数学知识点总结整理
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,为此要我们写一份总结。总结一般是怎么写的呢?下面是小编帮大家整理的数学知识点总结整理,希望能够帮助到大家。
数学知识点总结整理1
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的.元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N.
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且)
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)补集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,则? A ;
②若,,则;
③若且,则A=B(等集)
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB =空集CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
数学知识点总结整理2
圆的定理:
1不在同一直线上的三点确定一个圆。
2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3圆是以圆心为对称中心的中心对称图形
4圆是定点的距离等于定长的点的集合
5圆的内部可以看作是圆心的距离小于半径的点的集合
6圆的外部可以看作是圆心的距离大于半径的点的集合
7同圆或等圆的半径相等
8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的`圆
9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
中考数学知识点复习口诀
有理数的加法运算
同号相加一边倒;异号相加“大”减“小”,
符号跟着大的跑;绝对值相等“零”正好。
合并同类项
合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则
去括号、添括号,关键看符号,
括号前面是正号,去、添括号不变号,
括号前面是负号,去、添括号都变号。
一元一次方程
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
平方差公式
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央。
因式分解
一提(公因式)二套(公式)三分组,细看几项不离谱,
两项只用平方差,三项十字相乘法,阵法熟练不马虎,
四项仔细看清楚,若有三个平方数(项),
就用一三来分组,否则二二去分组,
五项、六项更多项,二三、三三试分组,
以上若都行不通,拆项、添项看清楚。
单项式运算
加、减、乘、除、乘(开)方,三级运算分得清,
系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题步骤
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,
两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。
一元二次不等式、一元一次绝对值不等式的解集
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
中考数学知识点归纳:平面直角坐标系
平面直角坐标系
1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
数学知识点总结整理3
1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。
3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
单项式的.系数:是指单项式中的数字因数;(不要漏负号和分母)
单项数的次数:是指单项式中所有字母的指数的和.(注意指数1)
5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
以上就是为大家整理的七年级上册数学代数式知识点整理:期末考试复习,大家还满意吗?希望对大家有所帮助!
数学知识点总结整理4
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的`联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式:
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
数学知识点总结整理5
函数
①位置的确定与平面直角坐标系
位置的确定
坐标变换
平面直角坐标系内点的特征
平面直角坐标系内点坐标的符号与点的象限位置
对称问题:P(x,y)→Q(x,- y)关于x轴对称P(x,y)→Q(- x,y)关于y轴对称P(x,y)→Q(- x,-y)关于原点对称
变量、自变量、因变量、函数的定义
函数自变量、因变量的取值范围(使式子有意义的条件、图象法) 56、函数的图象:变量的变化趋势描述
②一次函数与正比例函数
一次函数的`定义与正比例函数的定义
一次函数的图象:直线,画法
一次函数的性质(增减性)
一次函数y=kx+b(k≠0)中k、b符号与图象位置
待定系数法求一次函数的解析式(一设二列三解四回)
一次函数的平移问题
一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)
一次函数的实际应用
一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合
数学知识点总结整理6
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的`方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
数学知识点总结整理7
一生活中的数
(一)本单元知识网络:
1、生活中的数
(1)认、读、数、写10以内的数。
(2)掌握10以内数的顺序和大小,初步体会基数与序数的含义。
(二)各课知识点:
1、可爱的校园(数数)
知识点:
(1)通过观察情境图,初步认识10以内的数。
(2)在数数的活动中,体会有序数数的方法。
2、快乐的.家园(10以内数的认识)
知识点:
(1)初步认识1~10各数的符号表示方法。
(2)在具体情境活动中,学习运用数字符号表示日常生活中的一些物体的量。
3、玩具(1~5的认识与书写)
知识点:
能正确数出5以内物体的个数,能用数表示日常生活的一些事物,会正确书写1~5的数字。
4、小猫钓鱼(0的认识)
知识点:
(1)知道在生活中“0”所表示的几种常见的意义,知道“0”和1,2,3,…一样也是一个数,“0”比1,2,3,…小。
(2)会正确书写“0”
5、文具(6~10的认识与书写)
知识点:
(1)能够正确地数出数量是6~10的物体个数。
(2)学会6~10各数的读写方法。
【数学知识点总结整理】相关文章:
数学知识点总结整理大全08-25
数学知识点总结整理(7篇)12-23
数学的知识点总结05-11
数学的知识点总结08-22
数学知识点总结11-04
数学知识点总结03-21
数学中考知识点总结08-23
数学高考知识点总结08-26
数学必修四知识点总结04-25