高三数学知识点总结

时间:2022-08-26 03:01:04 总结 投诉 投稿

高三数学知识点总结【热】

  总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们抽出时间写写总结吧。但是总结有什么要求呢?以下是小编为大家整理的高三数学知识点总结,欢迎阅读与收藏。

高三数学知识点总结【热】

高三数学知识点总结1

  考点一:集合与简易逻辑

  集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

  考点二:函数与导数

  函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

  考点三:三角函数与平面向量

  一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、

  考点四:数列与不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、

  考点五:立体几何与空间向量

  一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

  考点六:解析几何

  一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

  考点七:算法复数推理与证明

  高考对算法的考查以选择题或填空题的'形式出现,或给解答题披层“外衣”、考查的热点是流程图的识别与算法语言的阅读理解、算法与数列知识的网络交汇命题是考查的主流、复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大、推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问、

高三数学知识点总结2

  1.课程内容:

  必修课程由5个模块组成:

  必修1:集合、函数概念与基本初等函数(指、对、幂函数)

  必修2:立体几何初步、平面解析几何初步。

  必修3:算法初步、统计、概率。

  必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

  必修5:解三角形、数列、不等式。

  以上是每一个高中学生所必须学习的。

  上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

  此外,基础内容还增加了向量、算法、概率、统计等内容。

  2.重难点及考点:

  重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

  难点:函数、圆锥曲线

  高考相关考点:

  ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

  ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

  ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

  ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

  ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

  ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

  ⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

  ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

  ⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

  ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

  ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

  ⑿导数:导数的概念、求导、导数的应用

  ⒀复数:复数的概念与运算

  ①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

  ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

  ⑶特殊棱锥的顶点在底面的射影位置:

  ①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

  ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

  ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

  ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

  ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

  ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

  ⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

  ⑧每个四面体都有内切球,球心

  是四面体各个二面角的平分面的交点,到各面的距离等于半径.

  [注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

  ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

  简证:AB⊥CD,AC⊥BD

  BC⊥AD.令得,已知则.

  iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

  iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

  简证:取AC中点,则平面90°易知EFGH为平行四边形

  EFGH为长方形.若对角线等,则为正方形.

  立体几何初步

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的.多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  (1)先看“充分条件和必要条件”

  当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

  但为什么说q是p的必要条件呢?

  事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

  (2)再看“充要条件”

  若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

  (3)定义与充要条件

  数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

  显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

  “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

  (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

  1.函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2.复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5.方程k=f(x)有解k∈D(D为f(x)的值域);

  6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7.(1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符号由口诀“同正异负”记忆;

  (4)alogaN=N(a>0,a≠1,N>0);

  8.判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11.处理二次函数的问题勿忘数形结合

  二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12.依据单调性

  利用一次函数在区间上的保号性可解决求一类参数的范围问题;

  13.恒成立问题的处理方法

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解;

高三数学知识点总结3

  付正军:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的`一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

  第二个是平面向量和三角函数。重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

  第三,是数列,数列这个板块,重点考两个方面:一个通项;一个是求和。

  第四,空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。

  第五,概率和统计,这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。

  第六,解析几何,这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

  第七,押轴题,考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高三数学知识点总结4

  任一x=A,x=B,记做AB

  AB,BAA=B

  AB={x|x=A,且x=B}

  AB={x|x=A,或x=B}

  Card(AB)=card(A)+card(B)—card(AB)

  (1)命题

  原命题若p则q

  逆命题若q则p

  否命题若p则q

  逆否命题若q,则p

  (2)AB,A是B成立的充分条件

  BA,A是B成立的必要条件

  AB,A是B成立的`充要条件

  1、集合元素具有

  ①确定性;

  ②互异性;

  ③无序性

  2、集合表示方法

  ①列举法;

  ②描述法;

  ③韦恩图;

  ④数轴法

  (3)集合的运算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性质

  n元集合的字集数:2n

  真子集数:2n—1;

  非空真子集数:2n—2

高三数学知识点总结5

  等式的性质:

  ①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

  不等式基本性质有:

  (1)a>bb

  (2)a>b,b>ca>c(传递性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0时,a>bac>bc

  c<0时,a>bac

  运算性质有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

  ②关于不等式的性质的考察,主要有以下三类问题:

  (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

  (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

  (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

  高中数学集合复习知识点

  任一A,B,记做AB

  AB,BA ,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命题

  原命题若p则q

  逆命题若q则p

  否命题若p则q

  逆否命题若q,则p

  (2)AB,A是B成立的充分条件

  BA,A是B成立的必要条件

  AB,A是B成立的充要条件

  1.集合元素具有①确定性;②互异性;③无序性

  2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法

  (3)集合的运算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性质

  n元集合的字集数:2n

  真子集数:2n-1;

  非空真子集数:2n-2

  高中数学集合知识点归纳

  1、集合的概念

  集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。

  集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

  2、元素与集合的关系元素与集合的关系有属于和不属于两种:

  元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。

  3、集合中元素的特性

  (1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

  (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

  4、集合的`分类

  集合科根据他含有的元素个数的多少分为两类:

  有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

  无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

  特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。

  5、特定的集合的表示

  为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

  (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

  (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。

  (3)全体整数的集合通常简称为整数集Z。

  (4)全体有理数的集合通常简称为有理数集,记做Q。

  (5)全体实数的集合通常简称为实数集,记做R。

高三数学知识点总结6

  高三上册数学知识点整理

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

  方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  求函数的零点:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的'零点:

  二次函数.

  1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

  人教版高三数学知识点总结

  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

高三数学知识点总结7

  1、圆柱体:

  表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:

  表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、正方体

  a-边长,S=6a2,V=a3

  4、长方体

  a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱

  S-底面积h-高V=Sh

  6、棱锥

  S-底面积h-高V=Sh/3

  7、棱台

  S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、拟柱体

  S1-上底面积,S2-下底面积,S0-中截面积

  h-高,V=h(S1+S2+4S0)/6

  9、圆柱

  r-底半径,h-高,C—底面周长

  S底—底面积,S侧—侧面积,S表—表面积C=2πr

  S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱

  R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、直圆锥

  r-底半径h-高V=πr^2h/3

  12、圆台

  r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

  13、球

  r-半径d-直径V=4/3πr^3=πd^3/6

  14、球缺

  h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

高三数学知识点总结8

  1、函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2、复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3、函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

  4、函数的周期性

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的`周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5、方程k=f(x)有解k∈D(D为f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符号由口诀“同正异负”记忆;

  (4)alogaN=N(a>0,a≠1,N>0);

  8、判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10、对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11、处理二次函数的问题勿忘数形结合

  二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12、依据单调性

  利用一次函数在区间上的保号性可解决求一类参数的范围问题;

  13、恒成立问题的处理方法

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解;

  a(1)=a,a(n)为公差为r的等差数列

  通项公式:

  a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

  可用归纳法证明。

  n=1时,a(1)=a+(1-1)r=a。成立。

  假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r

  则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

  通项公式也成立。

  因此,由归纳法知,等差数列的通项公式是正确的。

  求和公式:

  S(n)=a(1)+a(2)+、、、+a(n)

  =a+(a+r)+、、、+[a+(n-1)r]

  =na+r[1+2+、、、+(n-1)]

  =na+n(n-1)r/2

  同样,可用归纳法证明求和公式。

  a(1)=a,a(n)为公比为r(r不等于0)的等比数列

  通项公式:

  a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

  可用归纳法证明等比数列的通项公式。

  求和公式:

  S(n)=a(1)+a(2)+、、、+a(n)

  =a+ar+、、、+ar^(n-1)

  =a[1+r+、、、+r^(n-1)]

  r不等于1时,

  S(n)=a[1-r^n]/[1-r]

  r=1时,

  S(n)=na、

  同样,可用归纳法证明求和公式。

高三数学知识点总结9

  第一部分集合

  (1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

  (2)注意:讨论的时候不要遗忘了的情况。

  第二部分函数与导数

  1、映射:注意

  ①第一个集合中的元素必须有象;

  ②一对一,或多对一。

  2、函数值域的求法:

  ①分析法;

  ②配方法;

  ③判别式法;

  ④利用函数单调性;

  ⑤换元法;

  ⑥利用均值不等式;

  ⑦利用数形结合或几何意义(斜率、距离、绝对值的.意义等);

  ⑧利用函数有界性;

  ⑨导数法

  3、复合函数的有关问题

  (1)复合函数定义域求法:

  ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。

  ②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

  (2)复合函数单调性的判定:

  ①首先将原函数分解为基本函数:内函数与外函数;

  ②分别研究内、外函数在各自定义域内的单调性;

  ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

  注意:外函数的定义域是内函数的值域。

  4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

  5、函数的奇偶性

  (1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;

  (2)是奇函数;

  (3)是偶函数;

  (4)奇函数在原点有定义,则;

  (5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

  (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

高三数学知识点总结10

  第一部分集合

  (1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

  (2)注意:讨论的时候不要遗忘了的情况。

  第二部分函数与导数

  1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

  2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

  3、复合函数的有关问题

  (1)复合函数定义域求法:

  ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出

  ②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

  (2)复合函数单调性的判定:

  ①首先将原函数分解为基本函数:内函数与外函数;

  ②分别研究内、外函数在各自定义域内的单调性;

  ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

  注意:外函数的定义域是内函数的值域。

  4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

  5、函数的.奇偶性

  ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

  ⑵是奇函数;

  ⑶是偶函数;

  ⑷奇函数在原点有定义,则;

  ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

  (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

  1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;

  2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;

  3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

  4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

  5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

  6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

高三数学知识点总结11

  三角函数。

  注意归一公式、诱导公式的正确性。

  数列题。

  1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

  2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

  3、证明不等式时,有时构造函数,利用函数单调性很简单

  立体几何题。

  1、证明线面位置关系,一般不需要去建系,更简单;

  2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

  3、注意向量所成的角的余弦值(范围)与所求角的'余弦值(范围)的关系。

  概率问题。

  1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

  2、搞清是什么概率模型,套用哪个公式;

  3、记准均值、方差、标准差公式;

  4、求概率时,正难则反(根据p1+p2+……+pn=1);

  5、注意计数时利用列举、树图等基本方法;

  6、注意放回抽样,不放回抽样;

  正弦、余弦典型例题。

  1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

  2、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A、75°B、90°C、105°D、120°

  4、若∠A为锐角,且,则A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。

  正弦、余弦解题诀窍。

  1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理。

  2、已知三边,或两边及其夹角用余弦定理

  3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

高三数学知识点总结12

  ①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

  ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。

  ⑶特殊棱锥的顶点在底面的射影位置:

  ①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的`外心。

  ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心。

  ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心。

  ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心。

  ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心。

  ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心。

  ⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

  ⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径。

  [注]:

  i、各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥。(×)(各个侧面的等腰三角形不知是否全等)

  ii、若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直。

  简证:AB⊥CD,AC⊥BD

  BC⊥AD。令得,已知则。

  iii、空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形。

  iv、若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形。

  简证:取AC中点,则平面90°易知EFGH为平行四边形

  EFGH为长方形。若对角线等,则为正方形。

高三数学知识点总结13

  1、三类角的求法:

  ①找出或作出有关的角。

  ②证明其符合定义,并指出所求作的角。

  ③计算大小(解直角三角形,或用余弦定理)。

  2、正棱柱——底面为正多边形的直棱柱

  正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

  正棱锥的计算集中在四个直角三角形中:

  3、怎样判断直线l与圆C的位置关系?

  圆心到直线的距离与圆的半径比较。

  直线与圆相交时,注意利用圆的“垂径定理”。

  4、对线性规划问题:

  作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

  培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?

  (1)欣赏数学的美感

  比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……

  通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。

  (2)注意到数学在实际生活中的应用。

  例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的'知识就可以理解、学好数学,是现代公民的基本素养之一啊

  (3)采用灵活的教学手段,与时俱进。

  利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。

  (4)适当看一些科普类的书籍和文章。

  比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。

高三数学知识点总结14

  复数的概念:

  形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

  复数的表示:

  复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

  复数的几何意义:

  (1)复平面、实轴、虚轴:

  点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的'点都表示实数,除原点外,虚轴上的点都表示纯虚数

  (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即

  这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

  这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

  复数的模:

  复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

  虚数单位i:

  (1)它的平方等于-1,即i2=-1;

  (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

  (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  复数模的性质:

  复数与实数、虚数、纯虚数及0的关系:

  对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

高三数学知识点总结15

  1.不等式的定义

  在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

  2.比较两个实数的大小

  两个实数的.大小是用实数的运算性质来定义的,

  有a-b>0?;a-b=0?;a-b<0?.

  另外,若b>0,则有>1?;=1?;<1?.

  概括为:作差法,作商法,中间量法等.

  3.不等式的性质

  (1)对称性:a>b?;

  (2)传递性:a>b,b>c?;

  (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

  (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

  (5)可乘方:a>b>0?(n∈N,n≥2);

  (6)可开方:a>b>0?(n∈N,n≥2).

  复习指导

  1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

  2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

  3.“两条常用性质”

  (1)倒数性质:①a>b,ab>0?<;②a<0

  ③a>b>0,0;④0

  (2)若a>b>0,m>0,则

  ①真分数的性质:<;>(b-m>0);

【高三数学知识点总结】相关文章:

高三数学知识点总结09-21

高三数学重要知识点总结11-05

高三数学复习知识点总结10-21

【精】高三数学知识点总结12-29

【热门】高三数学知识点总结12-29

【热】高三数学知识点总结12-29

【推荐】高三数学知识点总结12-29

高三数学复习知识点归纳总结09-16

高三数学知识点归纳总结04-20

高三数学知识点总结最新10-21