高中物理知识点总结

时间:2023-10-31 07:22:27 总结 投诉 投稿

高中物理知识点总结(实用15篇)

  总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它是增长才干的一种好办法,为此我们要做好回顾,写好总结。总结怎么写才能发挥它的作用呢?以下是小编整理的高中物理知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中物理知识点总结(实用15篇)

高中物理知识点总结1

  第一章电磁感应

  1.两个人物:

  a.法拉第:磁生电

  b.奥期特:电生磁

  2.产生条件:

  a.闭合电路

  b.磁通量发生变化注意:

  ①产生感应电动势的条件是只具备b

  ②产生感应电动势的那部分导体相当于电源。

  ③电源内部的电流从负极流向正极。

  3.感应电流方向的叛定:

  (1).方法一:右手定则

  (2).方法二:楞次定律:(理解四种阻碍)

  ①阻碍原磁通量的变化(增反减同)

  ②阻碍导体间的相对运动(来拒去留)

  ③阻碍原电流的变化(增反减同)

  ④面积有扩大与缩小的趋势(增缩减扩)

  4.感应电动势大小的计算:

  (1).法拉第电磁感应定律:

  a.内容:

  b.表达式:Ent

  (2).计算感应电动势的公式x

  ①求平均值:Ent

  ②求瞬时值:E=BLV(导线切割类)

  ③法拉第电机:E12BL2

  ④闭合电路殴姆定律:EI感(Rr)

  5.感应电流的计算:x平均电流:IERr(Rr)t瞬时电流:IERrBLVRr

  6.安培力计算:

  (1)平均值:

  FxBIxLBLBLq(Rr)tt

  (2).瞬时值:FBILB2L2VRr

  7.通过的电荷量:qItRr注意:求电荷量只能用平均值,而不能用瞬时值。

  8.互感:由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势。这种现象叫互感。

  9.自感现象:

  (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

  (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁心的线圈的自感系数比没有铁心时要大得多。

  (3)类型:通电自感和断电自感

  (4)单位:亨利(H)、毫亨(mH),微亨(H)。

  10.涡流及其应用

  (1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流

  (2)应用:

  a.新型炉灶电磁炉。

  b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。

  第二章交变电流

  一.正弦交变电流

  1.两个特殊的位置

  a.中性面位置:磁通量ф最大,磁通量的变化率为零,即感应电动势零。

  b.垂直中性面位置磁通量ф为零,磁通量的变化率最大,即感应电动势最大。

  2.正弦交变电流的表达式:

  a.从中性面位置记时:

  瞬时电动势:e=Emsinωt

  瞬时电流:iImsintb.从垂直中性面位置记时

  瞬时电动势:e=Emcosωt

  瞬时电流:iImcost

  3.正弦交变电流的四值:

  a.最大值:Em=nBSω=nΦmω

  b.瞬时值:

  ①中性面位置记时:e=Emsinωt

  ②垂直中性面位置记时:e=Emcosωtx

  c.平均值:Entd.有效值:根据电流的热效应规定。注意:

  ⑴只有正弦交变电流的有效值才一定是最大值的22倍。

  a.动势有效值:m20.707m

  b,电压有效值:Uum20.707Um

  c.电流有效值:IIm20.707Im。

  (2)通常所说的交变电流的电流、电压;交流电表的读数;交流电器的额定电压、额定电流;保险丝的熔断电流等都指有效值。(电容器的耐压值是交流的最大值。)

  (3)生活中用的'市电电压为220V,其最大值为Um=2202V=311V,频率为50HZ,所以其电压瞬时值的表达式为u=311sin314tV。

  4、表征交流电的物理量:

  (1)瞬时值、最大值和有效值:

  (2)周期、频率

  a.周期:交流电完成一次周期性变化所需的时间叫周期。以T表示,单位是秒。

  b.频率:交流电在1秒内完成周期性变化的次数叫频率。以f表示,单位是Hz。

  c.二者关系:周期和频率互为倒数,即T1f。

  d.我国市电频率为50Hz,周期为0.02s5.交流电的图象:emsint图象如图53所示。emcost图象如图54所示。

  二.变压器

  1.理想变压器:

  2.原理:互感

  3.类型:

  ⑴升压变器:副线圈用细线绕

  ⑵降压变器:副线圈用粗线绕

  ⑶1:1隔离变压器:两边一样

  4.基本公式:

  ⑴电压:(原决定副)U1Un1正比

  2n2(2)电流:(副决定原)

  一个副线圈:I1n2In反比21多个副线圈:U1I1=U2I2+U3I3

  (3)功率:(输出决定输入)P出=P入

  5.互感器

  ⑴电压互感器:降压变压器、并联⑵电流互感器:升压变压器、火线串联

  三.远距离输电

  1.高压输电的原因:

  在输送的电功率和送电导线电阻一定的条件下,提高送电电压,减小送电电流强度可以达到减少线路上电能损失的目的。

  2.远距离输电的结构图:

  表示电容对交变电流的阻碍作用

  (2)特点:

  “通交流,隔直流”、“通高频,阻

  D1r

  低频”。

  I1D2I1IrI2I2五.传感器的及其工作原理Ⅰ

  1.定义:~n1n1n2n2

  (1)功率之间的关系是:

  a.P1=P1

  b.P2=P2

  c.P1=Pr+P2;

  (2)电压之间的关系是:

  a.U1Un1

  1n1b.U2Un22n2c.U1UrU2

  (3)电流之间的关系是:

  a.I1nI11n1b.I2In22n

  2c.I1IrI23.输电电流I的计算式:

  "IP输Up1U"

  出14.损失功率、损失电压的计算:

  (1)Pr=Ir2r,

  (2)Ur=Irr,

  四.感抗和容抗(统称电抗)

  1.感抗:

  (1)意义:表示电感对交变电流的阻碍作用

  (2)特点:“通直流,阻交流”、“通低频,阻高频”。

  2.容抗:

  (1)意义:有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。

  2.优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。

  3.应用:

  (1).几种特殊的电阻

  a.光敏电阻:光照越强,光敏电阻阻值越小。

  b热敏电阻:阻值随温度的升高而减小,且阻值随温度变化非常明显。

  c.金属导体的电阻:随温度的升高而增大

  d.霍尔元件:是将电磁感应这个磁学量转化为电压这个电学量的元件。

  (2).传感器应用:

  a.力传感器的应用电子秤

  b.声传感器的应用话筒

  c.温度传感器的应用电熨斗、电饭锅、测温仪

  d.光传感器的应用鼠标器、火灾报警器

  (3).传感器的应用实例:

  a.光控开关

  b.温度报警器

高中物理知识点总结2

  第二章、相互作用力

  1、力

  力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因、力是矢量。

  2、重力

  (1)重力是由于地球对物体的吸引而产生的[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力、但在地球表面附近,可以认为重力近似等于万有引力

  (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g

  (3)重力的方向:竖直向下(不一定指向地心)。

  (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上、

  3、弹力

  (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的

  (2)产生条件:①直接接触;②有弹性形变、

  (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体、在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面、①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等、②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆、

  (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解、弹簧弹力可由胡克定律来求解、胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx、k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m、

  4、摩擦力

  (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可、

  (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反、

  (3)判断静摩擦力方向的方法:

  ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同、然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向、

  ②平衡法:根据二力平衡条件可以判断静摩擦力的方向、

  (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解、

  ①滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关、或者根据物体的运动状态,利用平衡条件或牛顿定律来求解、

  ②静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解、

  5、物体的受力分析

  (1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的`力错误地认为通过—力的传递‖作用在研究对象上、

  (2)按—性质力‖的顺序分析、即按重力、弹力、摩擦力、其他力顺序分析,不要把—效果力‖与—性质力‖混淆重复分析、

  (3)如果有一个力的方向难以确定,可用假设法分析、先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态、

  6、力的合成与分解

  (1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力、

  (2)力合成与分解的根本方法:平行四边形定则、

  (3)力的合成:求几个已知力的合力,叫做力的合成、共点的两个力(F1和F2)合力大小F的取值范围为:|F1-F2|≤F≤F1+F2、

  (4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算)、在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法、

  7、共点力的平衡

  (1)共点力:作用在物体的同一点,或作用线相交于一点的几个力、

  (2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态、

  (3)共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0、

  (4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等、

高中物理知识点总结3

  1、磁现象:

  磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。

  磁体:具有磁性的物体,叫做磁体。

  磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;

  ②来源:天然磁体(磁铁矿石)、人造磁体;

  ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。

  磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。

  磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。

  磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。

  无论磁体被摔碎成几块,每一块都有两个磁极。

  磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。

  钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。

  2、磁场:

  磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。

  磁场的基本性质:对放入其中的磁体产生磁力的作用。

  磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。

  磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识:

  ①磁感线是假想的曲线,本身并不存在;

  ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向;

  ③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ④磁感线的疏密可以反应磁场的'强弱,磁性越强的地方,磁感线越密;

  3、地磁场:

  地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。

  指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。

  地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。

高中物理知识点总结4

  匀变速直线运动定义

  匀变速直线运动是高中物理最基本,同时也是考察做多的一种运动形式。

  物体在一条直线上运动,如果在相等的时间内速度的变化量相等,这种运动就叫做匀变速直线运动。

  也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。

  匀变速直线运动图像

  在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;对应着加速度与速度方向相同。

  如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动;对应着加速度与速度方向相反。

  做匀变速直线运动的前提条件

  物体到底在满足什么前提下才能做匀变速直线运动呢?

  这个前提条件,主要是对比曲线运动的前提条件来说的。物体作匀变速直线运动须同时符合下述两条:

  1,受恒外力作用(保证加速度方向大小不变);

  2,合外力与初速度在同一直线上(保证物体运动方向不变)。

  当合外力的方向与物体运动方向一致时,为匀加速直线运动;当合外力方向与物体运动方向相反时,为匀减速直线运动。

  匀变速直线运动的公式总结

  匀变速直线运动有四个最基本公式,分别如下:

  (1)匀变速直线运动速度与时间的关系公式

  vt=v0+at

  (2)匀变速直线运动位移与时间的关系公式

  x=v0t+1/2at2

  (3)匀变速直线运动位移与速度的关系公式

  vt2-v02=2ax

  (4)位移与平均速度的关系公式

  x=(vt+v0)·t/2

  匀变速直线运动公式使用与选择

  一般来说,题目中含有t的时候,优先考虑的是第一个、第二个方程。

  题目没有时间t时,优先考虑的是第三个方程(位移和速度关系)。

  从上述的四个公式中不难看出,研究匀变速直线运动主要是研究五个物理量:s、t、a、v0、vt,这五个物理量中只有三个是独立的,可以任意选定。

  只要其中三个物理量确定之后,另外两个就确定了。

  每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。

  如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。例如:在忽略空气阻力的条件下,竖直上抛物体的上升、回落过程对照:最小速度、加速度大小、位移大小相同,因此经历时间和速度大小一定相同。

  以上五个物理量中,除时间t外,s、v0、vt、a这四个量都是矢量。

  一般做题的过程中选定v0的方向为正方向,以t=0时刻的位移为零,这时s、vt和a的正负就都有了确定的.物理意义。当然,这是王尚个人的意见,有的老师喜欢规定a的方向为正方向,这也是可以的。正方向的规定并不严格,但是我们在运用上述四个公式的时候,必须带入矢量进行运算,否则就很容易导致计算错误。

  匀变速直线运动中几个常用的推论

  在打点计时器及其纸带数据处理的实验中,我们用公式Δs=aT2来求加速度。

  这说明任意相邻相等时间内的位移之差相等。这个结论可以推广位:sm-sn=(m-n)aT2;

  某段时间的中间时刻的即时速度等于该段时间内的平均速度,这个问题也总是出现在打点计时器的实验题中,大家要注意。

  提醒大家的是,某段位移的中间位置的即时速度不小于该段位移内的平均速度。

  匀变速直线运动特例:自由落体运动

  自由落体运动是一种常见且常考的运动模式,是一种特殊的匀变速直线运动。这种运动的特点是初速度为零,加速度为g的运动模式。

  地球表面附近的上空可看作是恒定的重力场.如不考虑大气阻力,在该区域内的自由落体运动是匀加速直线运动.其加速度恒等于重力加速度g。

  虽然地球的引力和物体到地球中心距离的平方成反比,但地球的半径远大于自由落体所经过的路程,所以引力在地面附近可看作是不变的,自由落体的加速度即是一个不变的常量.

  自由落体运动,是初速为零的匀加速直线运动。

  初速度为零的匀变速直线运动规律

  前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……

  第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比1:3:5:……:(2n-1)。

  通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比t1:t2:……:tn=1:√2:√3……:√n。

  对末速为零的匀变速直线运动,同样也可以类比运用这些规律。

高中物理知识点总结5

  电学是中考的重要内容,每年中考电学都有30多分,电学也是学生掌握比较不好的部分,中考的压轴题也都在电学。因此,复习好电学,将是取胜中考的关键。下面,我把我在电学复习上的一些做法和体会和大家一起探讨、交流。

  一、课标要求

  中考物理命题依据:《全日制义务教育物理课程标准(实验稿)》和《20xx年福建省初中毕业生学业考试大纲》为依据,结合我市初中物理教学实际情况进行命题。

  课标对电学的要求主要分布在电磁能、电和磁以及能量、能量的转化和转移。

  (一)电磁能

  1.从能量转化的角度认识电源和用电器的作用。(电学69)(括号标注为20xx年泉州市中考物理考试说明对应考点,下同)

  2.通过实验探究电流、电压和电阻的关系。理解欧姆定律,并能进行简单计算。(电学62、63)3.会读、会画简单的电路图。能连接简单的串联电路和并联电路。能说出生活、生产中采用简单串联或并联的实例。(电学58、59、60)

  4.会使用电流表和电压表。(电学61)

  5.理解电功率和电流、电压之间的关系,并能进行简单计算。能区分用电器的额定功率和实际功率。(电学66)

  6.通过实验探究,知道在电流一定时,导体消耗的电功率与导体的电阻成正比。(电学67、68)7.了解家庭电路和安全用电知识。有安全用电的意识。(电学64、65)

  (二)电和磁

  1.通过实验,探究通电螺线管外部磁场的方向。(电学70)

  2.通过实验,了解通电导线在磁场中会受到力的作用,力的方向与电流及磁场的方向都有关系。(电学71)

  3.通过实验,探究导体在磁场中运动时产生感应电流的条件。(电学73)4.知道光是电磁波。知道电磁波在真空中的传播速度。(信息、材料、与能量74)5.了解电磁波的应用及其对人类生活和社会发展的影响。(信息、材料、与能量75)

  (三)能量、能量的转化和转移

  1.结合实例认识功的概念。知道做功的过程就是能量转化或转移的过程。(力学26)2.结合实例理解功率的概念。了解功率在实际中的应用。(力学27、28)

  20xx年泉州市中考物理考试说明和课程标准的要求是一致的,容易理解,因此,可以把重点放在学习和研究泉州市中考物理考试说明上。

  20xx年泉州市初中毕业、升学考试物理考试说明(电学部分)

  考试内容58.会读、会画简单电路图。电59.能连接简单的串联电路和并联电路。路60.能说出生活、生产中采用简单串联或并联电路的实例。61.会使用电流表和电压表。探究电路62.通过实验,探究电流、电压和电阻的关系。63.理解欧姆定律,并能进行简单计算。64.了解家庭电路和安全用电知识。65.有安全用电的意识。要求BCACDBAD电电功率学66.理解电功率和电流、电压之间的关系,并能进行简单计算。能区分用电器的额定功率和实际功率。67.通过实验,探究在电流一定时,导体消耗的电功率与导体电阻的关系。68.知道在电流一定时,导体消耗的电功率与导体的电阻成正比。69.从能量转化的角度认识电源和用电器的作用。BDAADADD电70.通过实验,探究通电螺线管外部磁场的方向。和71.通过实验,了解通电导线在磁场中会受到力的作用,力的方磁向与电流及磁场的方向都有关系。72.能用实验证实电磁相互作用。73.通过实验,探究导体在磁场中运动时产生感应电流的条件。

  二、中考呈现考题以填空、作图、选择、简答、实验与探究、计算题形式出现,总分30分左右,实验与探究、计算题所占分数较大。

  历届中考电学所占的分数05年中考28.5分06年中考31.5分07年中考32分

  三、中考预期

  预期08年的中考,电学考试的内容会保持相对稳定,稳中有变。欧姆定律、电功、电功率、电流表和电压表以及滑动变阻器的使用仍是考试的重点。07年未出现的考点,今年很有可能考,07年出现的一些考点,今年会变化考试题型考,比如,把选择题变成填空题。当然,这只是预期,我们要做好充分、全面的复习。四、复习建议

  1、认真研究08年中考考试说明、历届(05-07年)中考试题、市质检卷、复习指南。考试说明是命题的依据之一;市质检卷是中考的“风向标”,从中可以感受今年中考的一些信息;从历届中考试题中可以找出中考命题的方向、规律和重点;复习指南是复习指导书。因此,必须认真学习和研究。

  2、重视对物理基础知识和基本技能的教学,加强物理知识与生活实际的联系。

  基础知识和基本技能是中考命题的重点内容。物理的基本规律和基本原理是学好物理的基础,在教学中,要注意物理概念、物理规律的本质特征,要注重知识的'形成过程,培养学生从实验观察、分析和总结中形成物理要领和物理规律的能力。

  中考命题加强联系生活实际。物理源于生活,在教学中注意引导学生善于观察,发现生活中蕴涵的物理知识。坚持学以致用,加强理论联系实际,提高学生灵活运用物理知识分析解决问题的能力。同时,也能提高学生学习的兴趣。

  3、加强实验、科学探究和计算的教学,重视对实验方法和实验过程的教学。电学实验、计算题是中考的重点。

  历届中考电学实验、计算占、实验方法占的分数

  06年中考07年中考

  2

  实验10分11分计算12分14分实验方法3分实验考点:主要是测小灯泡电功率、小灯泡电阻。

  计算考点:主要是电功、电功率、欧姆定律、串、并联电路电流、电压的关系。

  在教学中,要注重观察能力、分析能力、操作能力、科学探究能力、科学方法和归纳能力的教学;重视电功、电功率、欧姆定律、串、并联电路电流、电压的关系的计算的教学。

  4、精选练习,加强审题、解题方法的指导。

  要针对考点和历届中考规律选择有代表性、难度适宜的试题,供学生练习。讲评练习要对审题和解题方法加强指导,培养学生良好的审题习惯,提高审题能力,加强学生解题规范化的训练,重视学生的物理语言表达能力的提高。

  5、激发兴趣,提高复习效率。

  在复习阶段,学生的学习负担重,学习压力大,整天做题,容易出现“复习疲劳综合症”。因此,在复习课上,要积极创设一些与教学内容密切相关的问题情境和联系生活实际的题目吸引学生的注意力,激发学生的复习兴趣;注意调整好学生的心理状态,把握节奏,愉快复习,提高复习效率。

  总之,应当在新的课程理念的指导下,认认真真地对待复习工作,在复习中充分理解改革与继承的关系,注意改变学科本位观念,既关注社会热点,也关注中考动向,科学规划,稳步推进,努力使复习工作取得更大的成效。谢谢大家!

高中物理知识点总结6

  力学部分:

  1、基本概念:

  力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速

  2、基本规律:

  匀变速直线运动的基本规律(12个方程);

  三力共点平衡的特点;

  牛顿运动定律(牛顿第一、第二、第三定律);

  万有引力定律;

  天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

  动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

  动量守恒定律(四类守恒条件、方程、应用过程);

  功能基本关系(功是能量转化的量度)

  重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

  功能原理(非重力做功与物体机械能变化之间的关系);

  机械能守恒定律(守恒条件、方程、应用步骤);

  简谐运动的基本规律(两个理想化模型一次全振动四个过程五个量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

  简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

  3、基本运动类型:

  运动类型受力特点备注

  直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析

  匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动

  2.匀减速直线运动

  曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向

  合外力指向轨迹内侧

  (类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解

  匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心

  (合外力充当向心力)一般圆周运动的受力特点

  向心力的受力分析

  简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析

  4、基本:

  力的合成与分解(平行四边形、三角形、多边形、正交分解);

  三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);

  对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的'分析方法—假设法);

  处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);

  解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);

  针对简谐运动的对称法、针对简谐波图像的描点法、平移法

  5、常见题型:

  合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。

  斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。

  动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。

  竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。

  人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。

  动量机械能的综合题:

  (1)单个物体应用动量定理、动能定理或机械能守恒的题型;

  (2)系统应用动量定理的题型;

  (3)系统综合运用动量、能量观点的题型:

  ①碰撞问题;

  ②爆炸(反冲)问题(包括静止原子核衰变问题);

  ③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);

  ④子弹射木块问题 高中英语;

  ⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);

  ⑥单摆类问题:

  ⑦工件皮带问题(水平传送带,倾斜传送带);

  ⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);

  机械波的图像应用题:

  (1)机械波的传播方向和质点振动方向的互推;

  (2)依据给定状态能够画出两点间的基本波形图;

  (3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;

  (4)机械波的干涉、衍射问题及声波的多普勒效应。

  电磁学部分:

  1、基本概念:

  电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速

  2、基本规律:

  电量平分原理(电荷守恒)

  库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)

  电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)

  电场力做功的特点及与电势能变化的关系

  电容的定义式及平行板电容器的决定式

  部分电路欧姆定律(适用条件)

  电阻定律

  串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)

  焦耳定律、电功(电功率)三个表达式的适用范围

  闭合电路欧姆定律

  基本电路的动态分析(串反并同)

  电场线(磁感线)的特点

  等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点

  常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)

  电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、)

  电动机的三个功率(输入功率、损耗功率、输出功率)

  电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)

  安培定则、左手定则、楞次定律(三条表述)、右手定则

  电磁感应的判定条件

  感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线

  通电自感现象和断电自感现象

  正弦交流电的产生原理

  电阻、感抗、容抗对交变电流的作用

  变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)

  3、常见仪器:

  示波器、示波管、电流计、电流表(磁电式电流表的原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。

  4、实验部分:

  (1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;

  (2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);

  (3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);

  (4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);

  (5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);

  (6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);

  (7)用多用电表测电阻及黑箱问题;

  (8)练习使用示波器;

  (9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;

  (10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)

  5、常见题型:

  电场中移动电荷时的功能关系;

  一条直线上三个点电荷的平衡问题;

  带电粒子在匀强电场中的加速和偏转(示波器问题);

  全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);

  电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);

  通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);

  通电导线在匀强磁场中的平衡问题;

  带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何求解;在有界磁场中的运动时间);

  闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;

  两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);

  带电粒子在复合场中的运动(正交、平行两种情况):

  ①.重力场、匀强电场的复合场;

  ②.重力场、匀强磁场的复合场;

  ③.匀强电场、匀强磁场的复合场;

  ④.三场合一。

高中物理知识点总结7

  怎样判断系统动量是否守衡?

  动量守衡条件是系统不受外力,或合外力为零。一般研究问题,如果相互作用的内力比外力大很多,则可认为系统动量守衡;根据力的独立作用原理,如果在某方向上合外力为零,则在该方向上动量守衡。

  注意守衡条件对内力的性质没有任何限制,可以是电场力、磁场力、核力等等。对系统状态没有任何限制,可以是微观、高速系统,也可以是宏观、低速系统。而力的作用过程可以是连续的作用,可以是间断的作用,如二人在光滑平面上的抛接球过程。综上有:

  物体运动状态是否变化取决于--物体所受的合外力。

  物体运动状态变化得快慢取决于--物体所受到的合外力和质量大小。物体到底做什么形式的运动取决于--物体所受到的合外力和初始状态。物体运动状态变化了多少取决于--

  (1)力的大小和方向;

  (2)力作用时间的长短。实验表明只要力与其作用时间的乘积一定,它引起同一个物体的速度变化相同,力与力作用时间的乘积,可以决定和量度力的某种作用效果--冲量。系统的内力改变了系统内物体的动量,但系统外力才是改变系统总动量的原因。

  (三)能量和能量守恒

  知识结构

  功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。

  2.功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒内合力的平均功率之比为1:3:5。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。

  上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:

  1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v将改变,这时的运动一定是变加速运动。

  2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止(注意不是达到最大速度为止)。

  3.能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能。

  动能:物体由于有机械运动速度而具有的能量Ek=mv2/2

  能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

  4.动能定理:研究对象:质点,数学表达公式:W=mv2/2-mv02/2。公式中W为质点受到的所有的作用力在所研究的过程中做的'总功,它可以是恒力功,可以是变力功,可以是分阶段由不同的力做功累积(代数和)而得到的结果。动能定理对力的性质没有任何限制,

  可以是重力、弹力、摩擦力、也可以是电场力、磁场力或其它力。等式右边为所研究的过程(初、末状态)中质点的动能的变化。动能定理表明,力对物体所做的总功,是物体动能变化的原因,力对物体所做的总功量度了物体动能的变化大小。

  5.机械能守恒定律:在只有重力或弹力做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。机械能守恒定律的研究对象是系统,一般简化为物体;守恒是指系统在满足守恒条件下,机械能--动能和势能之和,在状态变化过程中总保持不变。怎样判断机械能是否守衡?

  (1)根据守恒条件:是否只有重力或弹力做功

  (2)考察状态:比较、确定不同状态的机械能,看它们是否相同

  (3)考察系统是否发生机械能与其它形式的能量的转化

高中物理知识点总结8

  一、重力,基本相互作用

  1、力和力的图示

  2、力能改变物体运动状态

  3、力能力物体发生形变

  4、力是物体与物体之间的相互作用

  (1)施力物体

  (2)受力物体

  (3)力产生一对力

  5、力的三要素:大小,方向,作用点

  6、重力:由于地球吸引而受的力大小G=mg方向:竖直向下重心:重力的作用点均匀分布、形状规则物体:几何对称中心质量分布不均匀,由质量分布决定重心质量分部均匀,由形状决定重心

  7、四种基本作用

  (1)万有引力

  (2)电磁相互作用

  (3)强相互作用

  (4)弱相互作用

  二、弹力

  1、性质:接触力

  2、弹性形变:当外力撤去后物体恢复原来的'形状

  3、弹力产生条件

  (1)挤压

  (2)发生弹性形变

  4、方向:与形变方向相反

  5、常见弹力

  (1)压力垂直于接触面,指向被压物体

  (2)支持力垂直于接触面,指向被支持物体

  (3)拉力:沿绳子收缩方向

  (4)弹簧弹力方向:可短可长沿弹簧方向与形变方向相反

  6、弹力大小计算(胡克定律)F=kx

  k劲度系数N/mx伸长量

  三、摩擦力产生条件:

  1、两个物体接触且粗糙

  2、有相对运动或相对运动趋势静摩擦力产生条件:

  1、接触面粗糙

  2、相对运动趋势

  静摩擦力方向:沿着接触面与运动趋势方向相反大小:0≤f≤Fmax滑动摩擦力产生条件:

  1、接触面粗糙

  2、有相对滑动大小:f=μN

  N相互接触时产生的弹力N可能等于G

  μ动摩擦因系数没有单位

  四、力的合成与分解方法:等效替代

  力的合成:求与两个力或多个力效果相同的一个力

  求合力方法:平行四边形定则(合力是以两分力为邻边的平行四边形对角线,对角线长度即合力的大小,方向即合力的方向)合力与分力的关系

  1、合力可以比分力大,也可以比分力小

  2、夹角θ一定,θ为锐角,两分力增大,合力就增大

  3、当两个分力大小一定,夹角增大,合力就增大,夹角增大,合力就减小(0<θ<π)

  4、合力最大值F=F1+F2最小值F=|F1-F2|力的分解:已知合力,求替代F的两个力原则:分力与合力遵循平行四边形定则本质:力的合成的逆运算

  找分力的方法:

  1、确定合力的作用效果

  2、形变效果

  3、由分力,合力用平行四边形定则连接

  4、作图或计算(计算方法:余弦定理)

  五、受力分析步骤和方法

  1.步骤

  (1)研究对象:受力物体

  (2)隔离开受力物体

  (3)顺序:

  ①场力(重力,电磁力......)

  ②弹力:

  绳子拉力沿绳子方向

  轻弹簧压缩或伸长与形变方向相反轻杆可能沿杆,也可能不沿杆面与面接触优先垂直于面的

  ③摩擦力

  静摩擦力方向

  求2.假设

  滑动摩擦力方向与相对滑动方向相反或与相对速度相反

  ④其它力(题中已知力)

  (4)检验是否有施力物体

  六、摩擦力分析静摩擦力分析

  1、条件①接触且粗糙②相对运动趋势

  2、大小0≤f≤Fmax

  3、方法:

  ①假设法

  ②平衡法滑动摩擦力分析

  1、接触时粗糙

  2、相对滑动

  七、补充结论

  1.斜面倾角θ

  动摩擦因系数μ=tanθ物体在斜面上匀速下滑

  μ>tanθ物体保持静止μ<tanθ物体在斜面上加速下滑

  2.三力合力最小值

  若构成一个三角形则合力为0若不能则F=Fmax-(F1+F2)三力最大值三个力相加

高中物理知识点总结9

  力和运动学:

  力是物体之间的相互作用。运动学研究物体位置随时间的变化。

  牛顿运动定律是高中物理的核心内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。

  机械能守恒定律和能量守恒定律:

  能量守恒定律是指能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到其他物体,而能量的总玳保持不变。

  机械能守恒定律是指在一个只有保守力(见保守力与耗散力)做功的物理系{(见牛顿运动定律;亦称“势力学”)}中,动能和势能相互转化,但机械能的总量保持不变。

  振动和波动:

  振动是指物体沿直线或曲线并经过其平衡位置所作的往复运动。

  波动是指振动在介质中的传播。

  热力学定律:

  热力学第一定律(能量守恒定律)世间万物总能量不会变,但能源可由一种形式转为另一种形式。

  热力学第二定律(熵增定律)不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;不可逆热力过程中熵的微增量总是大于零。

  总的来说,高中物理知识点需要掌握基本的物理概念、原理和数学方法,注重理解和应用,掌握物理实验技能,并通过练习加深对知识点的理解和运用能力。

  高中物理知识点

  1.气体的状态参量:

  温度:宏观上,物体的冷热程度 高一;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

  体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

  压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

  2.气体分子运动的`特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

  3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

  注:

  (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

  (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

  高中物理重要知识点

  1.光本性学说的发展简史

  (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.

  (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.

  2、光的干涉

  光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。

  2.干涉区域内产生的亮、暗纹

  ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)

  ⑵暗纹:屏上某点到双缝的'光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)

  相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。

  3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

  ⑴各种不同形状的障碍物都能使光发生衍射。

  ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)

  ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。

  4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。

  5.光的电磁说

  ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)

  ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。

  各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。

  ⑶红外线、紫外线、X射线的主要性质及其应用举例。

  种类产生主要性质应用举例

  红外线一切物体都能发出热效应遥感、遥控、加热

  紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2

  X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤

  高中物理知识点归纳

  1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成与分解遵循平行四边形定则;

  (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

  (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

  (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

  (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高中物理知识点总结10

  知识点总结

  一、开普勒行星运动定律

  (1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,

  (2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,

  (3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

  二、万有引力定律

  1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、

  2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,称为引力常量、

  3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、

  三、万有引力定律的应用

  1、解决天体(卫星)运动问题的基本思路

  (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.

  (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.

  2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.

  (1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3

  (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度、

  3、人造卫星

  (1)研究人造卫星的基本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、

  (2)卫星的线速度、角速度、周期与半径的关系

  ①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、

  ②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、

  ③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大

  (3)人造卫星的超重与失重

  ①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、

  ②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下凡是与重力有关的力学现象都会停止发生、

  (4)三种宇宙速度

  ①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、若7.9 km/s≤v<11.2 km/s,物体绕地球运行、

  ②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的'最小发射速度、若11.2 km/s≤v<16.7 km/s,物体绕太阳运行、

  ③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度、若v≥16.7 km/s,物体将脱离太阳系在宇宙空间运行、

  题型:

  1、求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1.

  2、求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.

  3、近地卫星与同步卫星

  (1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度、

  (2)地球同步卫星的五个“一定”

  ①周期一定T=24 h. ②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定

  ⑤向心加速度(a)一定

高中物理知识点总结11

  一.时间和时刻:

  ①时刻的定义:时刻是指某一瞬时,是时间轴上的一点,相对于位置、瞬时速度、等状态量,一般说的“2秒末”,“速度2m/s”都是指时刻。

  ②时间的定义:时间是指两个时刻之间的间隔,是时间轴上的一段,通常说的“几秒内”,“第几秒”都是指的时间。

  二.位移和路程:

  ①位移的定义:位移表示质点在空间的位置变化,是矢量。位移用又向线段表示,位移的大小等于又向线段的长度,位移的方向由初始位置指向末位置。

  ②路程的定义:路程是物体在空间运动轨迹的`长度,是一个标量。在确定的两点间路程不是确定的,它与物体的具体运动过程有关。

  三.位移与路程的关系:

  位移和路程是在一段时间内发生的,是过程量,两者都和参考系的选取有关系。一般情况下位移的大小并不等于路程的大小。只有当物体做单方向的直线运动是两者才相等。

  1、时刻和时间间隔

  (1)时刻和时间间隔可以在时间轴上表示出来。时间轴上的每一点都表示一个不同的时刻,时间轴上一段线段表示的是一段时间间隔(画出一个时间轴加以说明)。

  (2)在学校实验室里常用秒表,电磁打点计时器或频闪照相的方法测量时间。

  2、路程和位移

  (1)路程:质点实际运动轨迹的长度,它只有大小没有方向,是标量。

  (2)位移:是表示质点位置变动的物理量,有大小和方向,是矢量。它是用一条自初始位置指向末位置的有向线段来表示,位移的大小等于质点始、末位置间的距离,位移的方向由初位置指向末位置,位移只取决于初、末位置,与运动路径无关。

  (3)位移和路程的区别:

  (4)一般来说,位移的大小不等于路程。只有质点做方向不变的无往返的直线运动时位移大小才等于路程。

  3、矢量和标量

  (1)矢量:既有大小、又有方向的物理量。

  (2)标量:只有大小,没有方向的物理量。

  4、直线运动的位置和位移:在直线运动中,两点的位置坐标之差值就表示物体的位移。

  要想提高学习效率,首先要端正自己的学习态度.养成良好学习习惯,做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记,课后的练习要到位,多做题才能丰富自己的解题经验.

高中物理知识点总结12

  一、力学

  1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

  2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

  同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

  3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

  4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

  5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

  6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

  7、17世纪,德国天文学家开普勒提出开普勒三大定律;

  8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

  9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;

  俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。

  11、1957年10月,苏联发射第一颗人造地球卫星;

  1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

  二、电磁学

  12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律库仑定律,并测出了静电力常量k的值。

  13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。18世纪中叶,美国人富兰克林提出了正、负电荷的概念。

  1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

  14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

  15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

  17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象超导现象。

  18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

  20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

  21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。

  22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律电磁感应定律。

  25、1834年,俄国物理学家楞次发表确定感应电流方向的定律楞次定律。

  26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。

  三、热学

  27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象布朗运动。

  28、1850年,克劳修斯提出热力学第二定律的'定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。29、1848年开尔文提出热力学温标,指出绝对零度是温度的下限。

  30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。

  21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。四年后,帕斯卡的研究表明,大气压随高度增加而减小。

  1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验马德堡半球实验。

  四、波动学

  22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律惠更斯原理。24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象多普勒效应。

  五、光学

  25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律折射定律。26、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。

  27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射泊松亮斑。28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

  29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

  31、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;

  1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。

  32、激光被誉为20世纪的“世纪之光”。

  六、波粒二象性

  33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;

  受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

  34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时康普顿效应,证实了光的粒子性。

  35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

  36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律巴耳末系。37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

  七、相对论

  38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验相对论(高速运动世界),②热辐射实验量子论(微观世界);

  39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

  40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

  ①相对性原理不同的惯性参考系中,一切物理规律都是相同的;

  ②光速不变原理不同的惯性参考系中,光在真空中的速度一定是c不变。狭义相对论的其他结论:

  ①时间和空间的相对性长度收缩和动钟变慢(或时间膨胀)

  ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。

  ③相对论质量:物体运动时的质量大于静止时的质量。

  41、爱因斯坦还提出了相对论中的一个重要结论质能方程式:E=mc2。

  八、原子物理学

  42、1858年,德国科学家普吕克尔发现了一种奇妙的射线阴极射线(高速运动的电子流)。43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。

  45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子中子。47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

  49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素钋(Po)镭(Ra)。

  50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

  51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

  52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

  53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;

  强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。

高中物理知识点总结13

  质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动。

  1、线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;

  2、角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t

  3、角速度、线速度、周期、频率间的关系:

  (1)v=2πr/T;

  (2)ω=2π/T;

  (3)V=ωr;

  (4)f=1/T;

  4、向心力:

  (1)定义:做匀速圆周运动的物体受到的.沿半径指向圆心的力,这个力叫向心力。

  (2)方向:总是指向圆心,与速度方向垂直。

  (3)特点:①只改变速度方向,不改变速度大小

  ②是根据作用效果命名的。

  (4)计算公式:F向=mv2/r=mω2r

  5、向心加速度:a向= v2/r=ω2r

高中物理知识点总结14

  一。力学中的物理学史知识点

  1、前384年—前322年,古希腊杰出思想家亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。

  2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。

  3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。其最有影响的著作是《自然哲学的数学原理》。

  4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6.67×11-11n·m2/kg2(微小形变放大思想)。

  5、1905年爱因斯坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。即“宏观”、“低速”是牛顿运动定律的适用范围。

  二。热学中的物理学史

  1、1827年英国植物学家布朗:发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。

  2、1661年英国物理学家玻意耳发现:一定质量的气体在温度不变时,它的压强与体积成反比,即为玻意耳定律。

  3、1787年法国物理学家查理发现:一定质量的气体在体积不变时,它的压强与热力学温度成正比,即为查理定律。

  4、1802年法国物理学家盖·吕萨克发现:一定质量的气体在压强不变时,它的体积与热力学温度成正比,即为盖·吕萨克定律。

  三。电、磁学中的物理学史

  1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。

  2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。

  3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的.磁效应。

  4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。

  5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。

  6、1864年英国物理学家麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。

  7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。

高中物理知识点总结15

  知识点:力和运动

  受力分析、物体的平衡及其条件,是每年必考知识点。

  预计在2014年高考中,本专题内容仍然是高考命题的重点和热点,从近几年的试题难度看,本专题单独命题,难度可能不大,重在对基础知识与基本应用的考查,其中卫星导航、航天工程、宇宙探测、体育运动、科技与生活热点问题要特别关注。

  知识点:动量和能量

  安徽省高考对本专题的知识点考查频率非常高,每年必考,对动能定理、机械能守恒定律、功能关系考查难度较大。

  “动量和能量观点是贯穿整个物理学最基本的观点,动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,涉及面广、综合性强、能力要求高,多年的压轴题均与本专题知识有关。”杨坤预计,在2014年高考中,会继续延续近两年的命题特点,一种可能是以功——功率、动能定理和机械能守恒定律为考查热点,主要以选择题的形式出现,考查考生对基本概念、规律的掌握情况和初步应用的能力。另一种可能是与牛顿运动定律、曲线运动、电场和电磁感应等知识综合起来考查,题型以计算题为主。考题紧密联系生产生活、现代科技等问题,如传送带的功率消耗、站台的节能设计、弹簧中的能量、碰撞中的动量守恒问题等。

  知识点:带电粒子在电场和磁场中的运动

  从历年来试题的难度上看,大多属于中等难度和较难的题,考题常以科学技术的具体问题为背景,考查从实际问题中获取并处理信息,解决实际问题的能力。

  计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。

  “20xx年高考理综物理试题仍将突出对电场和磁场中运动的考查,考查形式既可以是选择题也可以是计算题,选择题用来考查场的'描述和性质、场力。” 杨坤分析,计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。其中电场和磁场知识与生产技术、生活实际、科学研究相结合,如示波管、质谱仪、回旋加速器、速度选择器和磁流体发电机等物理模型的应用问题要特别注意。

  知识点:电磁感应和电路的分析、计算

  在2014年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。

  考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题。

  从近四年高考试卷知识点分布来看,高考对本专题的内容考查频率比较高,特别是电磁感应部分,每年必考。“对本专题知识点的考查,安徽省高考试题常以选择题的形式出现,但也有以计算题的形式出现的。”杨坤分析,对电路的考查则经常是与实验考查相结合,对串并联电路考查较浅,对交流电的考查相对来说较少而且偏易,对电磁感应的考查相对来说难度偏大,而且经常与其他知识点进行综合考查,不仅考查考生对基础知识和基本规律的掌握,还考查考生对基础知识和基本规律的理解与应用。

  “预计在2014年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。”杨坤老师强调,考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题,“在考试说明的题例中增加了滑轨类问题的实例,这或许是一个信号,希望能引起大家的注意。”

【高中物理知识点总结】相关文章:

高中物理知识点总结04-14

高中物理知识点总结03-21

高中物理知识点总结15篇07-29

高中物理知识点总结汇总05-23

高中物理必修一知识点总结08-03

高中物理知识点总结15篇05-25

高中物理知识点总结(合集15篇)07-29

高中物理教学总结07-20

高中物理教学总结03-07