、连减和加减混合

  1、连加、连减

  连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

  ①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

  ②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

  2、加减混合

  加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

  3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

  四、解决问题(应用题)

  1、步骤:①先读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。

  2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

  3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

  4、关于提问题的题目,可以这样提问:

  ①…….和……一共…….?

  ②……比……..多多少/几……?

  ③……比……..少多少/几……?

  第三单元元角的初步认识

  1、角的初步认识

  (1)角是由一个顶点和两条边组成的;

  (2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。

  (3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。

  2、直角的初步认识

  (1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。

  (2)画直角的方法:①先画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。

  (3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。

  (4)所有的直角都一样大

  (5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。

二年级数学知识点总结15

  1.表内除法的知识点:

  (1)理解平均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商被除数÷商=除数除数×商=被除数

  2.除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

  3.除法的性质

  一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)

  4.除法公式

  (1)被除数÷除数=商

  (2)被除数÷商=除数

  (3)除数×商=被除数

  5.被除数

  除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数

  6.除数:在除法算式中,除号后面的数叫做除数。

  例:8÷2=4则2为除数。8为被除数。除数不能为0,否则没有意义。

  7.商:在一个除法算式里,被除数÷除数=商+余数,进而推导得出:商×除数+余数=被除数。

  8.完全商

  当数a除以数b(非0)能除得尽时,这时的商叫完全商。如:9÷3=3,3就是完全商。

  9.不完全商

  如果数a除以数b(非零)除不尽,得到的商就是不完全商。如:10÷3=3......1,这里的3就是不完全商。

  10.被除数和商的关系

  被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。

  除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。

  11.2—6的乘法口诀

  2×2=4

  2×3=6 3×3=9

  2×4=8 3×4=12 4×4=16

  2×5=10 3×5=15 4×5=20 5×5=25

  2×6=12 3×6=18 4×6=24 5×6=30 6×6=36

  12.直角:几何原本中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。

  一个直角等于90度,符号:Rt∠

  13.几何中的锐角:大于0°小于90°(直角)的角。

  两个锐角相加不一定大于直角,但一定小于平角。

  14.钝角:钝角大于直角(90°)小于平角(180°)的角叫做钝角。

  15.平移:平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。平移可以不是水平的。

  16.旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。

  17.旋转的性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  (3)旋转前、后的图形全相等。

  18.旋转的三要素

  (1)旋转中心;

  (2)旋转方向;

  (3)旋转角度。

  注意:三要素中只要任意改变一个,图形就会不一样。

  旋转变换是由一个图形改变为另一个图形,在改变过程中,原图上所有的点都绕一个固定的点换同一方向,转动同一个角度

  19.表内除法的'知识点:

  (1)理解平均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商被除数÷商=除数除数×商=被除数

  20.7、8、9的乘法口诀

  7×7=49

  7×8=56 8×8=64

  7×9=63 8×9=72 9×9=81

  21.万以内的数的认识

  100=10个10(10个10相加的结果等于100)

  1000=10个100(10个100相加的结果等于1000)

  22.克

  克为质量单位,符号g,相等于千分之一千克。一克的重量大约相于一立方厘米水在室温的质量,大约有一个万字夹的质量。

  1吨=1,000,000克(一百万克)

  1公斤(1千克)=1,000克(一千克)

  1市斤=500克(1克=0.002市斤)

  1毫克=0.001克(1克=1000毫克)

  1微克=0.000001克(1克=1000000微克)

  1纳克=0.000000001克(1克=1000000000纳克)

  23.千克

  千克:(符号kg或㎏)为国际单位制中量度质量的基本单位,千克也是日常生活中最常使用的基本单位之一。

【二年级数学知识点总结】相关文章:

数学的知识点总结05-11

数学的知识点总结08-22

数学知识点总结11-04

数学知识点总结03-21

数学中考知识点总结08-23

数学高考知识点总结08-26

二年级数学下册知识点总结12-26

数学必修四知识点总结04-25

中考数学知识点总结12-23

文章代写服务

资深写手 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验

二年级数学知识点总结

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它是增长才干的一种好办法,不妨坐下来好好写写总结吧。我们该怎么去写总结呢?以下是小编帮大家整理的二年级数学知识点总结,希望对大家有所帮助。

二年级数学知识点总结

二年级数学知识点总结1

  1、常用的长度单位:米、厘米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几, 这个物体的长度就是几厘米。

  4、米和厘米的关系:1米=100厘米 100厘米=1米

  5、线段

  ⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

  ⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的`上面也点一个点,然后把这两个点连起来。

  ⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  6、填上合适的长度单位。

  小明身高1(米)30(厘米) 练习本宽13(厘米) 铅笔长17(厘米)

  黑板长2(米) 图钉长1(厘米) 一张床长2(米)

  一口井深3(米) 学校进行100(米)赛跑 教学楼高25(米)

  宝宝身高80(厘米) 跳绳长2(米) 一棵树高3(米)

  一把钥匙长5(厘米) 一个文具盒长24(厘米) 讲台高90(厘米)

  门高2(米) 教室长12(米) 筷子长20(厘米)

二年级数学知识点总结2

  竖式除法

  1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。

  2、进一步体会除法的意义。

  有余数的除法

  1、体会有余数除法的意义。

  2、积累正确的试商方法。

  4、能用竖式正确计算有余数除法,了解余数一定要比除数小。

  5、能运用有余数除法的`知识解决一些简单的实际问题。

  分苹果(竖式除法)

  知识点:

  1、掌握表内除法竖式的书写格式。

  2、掌握除法竖式的写法和每一步所表示的含义。

  分橘子(有余数的除法(一))

  知识点:

  1、体会有余数除法的意义。

  2、会用竖式表示有余数的除法,了解余数一定要比除数小。

  分草莓(有余数的除法(二))

  知识点:

  1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。

  2、能运用有余数除法的知识解决一些简单的实际问题。

  租船(有余数除法的应用(一))

  知识点:

  灵活运用有余数的除法的有关知识解决生活中的简单实际问题。

  派车(有余数除法的应用(二))

  知识点:

  灵活运用有余数除法及相关知识解决生活中的简单实际问题。

二年级数学知识点总结3

  1、乘法的含义

  乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的写法和读法

  ⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。

  如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

  ⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。

  3、乘法算式中各部分的名称及实际表示的意义

  在乘法算式里,乘号前面的数和乘号后面的`数都叫做“乘数”;等号后面的得数叫做“积”。

  4、乘法算式所表示的意义

  求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。

  5、加法写成乘法时,加法的和与乘法的积相同。

  6、乘法算式中,两个乘数交换位置,积不变。

  7、算式各部分名称及计算公式。

  乘法:乘数×乘数=积

  加法:加数+加数=和

  和—加数=加数

  减法:被减数—减数=差

  被减数=差+减数

  减数=被减数—差

  8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。

  如:1×9=10—1 9×5=50—5

  9、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14

  10、“几和几相加”与“几个几相加”有区别

  求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)

  求几个几相加,用几乘几。

  如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8

  2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64

  11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。

  “5+5+5”写成乘法算式是(3×5=15)或(5×3=15),

  都可以用口诀(三五十五)来计算,表示(3)个(5)相加

  3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15

  第五单元观察物体

  1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

  2、观察物体时,要抓住物体的特征来判断。

  3、观察长方体的某一面,看到的可能是长方形或正方形。观察正方形的某一面,看到的都是正方形

  4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形

  第七单元认识时间

  1、认识时间

  (1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;

  (2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。

  (3)时针走1大格分针要走一圈,所以1时=60分;

  (4)半小时=30分,一刻钟=15分钟

  (5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。

  2、运用知识解决问题

  (1)要按着时间的先后顺序安排事件,时间上不能重复。

  (2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。

  (3)时针和分针能形成直角的时刻是3时和9时。

  第八单元数学广角-搭配

  1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。

  2、借用连线或者符号解答问题比较简单。

  3、排列与顺序有关,组合与顺序无关。

二年级数学知识点总结4

  第一章————除法

  1、用乘法口诀做除法,余数一定要比除数小;

  2、应用题中,除数和余数的单位不一样;

  商的单位是问题的单位,余数的单位和被除数的单位相同;

  3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

  第二章————方向与位置(认识方向)

  1、地图上的方向口诀:上北下南,左西右东;

  辨认方向时要画方向标。

  2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

  “小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。

  3、太阳早上从东边升起,西边落下;

  指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

  4、当吹东南风时,红旗往()飘;

  吹西北风时,红旗往()飘。

  第三章————生活中的大数(认识10000以内的数)

  1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

  2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。

  3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

  4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。

  5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

  末尾不管有几个“0”,都不读;

  写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

  6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。

  7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

  8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

  位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

  第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

  2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

  3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

  4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。

  第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

  2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

  3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

  如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

  4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

  5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

  980-()=760(用980-760计算)

  6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

  7、减法的'验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

  第六章————认识角1、每个角都是由1个顶点和2条边组成;

  2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

  3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

  4、正方形有四个直角,四条边都相等;

  长方形有四条边,四个直角,长方形的对边相等;

  5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

  第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;

  2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

  3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

  4、时针走一大格是1小时,走一圈是12小时;

  5、时、分、秒相邻单位的进率是60;

  1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

  7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

  第八章————统计1、记录并学会计算,谁多,谁少。

二年级数学知识点总结5

  小学二年级数学知识点

  1、表内除法的知识点:

  (1)理解平均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商被除数÷商=除数除数×商=被除数

  2、除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

  3、除法的性质

  一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)

  4、除法公式

  (1)被除数÷除数=商

  (2)被除数÷商=除数

  (3)除数×商=被除数

  5、被除数

  除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数

  小学二年级数学《四边形的认识》知识点

  长方形与正方形

  知识点:

  1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。

  2、初步了解长方形、正方形之间的联系:正方形是特殊的长方形。

  3、能在方格纸上画出长方形与正方形。

  平行四边形

  知识点:

  1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。

  2、初步了解长方形是特殊的平行四边形。

  小学二年级数学《有余数的除法》知识点

  一、有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的.乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  二、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

二年级数学知识点总结6

  一、解决问题

  知识点

  教学要求

  教学难点

  教学建议

  1、加减混合应用题

  正确分析数量关系,正确确定算法。会用加法、减法两步运算解决问题。

  分析数量之间的关系。确定单位名称。

  1、培养学生初步的应用意识,提高解决问题的能力。让学生应用已有的知识经验,把所学的数学知识应用到实际生活中去,解决身边的数学问题,是培养学生初步的应用意识的.一个重要途径。因此,在数学教学中创设与生活密切相关的生活情境,引导学生从现实情境中发现问题、提出问题、解决问题就显得尤为重要。

  2、理解数学问题的基本含义,会用一定的方法分析解决问题。

  3、了解小括号的作用,学会使用小括号列综合算式。

  通过对比两种列式形式,进一步理解分步和综合列式的内在联系。

  4、培养学生多角度观察问题,解决问题的能力。要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

  2、连减应用题(两种方法解决)

  1、正确分析数量关系,正确确定算法。会用连减的两步运算解决问题。

  2、了解小括号的作用正确应用小括号。

  分析数量之间的关系。确定单位名称。

  3、乘加、乘减应用题

  正确分析数量关系,正确确定算法。会用乘加、乘减两步运算解决问题。

  信息中数量关系的把握。确定单位名称。

  二、表内除法(一)

  知识点

  教学要求

  教学难点

  教学建议

  1、除法的初步认识。

  (1)平均分

  (2)除法

  1、掌握平均分的方法,知道什么时候用除法计算。

  2、会读、写除法算式,知道除法算式中各部分的名称。

  正确读、写除法算式。

  1、在充分的动手操作中理解“平均分”的含义。

  2、创设情境或通过直观演示、操作,让学生初步理解乘、除法的关系。

  2、用2--6口诀求商

  1、理解求商思路,掌握求商方法。

  2、正确、熟练地用2—6的乘法口诀求商。

  掌握求商方法,正确熟练的用口诀求商。

  加强用口诀求商的基本练习。为了使学生用口诀求商的计算能力达到一定的熟练程度应在练习中适当增加形式多样的用乘法口诀求商的练习,以形成必要的计算技能。

二年级数学知识点总结7

  第一单元 数据整理与收集

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  4.数据收集---整理---分析表格。

  第二单元 表内除法(一)

  1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。

  除法就是用来解决平均分问题的。

  2.平均分里有两种情况:

  (1)把一些东西平均分成几份,求每份是多少;用除法计算,

  总数÷份数=每份数

  例:24本练习本,平均分给6人,每人分多少本?

  列式:24÷6=4

  (2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

  例:24本练习本,每人4本,能分给多少人?

  列式:24÷4=6

  3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

  除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

  例如:12÷4=3读作(12除以4等于3)

  例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。

  4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

  被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)

  5.用2~6的乘法口诀求商

  1、求商的方法:

  (1)用平均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘的被除数。

  一句口诀可以写四个算式。(乘数相同的除外)。

  例:用“三八二十四”这句口诀

  A、24÷3=8 B、3×8=24

  C、24÷3=8 D、24÷8=3

  计算方法:12÷4=( )时,想:( )四十二,所以商是( ).

  6.解决问题

  1、解决有关平均分问题的方法:

  总数÷每份数=份数、总数÷份数=每份数、

  因数×因数=积、一个因数=积÷另一个因数

  2、用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

  (3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。

  (4)24里面有( )个4,,20里面有( )个5。(用除法计算。)

  (5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?

  第三单元 图形的运动

  1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

  成轴对称图形的汉字:

  一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。

  2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

  (记住:平移只能上下移动或左右移动)

  3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)

  (一)填空

  1、汽车在笔直的公路上行驶,车身的运动是( )现象

  2、教室门的打开和关闭,门的运动是( )现象。

  A.平移 B旋转 C平移和旋转

  3、下面( )的运动是平移。

  A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠

  第四单元 表内除法(二)

  这单元主要是考口算题。有以下几种形式:

  1、用7、8、9的乘法口诀求商

  求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。

  例.直接口算:28÷4 8÷8

  2、解决问题

  求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。

  例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );

  第五单元 混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分布计算,也可以列综合算式。

  请画出先算哪一步,再算哪一步(并标上1和2)

  1、同级运算的类型:

  例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4

  2、不同级运算的类型:

  例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8

  3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。

  例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8

  4.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。

  例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________

  5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

  例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?

  先算____________________再算____________________

  例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?

  6.练习十三 第4题 (重点)

  1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?

  2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?

  3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

  4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?

  第六单元 有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的.有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  例:43÷7=()…( )余数可能是( )或者余数最大是( )

  (2)至少问题(进一法):商+1

  例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。

  (3)最多问题(去尾法)

  例:小丽有10元钱,买3元一个的面包,最多能买几个?

  课例:

  1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  第七单元 万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如453 < 1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219

  补充:

  1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。

  2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。

  3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。

  例:2647=( )+( )+( )+( )

  4、用估算策略解决问题。

  96页 例13(估大)

  练习19 第8题(估小)

  第八单元 克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、

  1斤=10两、1两=50克)

  5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

二年级数学知识点总结8

  本单元与第二单元考察内容大同小异。

  第五单元混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分步计算,也可以列综合算式。

  4、带小括号运算的类型:

  方法:算式里有括号的,要先算括号里面的。

  5.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。

  当需要替换的是第二个数,必要时还需要加上小括号。

  第六单元有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的'乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  (2)至少问题(进一法):商+1

  22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  (3)最多问题(去尾法)

  茵苗有10元,每个面包3元,茵苗最多能买几个?

  本单元有一道难题,就是已知几月几日是星期几,要求几月几日是星期几。这一部分难度比较大,家长们可以先自行观看教学视频,自己先弄明白了,再给孩子讲解。

  第七单元万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。

  5、认识算盘,一颗上珠是5,一颗下珠是1。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;

  最小三位数是100,最大的三位数是999;

  最小四位数是1000,最大的四位数是9999;

  最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如999<1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。

  第八单元克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克1kg=1000g.进率是1000。

  5、计算或者比较大小时,如果单位不同,就需要把单位统一,一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

  物品的重量和物品的材质没有关系:1千克的棉花和1千克的铁一样重。

  第九单元数学广角-推理

  1、有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。

  推理时,先根据条件确定必然情况,再用排除法确定其他情况。

  2、填数游戏和扫雷游戏

  当然,这么多的内容,当然不是让孩子一下子就记住。寒假期间,孩子要先把乘法口诀背熟,能够根据乘法口诀写出四道算式或两道算式。

  此外,还可以做一些加减混合、乘加、乘减的应用题。

  小学二年级下册数学必背内容

  (一)有余数的除法

  ①商要对着被除数的个位。②余数要比除数小。

  被除数÷除数=商…….余数

  被除数=除数×商+余数

  1、()÷()=5……6,除数最小是(),被除数最小是()。

  2、在应用题中,余数单位和被除数单位相同。

  (二)万以内数的认识

  1、数位顺序表按(从右往左)的顺序,依次是(个位)、(十位)、(百位)、(千位)、(万位)。

  2、10个一是十,10个十是一百,10个一百是一千,10个一千是一万。

  3、计数单位有:一、十、百、千、万,相邻两个计数单位间的进率是10.

  4、最小的一位数是1,最大的一位数是9;最小的两位数是10,最大的两位数是99;最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999;最大的五位数是10000.

  5、读数、写数都从高位起。

  (三)长度单位

  1、1千米=(1000)米

  1米=(10)分米,1分米=(10)厘米,1厘米=(10)毫米,

  1米=(100)厘米,1分米=(100)毫米。

  2、长度单位转换时,大单位转小单位,数字增大(添“0”),小单位转大单位,数字减小(去“0”)。

  3、手臂打开大约1米;(1拃)长大约10厘米,也是1分米;

  (2分硬币)大约有1毫米厚;10张纸的厚度大约1毫米。

  4、在表示较远距离时,用(千米)作单位,如(各类交通工具的时速),(马拉松长跑的路程),(铁路长),(两个城市间的路程)等。

  5、用米作单位常见的有描述(树高)、(楼高)、(桥长)等。

  (四)三位数的加法和减法

  1、求“和”用加法;求“差”用减法;求“积”用乘法;求“商”用除法。

  2、加数=和-另一个加数

  被减数—减数=差

  被减数=减数+差

  减数=被减数-差

  3、笔算三位数加减法时,从(个位)算起,相加满十向(前一)位进1。相减,不够减向(前一)位借1,借1作10。

  (五)图形

  1、长方形:4条边,(对边)相等,4个角都是(直角)。较长的边叫长(2条长),较短的边叫宽(2条宽)。

  2、正方形:(四条边)都相等,4个角都是(直角)。

  3、平行四边形:有4条边,(对边)相等;有4个角,(对角)相等;有2个钝角和2个锐角,还具有不稳定性。

  (六)时间单位

  1、钟面上有(12)个大格,(60)个小格。

  时针走(1大格)是(1时);

  分针走(1小格)是(1分),走一大格是(5分)。

  秒针走(1小格)是1秒,走一大格是(5秒)。

  2、时针走(1大格)是(1时),这时分针正好走(1圈),是(60)分,所以1时=(60)分。

  3、分针走(1小格)是(1分),这时秒针正好走(1圈),是(60)秒。所以1分=(60)秒。

  4、结束时间-开始时间=经过时间

  结束时间-经过时间=开始时间

  开始时间+经过时间=结束时间

  5、在求时间时,可以列竖式计算。

  减法时:要先算(分减分),再算(时减时),当“分”不够减时,向(时)借1当60分,60分与原来的“分”合在一起再减。

  加法时:先算(分加分),再算(时加时),当分加分超过60分时,要把其中的60分转化为1时。

  7时10分-3是50分=()2时40分+3时50分=()

  6、通常下午的时间转化成24时计时法,例如

  下午3时20分就是(15时20分)

  7、描述50米、100米跑步的时间要用(秒)作单位。

  8、时针从数字3走到数字8经过时间是()。

  分针从数字3走到数字8经过时间是()。

  秒针从数字3走到数字8经过时间是()。

二年级数学知识点总结9

  一、100以内的笔算加法和减法

  1.用竖式计算两位数加法时:

  ①相同数位对齐。

  ②从个位加起。

  ③如果个位满10,向十位进1。

  2.用竖式计算两位数减法时:

  ①相同数位对齐。

  ②从个位减起。

  ③如果个位不够减,从十位退1,个位加10再减,计算时十位要记得减去退掉的1。

  3.划线一定要用尺子,抄错数是一个严重的问题。

  4.求“一个已知数”比“另一个已知数”多多少.少多少?

  要弄清楚数量之间的关系,知道谁比谁多,谁比谁少,再分析用加法还是减法。

  5.连加连减和加减混合时注意加减号,不要混乱。

  二、平行四边形的初步认识

  1.长方形、正方形和平行四边形都是(四)边形。

  2.搭一个五边形,最少要用(五)根小棒。

  3.从正方形的纸上剪去一个三角形,剩下的图形可能是三角形,可能是(四)边形,也可能是(五)边形。

  4.一个图形是几边形它就有几条边。

  三.表内乘法(一)

  1.几个相同数连加除了用加法表示外,还可以用乘法表示。用乘法表示更加简捷。

  2.相同加数相加写成乘法时,用相同加数×相同加数的个数或相同加数的个数×相同加数。如:5+5+5+5 表示:5×4或4×5

  3.加法写成乘法时,加法的和与乘法的积相同。

  4.乘法算式中,两个乘数交换位置,积不变。

  5.算式各部分名称及计算公式。乘法:

  3 × 4 = 12

  (乘数) × (乘数) = (积)

  6.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

  7.乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:

  加法:3+3+3+3+2=14

  乘加:3×4+2=14

  乘减:3×5-1=14

  8.熟练地背诵1-6的乘法口诀,顺着背、倒着背、竖背等多种方法。

  9.乘法口诀关系到下册的除法的计算,务必背熟。

  10.乘法、乘加、乘减、加减的应用,要求学生首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。

  四、表内除法

  1.初步理解除法的含义,初步体会除法和乘法的联系,能正确读、写除法算式,知道出发算式中各部分的名称,比较熟练地运用2~9的乘法口诀口算有关的除法。

  2.平均分:每份分得同样多,叫作平均分。

  平均分的两种分法:

  分法1:平均分成几份,每份分得几个;

  分法2:按每几个一份的分,平均分成几份。

  如:有10个苹果,分法1:平均分成5份,每份分得2个;分法2:按每2个一份的分,平均分成5份。

  五、米和厘米

  1.常用的长度单位:米、厘米。

  2.要知道物体的长度,可以用(尺)来量。

  2.测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3.测量时:把尺的“0”刻度对准物体的左端,再看纸条的右端对着几,对着几就是几厘米。

  4. 1米=100厘米 ,100厘米=1米。

  在计算长度单位时,先看单位是否相同,不同则要先把单位化成一样的'单位再加减。如:

  1米-40厘米=60厘米(100厘米 -40厘米=60厘米)

  5.线段的特点:

  ①线段是直的。

  ②线段有两个端点。

  ③线段是可以测量出长度的。

  6.画线段要从尺的(0)刻度开始画起,画到题目要求的数字那里。

  比如:要求画一条5厘米长的线段。就从0开始,画到5结束。

  例题:

  (1)从刻度0到7是( 7 )厘米。

  就直接用7-0=7厘米。括号就填7厘米。

  (2)2到8是(6 )厘米。

  就直接用8-2=6厘米。括号就填6厘米。

  7.画一条比6厘米短3厘米的线段。

  就是求比6厘米短3厘米是多少?

  6-3=3厘米。所以题目要求就是画一条3厘米长的线段。

  8.例题:

  任意画一个由三条线段围成的图形。就是要求画一个三角形。

  六、表内乘法和表内除法(二)

  1.加法写成乘法时,加法的和与乘法的积相同。

  2.乘法算式中,两个乘数交换位置,积不变。

  3.算式各部分名称及计算公式。

  乘法:

  3 × 4 = 12

  (乘数) × (乘数) = (积)

  4.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

  5.乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  6.熟练地背诵1-6的乘法口诀,顺着背、倒着背、竖背等多种方法。

  7.乘法口诀关系到下册的除法的计算,务必背熟。

  8.乘法、乘加、乘减、加减的应用,要求首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。

  9.用表内乘法求商。

  七、观察物

  1.从前.后.左.右不同的位置观察到的物体形状不一样。

  2.根据立体图形判断平面图形,根据平面图形判断立体图形。

二年级数学知识点总结10

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  4.数据收集---整理---分析表格。

  在绘制表格或者图形的时候,要注意每个小格代表的数量是多少。

二年级数学知识点总结11

  1.平均分的含义:把一些物品分成几份,每份分得同样多,叫做平均分。

  除法就是用来解决平均分问题的。

  2.平均分里有两种情况:

  (1)把一些东西平均分成几份,求每份是多少;用除法计算,

  总数÷份数=每份数

  (2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

  3、除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

  除法算式各部分名称:在除法算式中,除号前面的`数就被除数,除号后面的数叫除数,所得的数叫商。

  被除数÷除数=商。

  被除数÷商=除数

  除数×商=被除数。

  4.用2~6的乘法口诀求商

  1、求商的方法:

  (1)用平均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘的被除数。

  一句口诀可以写四个算式。(乘数相同的除外)。

  5、解决问题

  解决有关平均分问题的方法:

  总数÷每份数=份数总数÷份数=每份数

  用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

  第三单元图形的运动

  1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。(剪纸游戏)

  成轴对称图形的字母:

  ABCDEHIKMOTUVWXY

  2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。平移只能上下移动或左右移动。

  3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。例如:旋转木马、转动的风扇、转动的车轮等。

二年级数学知识点总结12

  一、学习目标:

  1.初步经历长度单位形成的过程,体会统一长度单位的必要性,知道长度单位的作用;

  2.在具体情境下,进一步体会加法的意义,理解相同数位上的数才能相加的道理;

  3.探索并掌握两位数加两位数不时位加法的计算方法,初步掌握笔算加法的法则,能熟练的计算;

  4.初步认识角,知道角的各部分名称,初步学会用尺画角;

  5.能够正确理解乘法的含义;认识乘号、因数、会读写乘法算式;

  6.理解7的乘法口诀的来源和意义;初步掌握7的乘法口诀。

  二、学习难点:

  1.学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的必要性;

  2.理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;

  3.理解相同数位上的数才能相加的道理,即笔算中的“对位”问题;

  4.学生初步认识角,知道角的各部分名称,初步学会用尺画角;初步学会用尺画角;

  5.初步理解乘法的含义,知道求几个相同加数的和时,用乘法表示比较简便,认识乘号、会读,写乘法算式;

  6.使学生理解7的乘法口诀的来源和意义;初步掌握7的乘法口诀,能运用7的口诀正确进行计算。

  三、知识点概括总结:

  1.长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

  其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

  米:国际单位制中长度的标准单位是“米”,用符号“m”表示。

  分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

  厘米:长度单位,简写符号为:cm。

  毫米:英文缩写为mm

  (1厘米=10毫米=0.1分米=0.01米=0.00001千米)

  2.进位:加法运算中,每一数位上的`数等于基数时向前一位数进一。

  以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

  在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

  3.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

  4.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

  1不能够减去2,所以必须向高位的5借位。

  5.连加:多个数字连续相加叫做连加。例如:28+24+23=85

  6.连减:多个数字连续相减叫做连减。例如:85-40-26=19

  7.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

二年级数学知识点总结13

  第一章勾股定理

  1、探索勾股定理

  ①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2

  2、一定是直角三角形吗

  ①如果三角形的三边长a b c满足a2+b2=c2,那么这个三角形一定是直角三角形

  3、勾股定理的应用

  第二章实数

  1、认识无理数

  ①有理数:总是可以用有限小数和无限循环小数表示

  ②无理数:无限不循环小数

  2、平方根

  ①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

  ②特别地,我们规定:0的算数平方根是0

  ③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

  ④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

  ⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

  ⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

  3、立方根

  ①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

  ②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

  ③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

  4、估算

  ①估算,一般结果是相对复杂的小数,估算有精确位数

  5、用计算机开平方

  6、实数

  ①实数:有理数和无理数的统称

  ②实数也可以分为正实数、0、负实数

  ③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

  7、二次根式

  ①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

  ② =(a≥0,b≥0),=(a≥0,b>0)

  ③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

  ④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

  第三章位置与坐标

  1、确定位置

  ①在平面内,确定一个物体的位置一般需要两个数据

  2、平面直角坐标系

  ①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

  ②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

  ③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

  ④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

  ⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

  3、轴对称与坐标变化

  ①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

  第四章一次函数

  1、函数

  ①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

  ②表示函数的方法一般有:列表法、关系式法和图象法

  ③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值

  2、一次函数与正比例函数

  ①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

  3、一次函数的图像

  ①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

  ②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

  ③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

  ④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小

  4、一次函数的应用

  ①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

  第五章二元一次方程组

  1、认识二元一次方程组

  ①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

  ②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

  ③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

  2、求解二元一次方程组

  ①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

  ②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

  3、应用二元一次方程组

  ①鸡兔同笼

  4、应用二元一次方程组

  ①增减收支

  5、应用二元一次方程组

  ①里程碑上的数

  6、二元一次方程组与一次函数

  ①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

  ②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

  7、用二元一次方程组确定一次函数表达式

  ①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

  8、三元一次方程组

  ①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

  ②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

  ③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。

  第六章数据的分析

  1、平均数

  ①一般地,对于n个数x1x2.....xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

  ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

  2、中位数与众数

  ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

  ②一组数据中出现次数最多的那个数据叫做这组数据的众数

  ③平均数、中位数和众数都是描述数据集中趋势的统计量

  ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

  ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

  ⑥各个数据重复次数大致相等时,众数往往没有特别意义

  3、从统计图分析数据的集中趋势

  4、数据的离散程度

  ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

  ②数学上,数据的离散程度还可以用方差或标准差刻画

  ③方差是各个数据与平均数差的平方的平均数

  ④其中是x1x2......xn平均数,s2是方差,而标准差就是方差的算术平方根

  ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  第七章平行线的证明

  1、为什么要证明

  ①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

  2、定义与命题

  ①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

  ②判断一件事情的句子,叫做命题

  ③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

  ④正确的.命题称为真命题,不正确的命题称为假命题

  ⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

  ⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

  ⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

  a.本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

  b.两点之间线段最短

  c.同一平面内,过一点有且只有一条直线与已知直线垂直

  d.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

  e.过直线外一点有且只有一条直线与这条直线平行

  f.两边及其夹角分别相等的两个三角形全等

  g.两角及其夹边分别相等的两个三角形全等

  h.三边分别相等的两个三角形全等

  ⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

  ⑨ 定理:同角(等角)的补角相等

  同角(等角)的余角相等

  三角形的任意两边之和大于第三边

  对顶角相等

  3、平行线的判定

  ① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

  ② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

  4、平行线的性质

  ① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

  ② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

  ③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

  ④ 定理:平行于同一条直线的两条直线平行

  5、三角形内角和定理

  ① 三角形内角和定理:三角形的内角和等于180°

  ② 定理:三角形的一个外角等于和它不相邻的两个内角的和

  定理:三角形的一个外角大于任何一个和它不相邻的内角

  ③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。

  初二数学上册知识点汇总

  (一)运用公式法:

  我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

  (二)平方差公式

  1.平方差公式

  (1)式子: a2—b2=(a+b)(a—b)

  (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

  (三)因式分解

  1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

  2.因式分解,必须进行到每一个多项式因式不能再分解为止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反过来,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2—2ab+b2 =(a—b)2

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

  把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。

  上面两个公式叫完全平方公式。

  (2)完全平方式的形式和特点

  ①项数:三项

  ②有两项是两个数的的平方和,这两项的符号相同。

  ③有一项是这两个数的积的两倍。

  (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

  (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

  (五)分组分解法

  我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

  如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)×(a +b)。

  这种利用分组来分解因式的方法叫做分组分解法。从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

  (六)提公因式法

  1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

  2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

  1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

  2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

  ① 列出常数项分解成两个因数的积各种可能情况;

  ②尝试其中的哪两个因数的和恰好等于一次项系数。

  3.将原多项式分解成(x+q)(x+p)的形式。

  (七)分式的乘除法

  1.把一个分式的分子与分母的公因式约去,叫做分式的约分。

  2.分式进行约分的目的是要把这个分式化为最简分式。

  3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。

  4.分式约分中注意正确运用乘方的符号法则,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

  5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按—1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。

  6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

  (八)分数的加减法

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

  4.通分的依据:分式的基本性质。

  5.通分的关键:确定几个分式的公分母。

  通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

  6.类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

  8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

  9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

  10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

  11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。

  12.作为最后结果,如果是分式则应该是最简分式。

  (九)含有字母系数的一元一次方程

  1.含有字母系数的一元一次方程

  引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

  在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

  含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零

二年级数学知识点总结14

  第一单元长度单位

  1、常用的长度单位:米、厘米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。

  4、米和厘米的关系:1米=100厘米100厘米=1米

  5、线段

  ⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

  ⑵画线段的方法:先用笔对准尺子的`’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。

  ⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  6、填上合适的长度单位。

  小明身高1(米)30(厘米)

  练习本宽13(厘米)

  铅笔长17(厘米)

  黑板长2(米)图钉长1(厘米)

  一张床长2(米)一口井深3(米)

  学校进行100(米)赛跑

  教学楼高25(米)宝宝身高80(厘米)

  跳绳长2(米)一棵树高3(米)

  一把钥匙长5(厘米)

  一个文具盒长24(厘米)

  讲台高90(厘米)

  门高2(米)教室长12(米)

  筷子长20(厘米)

  一棵小树苗高1(米)

  小朋友的头围48厘米

  爸爸的身高1米75厘米或175厘米

  小朋友的身高120厘米或1米20厘米

  第二单元100以内的加法和减法

  一、两位数加两位数

  1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

  2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

  3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

  4、和=加数+加数

  一个加数=和-另一个加数

  二、两位数减两位数

  1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

  2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

  3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

  4、差=被减数-减数

  被减数=减数+差

  减数=被减数+差

  三、连加、连减和加减混合

  1、连加、连减

  连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

  ①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

  ②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

  2、加减混合

  加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

  3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

  四、解决问题(应用题)

  1、步骤:①先读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。

  2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

  3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

  4、关于提问题的题目,可以这样提问:

  ①…….和……一共…….?

  ②……比……..多多少/几……?

  ③……比……..少多少/几……?

  第三单元元角的初步认识

  1、角的初步认识

  (1)角是由一个顶点和两条边组成的;

  (2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。

  (3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。

  2、直角的初步认识

  (1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。

  (2)画直角的方法:①先画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。

  (3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。

  (4)所有的直角都一样大

  (5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。

二年级数学知识点总结15

  1.表内除法的知识点:

  (1)理解平均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商被除数÷商=除数除数×商=被除数

  2.除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

  3.除法的性质

  一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)

  4.除法公式

  (1)被除数÷除数=商

  (2)被除数÷商=除数

  (3)除数×商=被除数

  5.被除数

  除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数

  6.除数:在除法算式中,除号后面的数叫做除数。

  例:8÷2=4则2为除数。8为被除数。除数不能为0,否则没有意义。

  7.商:在一个除法算式里,被除数÷除数=商+余数,进而推导得出:商×除数+余数=被除数。

  8.完全商

  当数a除以数b(非0)能除得尽时,这时的商叫完全商。如:9÷3=3,3就是完全商。

  9.不完全商

  如果数a除以数b(非零)除不尽,得到的商就是不完全商。如:10÷3=3......1,这里的3就是不完全商。

  10.被除数和商的关系

  被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。

  除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。

  11.2—6的乘法口诀

  2×2=4

  2×3=6 3×3=9

  2×4=8 3×4=12 4×4=16

  2×5=10 3×5=15 4×5=20 5×5=25

  2×6=12 3×6=18 4×6=24 5×6=30 6×6=36

  12.直角:几何原本中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。

  一个直角等于90度,符号:Rt∠

  13.几何中的锐角:大于0°小于90°(直角)的角。

  两个锐角相加不一定大于直角,但一定小于平角。

  14.钝角:钝角大于直角(90°)小于平角(180°)的角叫做钝角。

  15.平移:平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。平移可以不是水平的。

  16.旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。

  17.旋转的性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  (3)旋转前、后的图形全相等。

  18.旋转的三要素

  (1)旋转中心;

  (2)旋转方向;

  (3)旋转角度。

  注意:三要素中只要任意改变一个,图形就会不一样。

  旋转变换是由一个图形改变为另一个图形,在改变过程中,原图上所有的点都绕一个固定的点换同一方向,转动同一个角度

  19.表内除法的'知识点:

  (1)理解平均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商被除数÷商=除数除数×商=被除数

  20.7、8、9的乘法口诀

  7×7=49

  7×8=56 8×8=64

  7×9=63 8×9=72 9×9=81

  21.万以内的数的认识

  100=10个10(10个10相加的结果等于100)

  1000=10个100(10个100相加的结果等于1000)

  22.克

  克为质量单位,符号g,相等于千分之一千克。一克的重量大约相于一立方厘米水在室温的质量,大约有一个万字夹的质量。

  1吨=1,000,000克(一百万克)

  1公斤(1千克)=1,000克(一千克)

  1市斤=500克(1克=0.002市斤)

  1毫克=0.001克(1克=1000毫克)

  1微克=0.000001克(1克=1000000微克)

  1纳克=0.000000001克(1克=1000000000纳克)

  23.千克

  千克:(符号kg或㎏)为国际单位制中量度质量的基本单位,千克也是日常生活中最常使用的基本单位之一。

【二年级数学知识点总结】相关文章:

数学的知识点总结05-11

数学的知识点总结08-22

数学知识点总结11-04

数学知识点总结03-21

数学中考知识点总结08-23

数学高考知识点总结08-26

二年级数学下册知识点总结12-26

数学必修四知识点总结04-25

中考数学知识点总结12-23