高一函数知识点总结

时间:2023-12-01 18:19:16 总结 投诉 投稿

高一函数知识点总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,让我们好好写一份总结吧。我们该怎么去写总结呢?以下是小编为大家收集的高一函数知识点总结,欢迎阅读,希望大家能够喜欢。

高一函数知识点总结

高一函数知识点总结1

  一、函数的概念与表示

  1、映射

  (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

  注意点:

  (1)对映射定义的理解。

  (2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

  2、函数

  构成函数概念的三要素

  ①定义域

  ②对应法则

  ③值域

  两个函数是同一个函数的条件:三要素有两个相同

  二、函数的解析式与定义域

  1、求函数定义域的主要依据:

  (1)分式的分母不为零;

  (2)偶次方根的'被开方数不小于零,零取零次方没有意义;

  (3)对数函数的真数必须大于零;

  (4)指数函数和对数函数的底数必须大于零且不等于1;

  三、函数的值域

  1求函数值域的方法

  ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

  ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

  ③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;

  ④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

  ⑤单调性法:利用函数的单调性求值域;

  ⑥图象法:二次函数必画草图求其值域;

  ⑦利用对号函数

  ⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

  四.函数的奇偶性

  1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

  如果对于任意∈A,都有,则称y=f(x)为奇

  函数。

  2.性质:

  ①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0

  ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]

  3.奇偶性的判断

  ①看定义域是否关于原点对称

  ②看f(x)与f(-x)的关系

  五、函数的单调性

  1、函数单调性的定义:

  2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一函数知识点总结2

  一、函数及其表示

  知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等

  1. 函数与映射的区别:

  2. 求函数定义域

  常见的用解析式表示的函数f(x)的定义域可以归纳如下:

  ①当f(x)为整式时,函数的定义域为R.

  ②当f(x)为分式时,函数的定义域为使分式分母不为零的'实数集合。

  ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

  ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

  ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

  ⑥复合函数的定义域是复合的各基本的函数定义域的交集。

  ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

  3. 求函数值域

  (1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;

  (2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;

  (3)、判别式法:

  (4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;

  (5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;

  (6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;

  (7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;

  (8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a)f(b)作比较,求出函数的最值,可得到函数y的值域;

  (9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

高一函数知识点总结3

  本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

  一、函数的单调性

  1、函数单调性的定义

  2、函数单调性的判断和证明:

  (1)定义法

  (2)复合函数分析法

  (3)导数证明法

  (4)图象法

  二、函数的奇偶性和周期性

  1、函数的奇偶性和周期性的定义

  2、函数的奇偶性的判定和证明方法

  3、函数的周期性的判定方法

  三、函数的图象

  1、函数图象的`作法

  (1)描点法

  (2)图象变换法

  2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

  常见考法

  本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

  误区提醒

  1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

  2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

  3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

  4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

  5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一函数知识点总结4

  高一数学第三章函数的应用知识点总结

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象○

  联系起来,并利用函数的性质找出零点.

  零点存在性定理:如果函数y=f(x)在区间〔a,b〕上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。先判定函数单调性,然后证明是否有f(a)f(b)第三章函数的应用习题

  一、选择题

  1.下列函数有2个零点的是()

  222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法计算3x3x80在x(1,2)内的根的过程中得:f(1)0,f(1.5)0,

  f(1.25)0,则方程的根落在区间()

  A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

  3.若方程axxa0有两个解,则实数a的取值范围是A、(1,)B、(0,1)C、(0,)D、

  4.函数f(x)=lnx-2x的零点所在的大致区间是()A.(1,2)B.2,eC.e,3D.e,

  5.已知方程x3x10仅有一个正零点,则此零点所在的区间是()

  A.(3,4)B.(2,3)C.(1,2)D.(0,1)

  6.函数f(x)lnx2x6的零点落在区间()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

  7.已知函数

  fx的图象是不间断的,并有如下的对应值表:x1234567fx8735548那么函数在区间(1,6)上的零点至少有()个A.5B.4C.3D.28.方程2x1x5的解所在的区间是A(0,1)B(1,2)C(2,3)D(3,4)

  9.方程4x35x60的根所在的区间为A、(3,2)B、(2,1)C、(1,0)D、(0,1)

  10.已知f(x)2x22x,则在下列区间中,f(x)0有实数解的是()

  )

  ()

  ()

  ((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()

  xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

  x12x根的个数为()

  A、0B、1C、2D、3二、填空题

  13.下列函数:1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2个零点的函数的序号是。

  x214.若方程3x2的实根在区间m,n内,且m,nZ,nm1,

  x则mn.

  222f(x)(x1)(x2)(x2x3)的零点是15、函数(必须写全所有的零点)。

  扩展阅读:高中数学必修一第三章函数的`应用知识点总结

  第三章函数的应用

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象联系起来,○

  并利用函数的性质找出零点.

  4、基本初等函数的零点:

  ①正比例函数ykx(k0)仅有一个零点。

  k(k0)没有零点。x③一次函数ykxb(k0)仅有一个零点。

  ②反比例函数y④二次函数yax2bxc(a0).

  (1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

  (2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.

  ⑤指数函数ya(a0,且a1)没有零点。⑥对数函数ylogax(a0,且a1)仅有一个零点1.

  ⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。

  5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。

  6、选择题判断区间a,b上是否含有零点,只需满足fafb0。Eg:试判断方程xx2x10在区间[0,2]内是否有实数解?并说明理由。

  1

  42x7、确定零点在某区间a,b个数是唯一的条件是:①fx在区间上连续,且fafb0②在区间a,b上单调。Eg:求函数f(x)2xlg(x1)2的零点个数。

  8、函数零点的性质:

  从“数”的角度看:即是使f(x)0的实数;

  从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;

  若函数f(x)的图象在xx0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在xx0处与x轴相交,则零点x0通常称为变号零点.

  Eg:一元二次方程根的分布讨论

  一元二次方程根的分布的基本类型

  2axbxc0(a0)的两实根为x1,x2,且x1x2.设一元二次方程

  k为常数,则一元二次方程根的k分布(即x1,x2相对于k的位置)或根在区间上的

  分布主要有以下基本类型:

  表一:(两根与0的大小比较)

  分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0x10,x20x10,x20x10x2a0)大致图象(得出的结论0b02af000b02af00f00

  大致图象(a0)得出的结论0b02af000b02aaf000b02af000b02aaf00f00(不综讨合论结a论)

  af00表二:(两根与k的大小比较)

  分布情况两根都小于k即两根都大于k即一个根小于k,一个大于k即x1k,x2kx1k,x2kx1kx2a0)大致图象(kkk得出的结论0bk2afk00bk2afk0fk0大致图象(a0)得出的结论0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不综讨合论结a论)a0)afk0分布情况大致图象(得出的结论表三:(根在区间上的分布)

  两根都在m,n内两根有且仅有一根在m,n一根在m,n内,另一根在p,q内(有两种情况,只画了一种)内,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

  大致图象(a0)得出的结论0fm0fn0bmn2a综合结论fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)讨论

  fmfn0Eg:(1)关于x的方程x22(m3)x2m140有两个实根,且一个大于1,一个小于1,求m的取值范围?

  (2)关于x的方程x2(m3)x2m140有两实根在[0,4]内,求m的取值范围?

  2(3)关于x的方程mx2(m3)x2m140有两个实根,且一个大于4,一个小于4,求m的取值范围?

  9、二分法的定义

  对于在区间[a,b]上连续不断,且满足f(a)f(b)0的函数

  yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,

  使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

  10、给定精确度ε,用二分法求函数f(x)零点近似值的步骤:(1)确定区间[a,b],验证f(a)f(b)0,给定精度;(2)求区间(a,b)的中点x1;(3)计算f(x1):

  ①若f(x1)=0,则x1就是函数的零点;

  ②若f(a)f(x1)14、根据散点图设想比较接近的可能的函数模型:一次函数模型:f(x)kxb(k0);二次函数模型:g(x)ax2bxc(a0);幂函数模型:h(x)axb(a0);

  指数函数模型:l(x)abxc(a0,b>0,b1)

  利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型

高一函数知识点总结5

  (一)、映射、函数、反函数

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f—1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。

  注意:

  ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。

  ②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。

  (二)、函数的解析式与定义域

  1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:

  (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

  (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:

  ①分式的分母不得为零;

  ②偶次方根的被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零且不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。

  应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。

  (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

  已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。

  2、求函数的解析式一般有四种情况

  (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。

  (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。

  (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。

  (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。

  (三)、函数的值域与最值

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

  (3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

  如函数的值域是(0,16],最大值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

  (四)、函数的奇偶性

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。

  正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

  注意如下结论的运用:

  (1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

  (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函数的复合函数的奇偶性通常是偶函数;

  (4)奇函数的.导函数是偶函数,偶函数的导函数是奇函数。

  3、有关奇偶性的几个性质及结论

  (1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。

  (2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。

  (3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。

  (4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

  (5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。

  (6)奇偶性的推广

  函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

  (五)、函数的单调性

  1、单调函数

  对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数。

  对于函数单调性的定义的理解,要注意以下三点:

  (1)单调性是与“区间”紧密相关的概念。一个函数在不同的区间上可以有不同的单调性。

  (2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替。

  (3)单调区间是定义域的子集,讨论单调性必须在定义域范围内。

  (4)注意定义的两种等价形式:

  设x1、x2∈[a,b],那么:

  ①在[a、b]上是增函数;

  在[a、b]上是减函数。

  ②在[a、b]上是增函数。

  在[a、b]上是减函数。

  需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零。

  (5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。

  5、复合函数y=f[g(x)]的单调性

  若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减。简称“同增、异减”。

  在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程。

  6、证明函数的单调性的方法

  (1)依定义进行证明。其步骤为:

  ①任取x1、x2∈M且x1(或<)f(x2);

  ②根据定义,得出结论。

  (2)设函数y=f(x)在某区间内可导。

  如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。

  (六)、函数的图象

  函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。

  求作图象的函数表达式

  与f(x)的关系

  由f(x)的图象需经过的变换

  y=f(x)±b(b>0)

  沿y轴向平移b个单位

  y=f(x±a)(a>0)

  沿x轴向平移a个单位

  y=—f(x)

  作关于x轴的对称图形

  y=f(|x|)

  右不动、左右关于y轴对称

  y=|f(x)|

  上不动、下沿x轴翻折

  y=f—1(x)

  作关于直线y=x的对称图形

  y=f(ax)(a>0)

  横坐标缩短到原来的,纵坐标不变

  y=af(x)

  纵坐标伸长到原来的|a|倍,横坐标不变

  y=f(—x)

  作关于y轴对称的图形

  【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

  ①求证:f(0)=1;

  ②求证:y=f(x)是偶函数;

  ③若存在常数c,使求证对任意x∈R,有f(x+c)=—f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由。

  思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法。

  解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1。

  ②令x=0,则有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),这说明f(x)为偶函数。

  ③分别用(c>0)替换x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=—f(x)。

  两边应用中的结论,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函数,2c就是它的一个周期。

【高一函数知识点总结】相关文章:

高一数学函数知识点总结05-24

高一数学函数知识点总结4篇05-24

高一数学必修一函数图像知识点总结07-13

高一数学函数知识总结02-25

三角函数公式知识点总结08-04

高一数学函数知识总结6篇02-25

高一数学函数知识总结(6篇)03-09

高一英语知识点总结09-27

高一英语知识点总结05-24