高考数学知识点总结

时间:2022-08-23 02:39:43 总结 投诉 投稿

高考数学知识点总结【精】

  总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。总结怎么写才是正确的呢?下面是小编为大家收集的高考数学知识点总结,仅供参考,欢迎大家阅读。

高考数学知识点总结【精】

高考数学知识点总结1

  高考数学知识点:轨迹方程的求解

  符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.

  轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).

  【轨迹方程】就是与几何轨迹对应的代数描述。

  一、求动点的轨迹方程的基本步骤

  ⒈建立适当的坐标系,设出动点M的坐标;

  ⒉写出点M的集合;

  ⒊列出方程=0;

  ⒋化简方程为最简形式;

  ⒌检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  .直译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

  高考数学知识点:排列组合公式

  排列组合公式/排列组合计算公式

  排列P------和顺序有关

  组合C-------不牵涉到顺序的问题

  排列分顺序,组合不分

  例如把5本不同的书分给3个人,有几种分法."排列"

  把5本书分给3个人,有几种分法"组合"

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);

  3.其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

  n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

  n!/(n1!.n2!.....nk!).

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

  排列(Pnm(n为下标,m为上标))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

  20xx-07-0813:30

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9.8.7.6.5.4.3.2.1

  从N倒数r个,表达式应该为n.(n-1).(n-2)..(n-r+1);

  因为从n到(n-r+1)个数为n-(n-r+1)=r

  举例:

  Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

  A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

  上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9.8.7个三位数。计算公式=P(3,9)=9.8.7,(从9倒数3个的.乘积)

  Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

  A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

  上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9.8.7/3.2.1

  排列、组合的概念和公式典型例题分析

  例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?

  解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

  (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.

  点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

  例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

  解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

  ∴符合题意的不同排法共有9种.

  点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

  例3判断下列问题是排列问题还是组合问题?并计算出结果.

  (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

  (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

  (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

  (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

  分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

  (1)①是排列问题,共用了封信;②是组合问题,共需握手(次).

  (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.

  (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.

  (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.

  例4证明.

  证明左式

  右式.

  ∴等式成立.

  点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.

  例5化简.

  解法一原式

  解法二原式

  点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.

  例6解方程:(1);(2).

  解(1)原方程

  解得.

  (2)原方程可变为

  ∵,,

  ∴原方程可化为.

  即,解得

  高三数学三角函数公式

  锐角三角函数公式

  sin α=∠α的对边 / 斜边

  cos α=∠α的邻边 / 斜边

  tan α=∠α的对边 / ∠α的邻边

  cot α=∠α的邻边 / ∠α的对边

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推导

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  辅助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推导公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  两角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化积

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

高考数学知识点总结2

  一、集合与函数

  1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

  2.在应用条件时,易A忽略是空集的情况

  3.你会用补集的思想解决有关问题吗?

  4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

  5.你知道“否命题”与“命题的否定形式”的区别。

  6.求解与函数有关的问题易忽略定义域优先的原则。

  7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

  8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

  9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

  10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法

  11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

  12.求函数的值域必须先求函数的定义域。

  13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

  14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

  (真数大于零,底数大于零且不等于1)字母底数还需讨论

  15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

  16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

  17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

  二、不等式

  1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.

  2.绝对值不等式的解法及其几何意义是什么?

  3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

  4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

  5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

  6. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a

  三、数列

  1.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

  2.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

  3.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

  4.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

  5.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

  四、三角函数

  1.正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

  2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

  3. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

  4. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。 异角化同角,异名化同名,高次化低次)

  5. 反正弦、反余弦、反正切函数的`取值范围分别是

  6.你还记得某些特殊角的三角函数值吗?

  7.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

  五、平面向量

  1..数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。

  2..数量积与两个实数乘积的区别:

  在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。

  已知实数,且,则a=c,但在向量的数量积中没有。

  在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。

  3.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

  六、解析几何

  1.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

  2.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

  3.直线的倾斜角、到的角、与的夹角的取值范围依次是。

  4. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

  5. 对不重合的两条直线

  (建议在解题时,讨论后利用斜率和截距)

  6. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

  7.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)

  8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

  9.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?

  10.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?

  11. 通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

  12. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).

  13.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?

  七、立体几何

  1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

  2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

  3.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

  4.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。

  5.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

  6.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

  7.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

  8. 两条异面直线所成的角的范围:0°<α≤90°< p="">

  直线与平面所成的角的范围:0o≤α≤90°

高考数学知识点总结3

  第一部分集合

  (1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

  (2)注意:讨论的时候不要遗忘了的情况。

  第二部分函数与导数

  1、映射:注意

  ①第一个集合中的元素必须有象;

  ②一对一,或多对一。

  2、函数值域的求法:

  ①分析法;

  ②配方法;

  ③判别式法;

  ④利用函数单调性;

  ⑤换元法;

  ⑥利用均值不等式;

  ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);

  ⑧利用函数有界性;

  ⑨导数法

  3、复合函数的有关问题

  (1)复合函数定义域求法:

  ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。

  ②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

  (2)复合函数单调性的判定:

  ①首先将原函数分解为基本函数:内函数与外函数;

  ②分别研究内、外函数在各自定义域内的单调性;

  ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

  注意:外函数的定义域是内函数的.值域。

  4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

  5、函数的奇偶性

  (1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;

  (2)是奇函数;

  (3)是偶函数;

  (4)奇函数在原点有定义,则;

  (5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

  (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

高考数学知识点总结4

  圆与圆的位置关系的判断方法

  一、设两个圆的半径为R和r,圆心距为d。

  则有以下五种关系:

  1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。

  2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

  3、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

  4、d

  5、d

  二、圆和圆的位置关系,还可用有无公共点来判断:

  1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。

  2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

  3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

高考数学知识点总结5

  由于空集是任何非空集合的真子集,因此B=?时也满足B?A。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

  忽视集合元素的三性致误

  集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

  混淆命题的否定与否命题

  命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

  充分条件、必要条件颠倒致误

  对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。

  “或”“且”“非”理解不准致误

  命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。

  函数的单调区间理解不准致误

  在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

  判断函数奇偶性忽略定义域致误

  判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

  函数零点定理使用不当致误

  如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

  三角函数的单调性判断致误

  对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。

  忽视零向量致误

  零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。

  向量夹角范围不清致误

  解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。

  an与Sn关系不清致误

  在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的.一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

  对数列的定义、性质理解错误

  等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差数列。

  数列中的最值错误

  数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。

  错位相减求和项处理不当致误

  错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。

  不等式性质应用不当致误

  在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。

  忽视基本不等式应用条件致误

  利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的'符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。

高考数学知识点总结6

  一、函数

  1.函数的基本概念

  函数的概念,函数的单调性,函数的奇偶性,这些属于函数的基本概念,已经在高一数学必修一中有了详细的介绍,在此不再赘述。

  2.指数函数

  单调性是指数函数的重要性质,特别是函数图象的无限伸展性,x轴是函数图象的渐近线,当0+∞,y->0;当a>1时,x->-∞,y->0;当a>1时,a的值越大,第一象限内图象越靠近y轴,递增的速度越快;

  3.对数函数

  对数函数的性质是每年高考的必考内容之一,其中单调性和对数函数的定义域是热点问题,其单调性取决于底数与“1”的大小关系.

  二、三角函数

  1.命题趋势

  高考可能仍会将三角函数概念、同角三角函数的关系式和诱导公式作为基础内容,融于三角求值、化简及解三角形的考查中.由该部分知识的基础性决定这一部分知识可以和其他知识融合考查,高考中需要关注.

  2.三角函数式的化简要遵循“三看”原则

  (1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.

  (2)二看”函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有”切化弦”

  (3)三看”结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.多做三角函数练习题会对更加熟悉的掌握三角函数有帮助,这里给大家推荐李老师教的三角函数解题法。

  三、导数

  1.导数的概念

  1)如果当Δx-->0时,Δy/Δx-->常数A,就说函数y=f(x)在点x0处可导,并把A叫做f(x)在点x0处的导数(瞬时变化率).记作f’(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的.斜率.瞬时速度就是位移函数s对时间t的导数.

  2)如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).

  3)如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.

  2.函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.

  3.求导

  在高中数学导数求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式,对于不具备求导法则结构形式的要适当恒等变形,对于比较复杂的函数,如果直接套用求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进行合理变形,转化为教易求导的结构形

高考数学知识点总结7

  (1)先看“充分条件和必要条件”

  当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

  但为什么说q是p的必要条件呢?

  事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

  (2)再看“充要条件”

  若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

  (3)定义与充要条件

  数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

  显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

  “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

  (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

  高考数学集合复习知识点

  1、集合的概念

  集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。

  集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

  2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。

  3、集合中元素的特性

  (1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

  (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

  4、集合的分类

  集合科根据他含有的元素个数的多少分为两类:

  有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

  无限集:含有无限个元素的.集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

  特别的,我们把不含有任何元素的集合叫做空集,记错F,如{x?R|+1=0}。

  5、特定的集合的表示

  为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

  (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

  (2)非负整数集内排出0的集合,也称正整数集,记做N。或N+。

  (3)全体整数的集合通常简称为整数集Z。

  (4)全体有理数的集合通常简称为有理数集,记做Q。

  (5)全体实数的集合通常简称为实数集,记做R。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  不等式的判定:

  ①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  ②在不等式“a>b”或“a

  ③不等号的开口所对的数较大,不等号的尖头所对的数较小;

  ④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

高考数学知识点总结8

  易错点1 遗忘空集致误

  错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。 易错点2 忽视集合元素的三性致误

  错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

  易错点3 四种命题的结构不明致误

  错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的

  否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。

  易错点4 充分必要条件颠倒致误

  错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

  易错点6 求函数定义域忽视细节致误

  错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函

  数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。 易错点7 带有绝对值的函数单调性判断错误

  错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

  易错点8 求函数奇偶性的常见错误

  错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的`定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

  易错点9 抽象函数中推理不严密致误

  错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

  易错点10 函数零点定理使用不当致误

  错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。

  易错点11 混淆两类切线致误

  错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。

  易错点12 混淆导数与单调性的关系致误

  错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

  易错点13 导数与极值关系不清致误

  错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。

  数列

  易错点14 用错基本公式致误

  错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。 易错点15 an,Sn关系不清致误

高考数学知识点总结9

  一、集合有关概念

  1. 集合的含义

  2. 集合的中元素的三个特性:

  (1) 元素的确定性,

  (2) 元素的互异性,

  (3) 元素的无序性,

  3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2) 集合的表示方法:列举法与描述法。

  ? 注意:常用数集及其记法:

  非负整数集(即自然数集) 记作:N

  正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

  1) 列举法:{a,b,c……}

  2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 语言描述法:例:{不是直角三角形的三角形}

  4) Venn图:

  4、集合的分类:

  (1) 有限集 含有有限个元素的集合

  (2) 无限集 含有无限个元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意: 有两种可能(1)A是B的.一部分,;(2)A与B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

  即:① 任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)

  ③如果 A?B, B?C ,那么 A?C

  ④ 如果A?B 同时 B?A 那么A=B

  3. 不含任何元素的集合叫做空集,记为

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n个元素的集合,含有2n个子集,2n-1个真子集

  三、集合的运算

  运算类型 交 集 并 集 补 集

  定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

高考数学知识点总结10

  1、课程内容:

  必修课程由5个模块组成:

  必修1:集合、函数概念与基本初等函数(指、对、幂函数)

  必修2:立体几何初步、平面解析几何初步。

  必修3:算法初步、统计、概率。

  必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

  必修5:解三角形、数列、不等式。

  以上是每一个高中学生所必须学习的。

  上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

  此外,基础内容还增加了向量、算法、概率、统计等内容。

  2、重难点及考点:

  重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

  难点:函数、圆锥曲线

  高考相关考点:

  ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

  ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

  ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

  ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

  ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

  ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

  ⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的.位置关系

  ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

  ⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

  ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

  ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

  ⑿导数:导数的概念、求导、导数的应用

  ⒀复数:复数的概念与运算

高考数学知识点总结11

  掌握每一个公式定理

  做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。

  做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的'题都会做了,那么基础夯实可以告一段落。

  进行专题训练提高数学成绩

  1、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。

  2、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

  3、如何学好高中数学

  1)先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

  2)做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

  3)主动复习总结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

高考数学知识点总结12

  任一x=A,x=B,记做AB

  AB,BAA=B

  AB={x|x=A,且x=B}

  AB={x|x=A,或x=B}

  Card(AB)=card(A)+card(B)—card(AB)

  (1)命题

  原命题若p则q

  逆命题若q则p

  否命题若p则q

  逆否命题若q,则p

  (2)AB,A是B成立的充分条件

  BA,A是B成立的`必要条件

  AB,A是B成立的充要条件

  1、集合元素具有

  ①确定性;

  ②互异性;

  ③无序性

  2、集合表示方法

  ①列举法;

  ②描述法;

  ③韦恩图;

  ④数轴法

  (3)集合的运算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性质

  n元集合的字集数:2n

  真子集数:2n—1;

  非空真子集数:2n—2

高考数学知识点总结13

  1.数列的定义

  按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

  (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

  (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

  (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的.位置序号,它是自变量的值,相当于f(n)中的n.

  (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

  2.数列的分类

  (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.

  (2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.

  3.数列的通项公式

  数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

  这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4。

高考数学知识点总结14

  1. 函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x) ;

  (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2. 复合函数的有关问题

  (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的.对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>;0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

  5.方程k=f(x)有解 k∈D(D为f(x)的值域);

  6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);

  (3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>;0,a≠1,N>;0 );

  8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

  11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

高考数学知识点总结15

  1、函数零点的概念:

  对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:

  函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。

  3、函数零点的求法:

  求函数的零点:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

  4、二次函数的.零点:

  二次函数。

  1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

  3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

【高考数学知识点总结】相关文章:

数学高考知识点总结02-22

高考数学必考知识点总结02-11

数学高考必考知识点总结11-12

高考数学知识点总结10-03

【推荐】高考数学知识点总结02-17

高考数学知识点总结【推荐】02-17

【精】高考数学知识点总结02-17

高考数学知识点总结【热门】02-17

数学高考知识点总结15篇02-22