高三数学知识点总结

时间:2024-06-13 10:24:00 总结 投诉 投稿

高三数学知识点总结

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可以提升我们发现问题的能力,不妨坐下来好好写写总结吧。如何把总结做到重点突出呢?下面是小编收集整理的高三数学知识点总结 ,希望能够帮助到大家。

高三数学知识点总结

高三数学知识点总结 1

  任一x=A,x=B,记做AB

  AB,BAA=B

  AB={x|x=A,且x=B}

  AB={x|x=A,或x=B}

  Card(AB)=card(A)+card(B)—card(AB)

  (1)命题

  原命题若p则q

  逆命题若q则p

  否命题若p则q

  逆否命题若q,则p

  (2)AB,A是B成立的充分条件

  BA,A是B成立的必要条件

  AB,A是B成立的充要条件

  1、集合元素具有

  ①确定性;

  ②互异性;

  ③无序性

  2、集合表示方法

  ①列举法;

  ②描述法;

  ③韦恩图;

  ④数轴法

  (3)集合的运算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的.性质

  n元集合的字集数:2n

  真子集数:2n—1;

  非空真子集数:2n—2

高三数学知识点总结 2

  复数的概念:

  形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

  复数的表示:

  复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

  复数的几何意义:

  (1)复平面、实轴、虚轴:

  点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的`点都表示实数,除原点外,虚轴上的点都表示纯虚数

  (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即

  这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

  这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

  复数的模:

  复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

  虚数单位i:

  (1)它的平方等于-1,即i2=-1;

  (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

  (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  复数模的性质:

  复数与实数、虚数、纯虚数及0的关系:

  对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

高三数学知识点总结 3

  必修一

  第一章:集合和函数的基本概念

  这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。

  还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。

  第二章:基本初等函数

  ——指数、对数、幂函数三大函数的运算性质及图像

  函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

  函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。

  第三章:函数的应用

  这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。

  必修二

  第一章:空间几何

  三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。

  在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。

  第二章:点、直线、平面之间的位置关系

  这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。

  关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

  第三章:直线与方程

  这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。

  第四章:圆与方程

  能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的.相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。

  必修三

  总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。

  程序框图与三种算法语句的结合,及框图的算法表示,不要用常规的语言来理解,否则你会在这样的题型中栽跟头。

  秦九韶算法是重点,要牢记算法的公式。

  统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。

  概率,主要就只几何概型、古典概型。几何概型只要会找表示所求事件的长度面积等,古典概型只要能表示出全部事件就可以。

  必修四

  第一章:三角函数

  考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。

  第二章:平面向量

  向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。

  第三章:三角恒等变换

  这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。

  必修五

  第一章:解三角形

  掌握正弦、余弦公式及其变式、推论、三角面积公式即可。

  第二章:数列

  等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。

  第三章:不等式

  这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。

高三数学知识点总结 4

  等式的性质:

  ①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

  不等式基本性质有:

  (1)a>bb

  (2)a>b,b>ca>c(传递性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0时,a>bac>bc

  c<0时,a>bac

  运算性质有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

  ②关于不等式的性质的考察,主要有以下三类问题:

  (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

  (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

  (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

  高中数学集合复习知识点

  任一A,B,记做AB

  AB,BA ,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命题

  原命题若p则q

  逆命题若q则p

  否命题若p则q

  逆否命题若q,则p

  (2)AB,A是B成立的充分条件

  BA,A是B成立的必要条件

  AB,A是B成立的充要条件

  1.集合元素具有①确定性;②互异性;③无序性

  2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法

  (3)集合的运算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性质

  n元集合的字集数:2n

  真子集数:2n-1;

  非空真子集数:2n-2

  高中数学集合知识点归纳

  1、集合的概念

  集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。

  集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

  2、元素与集合的'关系元素与集合的关系有属于和不属于两种:

  元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。

  3、集合中元素的特性

  (1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

  (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

  4、集合的分类

  集合科根据他含有的元素个数的多少分为两类:

  有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

  无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

  特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。

  5、特定的集合的表示

  为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

  (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

  (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。

  (3)全体整数的集合通常简称为整数集Z。

  (4)全体有理数的集合通常简称为有理数集,记做Q。

  (5)全体实数的集合通常简称为实数集,记做R。

高三数学知识点总结 5

  1、三类角的求法:

  ①找出或作出有关的角。

  ②证明其符合定义,并指出所求作的角。

  ③计算大小(解直角三角形,或用余弦定理)。

  2、正棱柱——底面为正多边形的直棱柱

  正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

  正棱锥的计算集中在四个直角三角形中:

  3、怎样判断直线l与圆C的位置关系?

  圆心到直线的距离与圆的半径比较。

  直线与圆相交时,注意利用圆的“垂径定理”。

  4、对线性规划问题:

  作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

  培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?

  (1)欣赏数学的美感

  比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……

  通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的`绝对值为定值(小于两个定点之间的距离)的点的集合。

  (2)注意到数学在实际生活中的应用。

  例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解、学好数学,是现代公民的基本素养之一啊

  (3)采用灵活的教学手段,与时俱进。

  利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。

  (4)适当看一些科普类的书籍和文章。

  比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。

高三数学知识点总结 6

  1、圆柱体:

  表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:

  表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、正方体

  a—边长,S=6a2,V=a3

  4、长方体

  a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

  5、棱柱

  S—底面积h—高V=Sh

  6、棱锥

  S—底面积h—高V=Sh/3

  7、棱台

  S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、拟柱体

  S1—上底面积,S2—下底面积,S0—中截面积

  h—高,V=h(S1+S2+4S0)/6

  9、圆柱

  r—底半径,h—高,C—底面周长

  S底—底面积,S侧—侧面积,S表—表面积C=2πr

  S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱

  R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

  11、直圆锥

  r—底半径h—高V=πr^2h/3

  12、圆台

  r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3

  13、球

  r—半径d—直径V=4/3πr^3=πd^3/6

  14、球缺

  h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球台

  r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

  16、圆环体

  R—环体半径D—环体直径r—环体截面半径d—环体截面直径

  V=2π2Rr2=π2Dd2/4

  17、桶状体

  D—桶腹直径d—桶底直径h—桶高

  V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

  V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高三数学知识点总结 7

  第一部分集合

  (1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

  (2)注意:讨论的时候不要遗忘了的情况。

  第二部分函数与导数

  1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

  2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

  3、复合函数的有关问题

  (1)复合函数定义域求法:

  ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出

  ②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

  (2)复合函数单调性的.判定:

  ①首先将原函数分解为基本函数:内函数与外函数;

  ②分别研究内、外函数在各自定义域内的单调性;

  ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

  注意:外函数的定义域是内函数的值域。

  4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

  5、函数的奇偶性

  ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

  ⑵是奇函数;

  ⑶是偶函数;

  ⑷奇函数在原点有定义,则;

  ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

  (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

  1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;

  2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;

  3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

  4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

  5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

  6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

高三数学知识点总结 8

  1.等差数列的定义

  如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.

  2.等差数列的通项公式

  若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.

  3.等差中项

  如果A=(a+b)/2,那么A叫做a与b的等差中项.

  4.等差数列的'常用性质

  (1)通项公式的推广:an=am+(n-m)d(n,m∈N_).

  (2)若{an}为等差数列,且m+n=p+q,

  则am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.

  (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

  (5)S2n-1=(2n-1)an.

  (6)若n为偶数,则S偶-S奇=nd/2;

  若n为奇数,则S奇-S偶=a中(中间项).

  注意:

  一个推导

  利用倒序相加法推导等差数列的前n项和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2

  两个技巧

  已知三个或四个数组成等差数列的一类问题,要善于设元.

  (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

  四种方法

  等差数列的判断方法

  (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

  (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通项公式法:验证an=pn+q;

  (4)前n项和公式法:验证Sn=An2+Bn.

  注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.

高三数学知识点总结 9

  第一部分集合

  (1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

  (2)注意:讨论的时候不要遗忘了的情况。

  第二部分函数与导数

  1、映射:注意

  ①第一个集合中的元素必须有象;

  ②一对一,或多对一。

  2、函数值域的求法:

  ①分析法;

  ②配方法;

  ③判别式法;

  ④利用函数单调性;

  ⑤换元法;

  ⑥利用均值不等式;

  ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);

  ⑧利用函数有界性;

  ⑨导数法

  3、复合函数的有关问题

  (1)复合函数定义域求法:

  ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的.定义域由不等式a≤g(x)≤b解出。

  ②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

  (2)复合函数单调性的判定:

  ①首先将原函数分解为基本函数:内函数与外函数;

  ②分别研究内、外函数在各自定义域内的单调性;

  ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

  注意:外函数的定义域是内函数的值域。

  4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

  5、函数的奇偶性

  (1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;

  (2)是奇函数;

  (3)是偶函数;

  (4)奇函数在原点有定义,则;

  (5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

  (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

高三数学知识点总结 10

  1.数列的定义、分类与通项公式

  (1)数列的定义:

  ①数列:按照一定顺序排列的一列数.

  ②数列的项:数列中的每一个数.

  (2)数列的分类:

  分类标准类型满足条件

  项数有穷数列项数有限

  无穷数列项数无限

  项与项间的大小关系递增数列an+1>an其中n∈N_

  递减数列an+1

  常数列an+1=an

  (3)数列的通项公式:

  如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.

  2.数列的递推公式

  如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.

  3.对数列概念的理解

  (1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的'“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.

  (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.

  4.数列的函数特征

  数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_).

高三数学知识点总结 11

  1.课程内容:

  必修课程由5个模块组成:

  必修1:集合、函数概念与基本初等函数(指、对、幂函数)

  必修2:立体几何初步、平面解析几何初步。

  必修3:算法初步、统计、概率。

  必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

  必修5:解三角形、数列、不等式。

  以上是每一个高中学生所必须学习的。

  上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

  此外,基础内容还增加了向量、算法、概率、统计等内容。

  2.重难点及考点:

  重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

  难点:函数、圆锥曲线

  高考相关考点:

  ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

  ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

  ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

  ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

  ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

  ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

  ⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

  ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

  ⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

  ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

  ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

  ⑿导数:导数的概念、求导、导数的应用

  ⒀复数:复数的概念与运算

  ①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

  ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

  ⑶特殊棱锥的顶点在底面的射影位置:

  ①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

  ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

  ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

  ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

  ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

  ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

  ⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

  ⑧每个四面体都有内切球,球心

  是四面体各个二面角的平分面的交点,到各面的距离等于半径.

  [注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

  ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

  简证:AB⊥CD,AC⊥BD

  BC⊥AD.令得,已知则.

  iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

  iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

  简证:取AC中点,则平面90°易知EFGH为平行四边形

  EFGH为长方形.若对角线等,则为正方形.

  立体几何初步

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的'曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  (1)先看“充分条件和必要条件”

  当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

  但为什么说q是p的必要条件呢?

  事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

  (2)再看“充要条件”

  若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

  (3)定义与充要条件

  数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

  显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

  “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

  (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

  1.函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2.复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5.方程k=f(x)有解k∈D(D为f(x)的值域);

  6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7.(1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符号由口诀“同正异负”记忆;

  (4)alogaN=N(a>0,a≠1,N>0);

  8.判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11.处理二次函数的问题勿忘数形结合

  二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12.依据单调性

  利用一次函数在区间上的保号性可解决求一类参数的范围问题;

  13.恒成立问题的处理方法

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解;

高三数学知识点总结 12

  1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。

  2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。

  3、课后复习:通预习一样,也是行之有效的方法。

  4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

  5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

  6、建立纠错本:把经常出错的`题目集中在一起。

  7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

  8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。

高三数学知识点总结 13

  1.不等式的定义

  在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的`式子,叫做不等式.

  2.比较两个实数的大小

  两个实数的大小是用实数的运算性质来定义的,

  有a-b>0?;a-b=0?;a-b<0?.

  另外,若b>0,则有>1?;=1?;<1?.

  概括为:作差法,作商法,中间量法等.

  3.不等式的性质

  (1)对称性:a>b?;

  (2)传递性:a>b,b>c?;

  (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

  (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

  (5)可乘方:a>b>0?(n∈N,n≥2);

  (6)可开方:a>b>0?(n∈N,n≥2).

  复习指导

  1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

  2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

  3.“两条常用性质”

  (1)倒数性质:①a>b,ab>0?<;②a<0

  ③a>b>0,0;④0

  (2)若a>b>0,m>0,则

  ①真分数的性质:<;>(b-m>0);

高三数学知识点总结 14

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  不等式的判定:

  ①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  ②在不等式“a>b”或“a

  ③不等号的.开口所对的数较大,不等号的尖头所对的数较小;

  ④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

  任一x?A,x?B,记做AB

  AB,BAA=B

  AB={x|x?A,且x?B}

  AB={x|x?A,或x?B}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命题

  原命题若p则q

  逆命题若q则p

  否命题若p则q

  逆否命题若q,则p

  (2)AB,A是B成立的充分条件

  BA,A是B成立的必要条件

  AB,A是B成立的充要条件

  1.集合元素具有①确定性;②互异性;③无序性

  2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法

  (3)集合的运算

  ①A∩(B∪C)=(A∩B)∪(A∩C)

  ②Cu(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性质

  n元集合的字集数:2n

  真子集数:2n-1;

  非空真子集数:2n-2

高三数学知识点总结 15

  高三年级的教学工作已经结束,回顾一年来的工作有下面几点体会,现总结如下:

  统筹安排、合理计划搞好全年复习工作学年初首先根据学生实际、学科特点、教学要求及考试说明制定了总体的复习计划分为四个阶段进行:

  (1)系统复习阶段(7个月左右);

  第一阶段复习的指导思想是:面向全体学生,抓好基础,对知识点要抓死抓牢,而且要全面、细致、系统;抓知识的条理化、网络化;抓解题过程的规范化。在这个阶段应强调学生的主体作用,变传统的“讲—练—讲”的复习模式为“见题思法――研究探讨—检测反馈—归纳评价”。遵循“以教师为主导,学生的主体,以练习、反馈、归纳为主线”的原则,同时围绕教学目的的精心设计题组式的练习,注意充分调动学生的积极性,鼓励学生主动参与、实践。“见题思法――研究探讨—检测反馈—归纳评价”教学模式的程序是:

  ①、见题思法――创设问题情境,出示课前练习。学生对教师精心设计的几道有代表性且难度不大的题目进行课前练习解答,以题为载体,反思用到的基础知识和方法,进行初步归纳。

  ②研究探讨――对教师精心设计的典型例题认真研究,师生共同研讨,引导学生分析、尝试和研究,鼓励学生主动参与、实践,积极发表自己的意见和见解,使知识、方法逐步深化,师生共同概括基础知识和解题的通性、通法与技巧。

  ③检测反馈――在前面环节的基础上,学生利用所学知识方法进行巩固性练习,自我检测掌握的程度。

  ④归纳评价――以整理笔记的方式对所学内容和方法作更深入、细致、系统的总结、归纳和分析,充分挖掘知识间的内存联系,使知识系统化、条理化、网络化,便于储存,同时注意在今后的应用中求深化。

  (2)专题复习阶段(1个月左右);在这一阶段要进行知识归类、方法归类,加强数学思想方法的训练,着重提高解题能力,使学过的知识经过整理加工、融会贯通,起到知识升华的作用。根据近几年来高考数学试题特点,瞄准六个解答大题所涉及十个知识块:

  1、函数的性质及其应用;

  2、数列问题;

  3、三角函数的图象及性质;

  4、平面向量;

  5、不等式及其应用;

  6、直线与圆锥曲线;

  7、直线、平面、简单的`几何体;

  8、排列、组合及概率与统计;

  9、极限、数学归纳法及导数的应用;

  10、含参数的问题的取值范围等十个知识块进行重点复习。在复习过程中主要有两个目的,其一是瞄准六个解答大题所涉知识点进行重点复习,确保知识点及技能落实到位;其二训练解答题的书写过程规范性要求,确保解答题过程不是分。

  通过这一阶段的训练,可以使学生进一步加强对数学思想方法的理解和掌握。当然数学思想方法的掌握应当在平时上课时已经渗透,此阶段的训练所起的作用是系统和强化的作用。

  (3)强化训练(综合训练)阶段(1个月左右);本阶段复习是巩固前两轮的复习效果,训练应试技巧,提高应试心理素质,进行模拟强化训练,其复习模式是:“练――查――讲――悟――查”。

  综合练:用两节课时间让学生完成一套模拟题,套题的难度可逐渐加大,直至达到高考标准。

  单元练:用一节课时间让学生做完一套单元的选择、填空题,题目带有专题性,重点是知识上查缺补漏,突出强化思想方法。

  查:自我评判。反思,找出需教师帮助的题目。

  讲:教师据大多数同学出现的问题,进行重点讲评。

  悟:让学生课下重新整理,领悟此套题中的知识、方法及出现的各种问题。检查:检查上述复习效果,以便有针对性地进行后面的复习。

  实施上述模式时,应遵循以下原则:

  1、主体性原则。要充分调动学生学习的主动性和积极性,提出问题让学生想,设计问题让学生做,错误原因让学生找,方法与规律,让学生归纳,教师的作用只是组织、监督、引导、促进学生主动积极思考、总结规律,使学生真正成为复习的评价,在动脑、动手的活动中,发展智力,提高能力。

  2、反思性原则:学生做完题,一定要留出足够的时间让学生来反思、领悟,可从下面四个层次反思:

  (1)经验性反思:旨在总结每次练习后的基本经验,着重反思这套题考查了哪些知识、能力?

  (2)概括性反思:旨在同类问题筛选、概括,形成一种解题思路、解题方法,进而上升到一种数学思想,形成一种“数学化”意识;

  (3)创造性反思:对习题的重新认识以及推广、引申和发展。

  (4)错误性反思:注重对答题失误的纠正、辨析,搞清自己解题失误或综合能力性失误,找失误之因,谋成功之道。

  总之,反思有助于弄清问题的实质,反思有助于提高鉴赏能力,知道什么是好的解法,反思可以养成抓住关键、直接剖析问题核心的好习惯,良好的题感正是通过反思总结培养起来的

  3、针对性原则:题目设计要针对学生实际,针对高考要求的实际。

  4、反馈性原则:一是教师等到学生学习效果的反馈,二是学生自己得到复习效果的反馈。以便加大教师调控力度,真正发挥教师的主导作用,学生能更大限度地利用自由支配时间在知识上查漏补缺,在能力上重点训练,及时调整复习重点,采用恰当的方式进行有针对性的补救和矫正。

  通过这一阶段的训练,学生可以大提高选择题和填空题的正答率和熟练程度,可以缩短解题时间,提高解答选择题和填空题的技巧性和灵活性。也可以提高解答题解题步骤的规范性,总结重点题型的解题思路和方法。培养学生严密思维的习惯,提高学生的综合解题能力。

  5、主动发展阶段(20天左右):此阶段教师不再讲课,增大学生的自主权,可以复习任一学科,教师的作用主要是辅导(包括心理指导),并及时回答学生的问题。在此期间,学生采取的主要策略之一是“回顾”,它包括:知识回顾、方法回顾、疑点回顾、热点回顾、结论回顾、题型回顾。对前面的复习再次查漏补缺,同时虚心接受教师、家长乃至社会各界的指导和关爱,这样就能以最佳的身体状态、心理状态、知识状态迎接高考的挑选。

【高三数学知识点总结】相关文章:

高三数学知识点总结09-21

高三数学重要知识点总结02-20

高三数学知识点总结06-08

高三数学重要知识点总结06-26

高三数学知识点总结【热】08-26

【荐】高三数学知识点总结08-26

高三数学知识点总结【热门】08-26

高三数学知识点总结【荐】08-26

【精】高三数学知识点总结07-25