二年级数学上册知识点总结

时间:2024-06-21 16:24:28 总结 投诉 投稿

二年级数学上册知识点总结

  总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以使我们更有效率,不如立即行动起来写一份总结吧。但是总结有什么要求呢?以下是小编整理的二年级数学上册知识点总结,欢迎阅读,希望大家能够喜欢。

二年级数学上册知识点总结

二年级数学上册知识点总结1

  1、常用的长度单位:米、厘米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的.右端对着直尺上的刻度是几, 这个物体的长度就是几厘米。

  4、米和厘米的关系:1米=100厘米 100厘米=1米

  5、线段

  ⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

  ⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来。

  ⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  6、填上合适的长度单位。

  小明身高1(米)30(厘米) 练习本宽13(厘米) 铅笔长17(厘米)

  黑板长2(米) 图钉长1(厘米) 一张床长2(米)

  一口井深3(米) 学校进行100(米)赛跑 教学楼高25(米)

  宝宝身高80(厘米) 跳绳长2(米) 一棵树高3(米)

  一把钥匙长5(厘米) 一个文具盒长24(厘米) 讲台高90(厘米)

  门高2(米) 教室长12(米) 筷子长20(厘米)

二年级数学上册知识点总结2

  多边形

  1、多边形的概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。组成多边形的各条线段叫做多边形的边;每相邻两条边的公共端点叫做多边形的顶点;多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角。在定义中应注意:

  ①一些线段(多边形的边数是大于等于3的正整数);

  ②首尾顺次相连,二者缺一不可;

  ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形。

  2、多边形的分类

  多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的`直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形。

  凸多边形凹多边形各个角都相等、各个边都相等的多边形叫做正多边形。

  3、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  (1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

  (2)n边形共有条对角线。

  4、多边形的内角和外角

  (1)多边形的内角和公式:n边形的内角和为(n-2)×180°

  (2)多边形的外角和等于360°,它与边数的多少无关。

  推论:

  (1)内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少。每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角和必须是180°的整数倍。

  (2)多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角。

二年级数学上册知识点总结3

  一、两位数加两位数

  1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

  2、两位数加两位数进位加法的计算法则:

  ①相同数位对齐;

  ②从个位加起;

  ③个位满十向十位进1。

  3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

  4、和 = 加数 + 加数

  一个加数 = 和 - 另一个加数

  二、两位数减两位数

  1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

  2、两位数减两位数退位减的笔算法则:

  ①相同数位对齐;

  ②从个位减起;

  ③个位不够减,从十位退1,在个位上加10再减。

  3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

  4、差=被减数-减数

  被减数=减数+差

  减数=被减数+差

  三、连加、连减和加减混合

  1、连加、连减

  连加、连减的'笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

  ①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

  ②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

  2、加减混合

  加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

  3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

  四、解决问题(应用题)

  1、 步骤:

  ①先读题

  ②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)

  ③作答。

  2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

  3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

  4、关于提问题的题目,可以这样提问:

  ①…….和……一共…….?

  ②……比……..多多少/几……?

  ③……比……..少多少/几……?

  循环节的判断

  判断一个小数是否循环小数,其关键是首先判断这个小数是否无限小数,其次看这个小数 的小数部分是否有重复出现的数字,但是如何正确判断小数部分重复出现的数字,可根据以下几点进行判断

  方法一:按照循环小数的意义来确定。即根据“一个无限小数,如果它的小数部分从某一位起,都是由一个或者几个数字依次不断地重复出现,这样的小数叫做循环小数。”这一意义来确定循环小数的循环节。

  方法二:可以用看余数的方法来确定循环小数的循环节。例如:11÷9=1.……2。我们通过竖式计算可看出:余数“2”重复出现,商就重复出现,那么循环节就是从第一次出现余数“2”所得的商“2 ”。

  去、添括号顺口溜

  去括号、添括号,关键看符号,

  括号前面是正号,去、添括号不变号,

  括号前面是负号,去、添括号都变号。

二年级数学上册知识点总结4

  第一单元长度单位

  1、常用的长度单位:米、厘米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。

  4、米和厘米的关系:1米=100厘米100厘米=1米

  5、线段

  ⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

  ⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的'上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。

  ⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  6、填上合适的长度单位。

  小明身高1(米)30(厘米)

  练习本宽13(厘米)

  铅笔长17(厘米)

  黑板长2(米)图钉长1(厘米)

  一张床长2(米)一口井深3(米)

  学校进行100(米)赛跑

  教学楼高25(米)宝宝身高80(厘米)

  跳绳长2(米)一棵树高3(米)

  一把钥匙长5(厘米)

  一个文具盒长24(厘米)

  讲台高90(厘米)

  门高2(米)教室长12(米)

  筷子长20(厘米)

  一棵小树苗高1(米)

  小朋友的头围48厘米

  爸爸的身高1米75厘米或175厘米

  小朋友的身高120厘米或1米20厘米

  第二单元100以内的加法和减法

  一、两位数加两位数

  1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

  2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

  3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

  4、和=加数+加数

  一个加数=和-另一个加数

二年级数学上册知识点总结5

  第一章勾股定理

  1、探索勾股定理

  ①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2

  2、一定是直角三角形吗

  ①如果三角形的三边长a b c满足a2+b2=c2,那么这个三角形一定是直角三角形

  3、勾股定理的应用

  第二章实数

  1、认识无理数

  ①有理数:总是可以用有限小数和无限循环小数表示

  ②无理数:无限不循环小数

  2、平方根

  ①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

  ②特别地,我们规定:0的算数平方根是0

  ③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

  ④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

  ⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

  ⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

  3、立方根

  ①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

  ②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

  ③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

  4、估算

  ①估算,一般结果是相对复杂的小数,估算有精确位数

  5、用计算机开平方

  6、实数

  ①实数:有理数和无理数的统称

  ②实数也可以分为正实数、0、负实数

  ③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

  7、二次根式

  ①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

  ② =(a≥0,b≥0),=(a≥0,b>0)

  ③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

  ④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

  第三章位置与坐标

  1、确定位置

  ①在平面内,确定一个物体的位置一般需要两个数据

  2、平面直角坐标系

  ①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

  ②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

  ③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

  ④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

  ⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

  3、轴对称与坐标变化

  ①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

  第四章一次函数

  1、函数

  ①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

  ②表示函数的方法一般有:列表法、关系式法和图象法

  ③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值

  2、一次函数与正比例函数

  ①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

  3、一次函数的图像

  ①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

  ②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

  ③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

  ④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小

  4、一次函数的应用

  ①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

  第五章二元一次方程组

  1、认识二元一次方程组

  ①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

  ②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

  ③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

  2、求解二元一次方程组

  ①将其中一个方程中的`某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

  ②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

  3、应用二元一次方程组

  ①鸡兔同笼

  4、应用二元一次方程组

  ①增减收支

  5、应用二元一次方程组

  ①里程碑上的数

  6、二元一次方程组与一次函数

  ①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

  ②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

  7、用二元一次方程组确定一次函数表达式

  ①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

  8、三元一次方程组

  ①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

  ②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

  ③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。

  第六章数据的分析

  1、平均数

  ①一般地,对于n个数x1x2.....xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

  ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

  2、中位数与众数

  ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

  ②一组数据中出现次数最多的那个数据叫做这组数据的众数

  ③平均数、中位数和众数都是描述数据集中趋势的统计量

  ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

  ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

  ⑥各个数据重复次数大致相等时,众数往往没有特别意义

  3、从统计图分析数据的集中趋势

  4、数据的离散程度

  ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

  ②数学上,数据的离散程度还可以用方差或标准差刻画

  ③方差是各个数据与平均数差的平方的平均数

  ④其中是x1x2......xn平均数,s2是方差,而标准差就是方差的算术平方根

  ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  第七章平行线的证明

  1、为什么要证明

  ①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

  2、定义与命题

  ①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

  ②判断一件事情的句子,叫做命题

  ③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

  ④正确的命题称为真命题,不正确的命题称为假命题

  ⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

  ⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

  ⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

  a.本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

  b.两点之间线段最短

  c.同一平面内,过一点有且只有一条直线与已知直线垂直

  d.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

  e.过直线外一点有且只有一条直线与这条直线平行

  f.两边及其夹角分别相等的两个三角形全等

  g.两角及其夹边分别相等的两个三角形全等

  h.三边分别相等的两个三角形全等

  ⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

  ⑨ 定理:同角(等角)的补角相等

  同角(等角)的余角相等

  三角形的任意两边之和大于第三边

  对顶角相等

  3、平行线的判定

  ① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

  ② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

  4、平行线的性质

  ① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

  ② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

  ③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

  ④ 定理:平行于同一条直线的两条直线平行

  5、三角形内角和定理

  ① 三角形内角和定理:三角形的内角和等于180°

  ② 定理:三角形的一个外角等于和它不相邻的两个内角的和

  定理:三角形的一个外角大于任何一个和它不相邻的内角

  ③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。

  初二数学上册知识点汇总

  (一)运用公式法:

  我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

  (二)平方差公式

  1.平方差公式

  (1)式子: a2—b2=(a+b)(a—b)

  (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

  (三)因式分解

  1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

  2.因式分解,必须进行到每一个多项式因式不能再分解为止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反过来,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2—2ab+b2 =(a—b)2

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

  把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。

  上面两个公式叫完全平方公式。

  (2)完全平方式的形式和特点

  ①项数:三项

  ②有两项是两个数的的平方和,这两项的符号相同。

  ③有一项是这两个数的积的两倍。

  (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

  (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

  (五)分组分解法

  我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

  如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)×(a +b)。

  这种利用分组来分解因式的方法叫做分组分解法。从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

  (六)提公因式法

  1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

  2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

  1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

  2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

  ① 列出常数项分解成两个因数的积各种可能情况;

  ②尝试其中的哪两个因数的和恰好等于一次项系数。

  3.将原多项式分解成(x+q)(x+p)的形式。

  (七)分式的乘除法

  1.把一个分式的分子与分母的公因式约去,叫做分式的约分。

  2.分式进行约分的目的是要把这个分式化为最简分式。

  3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。

  4.分式约分中注意正确运用乘方的符号法则,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

  5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按—1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。

  6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

  (八)分数的加减法

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

  4.通分的依据:分式的基本性质。

  5.通分的关键:确定几个分式的公分母。

  通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

  6.类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

  8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

  9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

  10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

  11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。

  12.作为最后结果,如果是分式则应该是最简分式。

  (九)含有字母系数的一元一次方程

  1.含有字母系数的一元一次方程

  引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

  在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

  含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零

二年级数学上册知识点总结6

  一、学习目标:

  1.初步经历长度单位形成的过程,体会统一长度单位的必要性,知道长度单位的作用;

  2.在具体情境下,进一步体会加法的意义,理解相同数位上的数才能相加的道理;

  3.探索并掌握两位数加两位数不时位加法的计算方法,初步掌握笔算加法的法则,能熟练的计算;

  4.初步认识角,知道角的各部分名称,初步学会用尺画角;

  5.能够正确理解乘法的含义;认识乘号、因数、会读写乘法算式;

  6.理解7的乘法口诀的来源和意义;初步掌握7的乘法口诀。

  二、学习难点:

  1.学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的.必要性;

  2.理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;

  3.理解相同数位上的数才能相加的道理,即笔算中的“对位”问题;

  4.学生初步认识角,知道角的各部分名称,初步学会用尺画角;初步学会用尺画角;

  5.初步理解乘法的含义,知道求几个相同加数的和时,用乘法表示比较简便,认识乘号、会读,写乘法算式;

  6.使学生理解7的乘法口诀的来源和意义;初步掌握7的乘法口诀,能运用7的口诀正确进行计算。

  三、知识点概括总结:

  1.长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

  其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

  米:国际单位制中长度的标准单位是“米”,用符号“m”表示。

  分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

  厘米:长度单位,简写符号为:cm。

  毫米:英文缩写为mm

  (1厘米=10毫米=0.1分米=0.01米=0.00001千米)

  2.进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

  以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

  在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

  3.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

  4.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

  1不能够减去2,所以必须向高位的5借位。

  5.连加:多个数字连续相加叫做连加。例如:28+24+23=85

  6.连减:多个数字连续相减叫做连减。例如:85-40-26=19

  7.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

二年级数学上册知识点总结7

  1、乘法的含义

  乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的写法和读法

  ⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。

  如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

  ⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。

  3、乘法算式中各部分的名称及实际表示的意义

  在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。

  4、乘法算式所表示的意义

  求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。

  5、加法写成乘法时,加法的和与乘法的积相同。

  6、乘法算式中,两个乘数交换位置,积不变。

  7、算式各部分名称及计算公式。

  乘法:乘数×乘数=积

  加法:加数+加数=和

  和—加数=加数

  减法:被减数—减数=差

  被减数=差+减数

  减数=被减数—差

  8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。

  如:1×9=10—1 9×5=50—5

  9、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14

  10、“几和几相加”与“几个几相加”有区别

  求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)

  求几个几相加,用几乘几。

  如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8

  2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64

  11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。

  “5+5+5”写成乘法算式是(3×5=15)或(5×3=15),

  都可以用口诀(三五十五)来计算,表示(3)个(5)相加

  3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15

  第五单元观察物体

  1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

  2、观察物体时,要抓住物体的特征来判断。

  3、观察长方体的某一面,看到的.可能是长方形或正方形。观察正方形的某一面,看到的都是正方形

  4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形

  第七单元认识时间

  1、认识时间

  (1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;

  (2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。

  (3)时针走1大格分针要走一圈,所以1时=60分;

  (4)半小时=30分,一刻钟=15分钟

  (5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。

  2、运用知识解决问题

  (1)要按着时间的先后顺序安排事件,时间上不能重复。

  (2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。

  (3)时针和分针能形成直角的时刻是3时和9时。

  第八单元数学广角-搭配

  1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。

  2、借用连线或者符号解答问题比较简单。

  3、排列与顺序有关,组合与顺序无关。

二年级数学上册知识点总结8

  第十一章三角形

  一、知识框架:

  二、知识概念:

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

  2.三边关系:三角形任意两边的和(大于或小于)第三边,任意两边的差(大于或小于)第三边.

  3.高:从三角形的一个顶点向它的对边所在直线作,顶点和间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边的线段叫做三角形的中线.

  5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和之间的线段叫做三角形的角平分线.

  6.三角形的稳定性:三角形的形状是,三角形的这个性质叫三角形的稳定性.

  7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

  8.多边形的内角:多边形两边组成的角叫做它的内角.

  9.多边形的外角:多边形的一边与它的邻边的线组成的角叫做多边形的外角.

  10.多边形的对角线:连接多边形的两个顶点的线段,叫做多边形的对角线.

  11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.

  12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

  13.公式与性质:

  ⑴三角形的内角和:三角形的内角和为度。

  ⑵三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的的和.

  性质2:三角形的一个外角大于任何一个和它的内角.

  ⑶多边形内角和公式:n边形的内角和等于。

  学无虑课后辅导中心编制

  ⑷多边形的外角和:多边形的外角和为度.

  ⑸多边形对角线的条数:

  ①从n边形的一个顶点出发可以引条对角线,把多边形分成个三角形.

  ②n边形共有条对角线.

  第十二章全等三角形

  一、知识框架:

  二、知识概念:

  1.基本定义:

  ⑴全等形:能够完全的两个图形叫做全等形.

  ⑵全等三角形:能够完全的两个三角形叫做全等三角形.

  ⑶对应顶点:全等三角形中互相的顶点叫做对应顶点.

  ⑷对应边:全等三角形中互相的边叫做对应边.

  ⑸对应角:全等三角形中互相的角叫做对应角.

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

  ⑵全等三角形的性质:全等三角形的相等,对应角相等.

  3.全等三角形的判定定理:

  ⑴边边边(SSS):。

  ⑵边角边(SAS):。

  ⑶角边角(ASA):。

  ⑷角角边(AAS):。

  ⑸斜边、直角边(HL):。

  4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的上.

  5.证明的基本方法:

  ⑴明确命题中的.已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.

  第十三章轴对称

  一、知识框架:

  二、知识概念:

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做轴对称图形.

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且这条线段的直线,叫做这条线段的垂直平分线.

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

  ⑸等边三角形:都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段的距离相等.②与一条线段两个端点距离相等的点在这条线段的上.⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的点的坐标为P"(,).②点P(x,y)关于y轴对称的点的坐标为P"(,).⑷等腰三角形的性质:

  ①等腰三角形两腰.

  ②等腰三角形两底角相等(等边对等角).

  ③等腰三角形的、,相互重合.④等腰三角形是图形,对称轴是三线合一(1条).⑸等边三角形的性质:

  ①等边三角形三边都相等.

  ②等边三角形三个内角都相等,都等于度。③等边三角形每条边上都存在三线合一.

  ④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:

  ⑴等腰三角形的判定:

  ①相等的三角形是等腰三角形.

  ②如果一个三角形有两个角相等,那么这两个角所对的边也(等角对等边).

  ⑵等边三角形的判定:

  ①都相等的三角形是等边三角形.②三个角都相等的三角形是三角形.

  ③有一个角是度。的等腰三角形是等边三角形.

  4.基本方法:

  ⑴做已知直线的垂线:

  ⑵做已知线段的垂直平分线:

  ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

  ⑷作已知图形关于某直线的对称图形:

  ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.

  第十四章整式的乘除与分解因式

  一、知识框架:

  整式乘法乘法法则整式除法因式分解

  二、知识概念:

  基本运算:⑴同底数幂的乘法公式:。⑵幂的乘方公式:。⑶积的乘方公式:。

  2.整式的乘法:⑴单项式单项式:系数,同字母,不同字母为积的因式.⑵单项式多项式:。⑶多项式多项式:.

  3.计算公式:

  ⑴平方差公式:ababab

  222222⑵完全平方公式:aba2abb;aba2abb

  224.整式的除法:

  ⑴同底数幂的除法:aaamnmn

  ⑵单项式单项式:系数,同字母,不同字母作为商的因式.⑶多项式单项式:.⑷多项式多项式:用竖式.

  5.因式分解:把一个多项式化成的积的形式,这种变形叫做把这个式子因式分解.

  6.因式分解方法:

  ⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆项法⑸添项法第十五章分式一、知识框架:

  二、知识概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意义的条件:分母不等于.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为的整式,分式的值不变.4.约分:把一个分式的分子和分母的(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成的分式,这一过程叫做通分.

  6.最简分式:一个分式的分子和分母没有时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:

  ⑴同分母分式加减法则:同分母的分式相加减,分母,把相加减.用字

  母表示

  为:。

  ⑵异分母分式加减法则:异分母的分式相加减,先,化为同分母的分

  式,然后再按同分母分式的加减法法则进行计算.用字母表示为:。

  ⑶分式的乘法法则:两个分式相乘,把相乘的积作为积的分子,把相乘的积作为积的分母.用字母表示为:。

  ⑷分式的除法法则:两个分式相除,把除式的和颠倒位置后再与被除式相乘.用字母表示为:。⑸分式的乘方法则:、分别乘方.用字母表示为:。8.整数指数幂:⑴aaam⑵amnmn(m、n是正整数)namn(m、n是正整数)nn⑶abab(n是正整数)n⑷aaanmnmn(a0,m、n是正整数,mn)ana⑸n(n是正整数)bb⑹an1(a0,n是正整数)na9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:

  ①(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;

  ③(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

二年级数学上册知识点总结9

  第一单元长度单位

  1、常用的长度单位:米、厘米。

  2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。

  4、米和厘米的关系:1米=100厘米100厘米=1米

  5、线段

  ⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

  ⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。

  ⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  6、填上合适的长度单位。

  小明身高1(米)30(厘米)

  练习本宽13(厘米)

  铅笔长17(厘米)

  黑板长2(米)图钉长1(厘米)

  一张床长2(米)一口井深3(米)

  学校进行100(米)赛跑

  教学楼高25(米)宝宝身高80(厘米)

  跳绳长2(米)一棵树高3(米)

  一把钥匙长5(厘米)

  一个文具盒长24(厘米)

  讲台高90(厘米)

  门高2(米)教室长12(米)

  筷子长20(厘米)

  一棵小树苗高1(米)

  小朋友的头围48厘米

  爸爸的身高1米75厘米或175厘米

  小朋友的身高120厘米或1米20厘米

  第二单元100以内的加法和减法

  一、两位数加两位数

  1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

  2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

  3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

  4、和=加数+加数

  一个加数=和-另一个加数

  二、两位数减两位数

  1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

  2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

  3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

  4、差=被减数-减数

  被减数=减数+差

  减数=被减数+差

  三、连加、连减和加减混合

  1、连加、连减

  连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

  ①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

  ②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

  2、加减混合

  加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

  3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

  四、解决问题(应用题)

  1、步骤:①先读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。

  2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

  3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

  4、关于提问题的题目,可以这样提问:

  ①…….和……一共…….?

  ②……比……..多多少/几……?

  ③……比……..少多少/几……?

  第三单元元角的初步认识

  1、角的初步认识

  (1)角是由一个顶点和两条边组成的;

  (2)画角的方法:从一个点起,用尺子向不同的`方向画两条直线。

  (3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。

  2、直角的初步认识

  (1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。

  (2)画直角的方法:①先画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。

  (3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。

  (4)所有的直角都一样大

  (5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。

二年级数学上册知识点总结10

  三角形知识点

  1、全等三角形的对应边、对应角相等。

  2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

  3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

  4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

  5、边边边公理(SSS)有三边对应相等的两个三角形全等。

  6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

  7、定理1在角的平分线上的点到这个角的两边的距离相等。

  8、定理2到一个角的两边的距离相同的点,在这个角的平分线上。

  9、角的平分线是到角的两边距离相等的所有点的集合。

  10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。

  函数与方程知识点

  1、一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。

  2、任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线y=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。

  3、利用函数图像解方程:-2x+2=0,可以转化为求一次函数y=-2x+2与x轴交点的横坐标。而y=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。

  注意:解一元一次方程ax+b=0(a≠0)与求函数y=ax+b(a≠0)的图像与x轴交点的`横坐标是同一个问题。不同的是前者从数的角度来解决问题,后者从形的角度来解决问题。

  4、每个二元一次方程组都对应两个一次函数,从数的角度来看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数是何值;从形的角度来看,解方程组相当于确定两条直线交点的坐标,从而使方程组得出答案。

  5、解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。还有一个描点法。一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。通常情况下y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。

二年级数学上册知识点总结11

  一、100以内的笔算加法和减法

  1.用竖式计算两位数加法时:

  ①相同数位对齐。

  ②从个位加起。

  ③如果个位满10,向十位进1。

  2.用竖式计算两位数减法时:

  ①相同数位对齐。

  ②从个位减起。

  ③如果个位不够减,从十位退1,个位加10再减,计算时十位要记得减去退掉的1。

  3.划线一定要用尺子,抄错数是一个严重的问题。

  4.求“一个已知数”比“另一个已知数”多多少.少多少?

  要弄清楚数量之间的关系,知道谁比谁多,谁比谁少,再分析用加法还是减法。

  5.连加连减和加减混合时注意加减号,不要混乱。

  二、平行四边形的初步认识

  1.长方形、正方形和平行四边形都是(四)边形。

  2.搭一个五边形,最少要用(五)根小棒。

  3.从正方形的纸上剪去一个三角形,剩下的图形可能是三角形,可能是(四)边形,也可能是(五)边形。

  4.一个图形是几边形它就有几条边。

  三.表内乘法(一)

  1.几个相同数连加除了用加法表示外,还可以用乘法表示。用乘法表示更加简捷。

  2.相同加数相加写成乘法时,用相同加数×相同加数的个数或相同加数的个数×相同加数。如:5+5+5+5 表示:5×4或4×5

  3.加法写成乘法时,加法的和与乘法的积相同。

  4.乘法算式中,两个乘数交换位置,积不变。

  5.算式各部分名称及计算公式。乘法:

  3 × 4 = 12

  (乘数) × (乘数) = (积)

  6.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

  7.乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:

  加法:3+3+3+3+2=14

  乘加:3×4+2=14

  乘减:3×5-1=14

  8.熟练地背诵1-6的乘法口诀,顺着背、倒着背、竖背等多种方法。

  9.乘法口诀关系到下册的除法的计算,务必背熟。

  10.乘法、乘加、乘减、加减的应用,要求学生首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。

  四、表内除法

  1.初步理解除法的含义,初步体会除法和乘法的联系,能正确读、写除法算式,知道出发算式中各部分的名称,比较熟练地运用2~9的乘法口诀口算有关的除法。

  2.平均分:每份分得同样多,叫作平均分。

  平均分的两种分法:

  分法1:平均分成几份,每份分得几个;

  分法2:按每几个一份的分,平均分成几份。

  如:有10个苹果,分法1:平均分成5份,每份分得2个;分法2:按每2个一份的分,平均分成5份。

  五、米和厘米

  1.常用的长度单位:米、厘米。

  2.要知道物体的长度,可以用(尺)来量。

  2.测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3.测量时:把尺的“0”刻度对准物体的左端,再看纸条的右端对着几,对着几就是几厘米。

  4. 1米=100厘米 ,100厘米=1米。

  在计算长度单位时,先看单位是否相同,不同则要先把单位化成一样的单位再加减。如:

  1米-40厘米=60厘米(100厘米 -40厘米=60厘米)

  5.线段的特点:

  ①线段是直的。

  ②线段有两个端点。

  ③线段是可以测量出长度的。

  6.画线段要从尺的(0)刻度开始画起,画到题目要求的数字那里。

  比如:要求画一条5厘米长的线段。就从0开始,画到5结束。

  例题:

  (1)从刻度0到7是( 7 )厘米。

  就直接用7-0=7厘米。括号就填7厘米。

  (2)2到8是(6 )厘米。

  就直接用8-2=6厘米。括号就填6厘米。

  7.画一条比6厘米短3厘米的线段。

  就是求比6厘米短3厘米是多少?

  6-3=3厘米。所以题目要求就是画一条3厘米长的`线段。

  8.例题:

  任意画一个由三条线段围成的图形。就是要求画一个三角形。

  六、表内乘法和表内除法(二)

  1.加法写成乘法时,加法的和与乘法的积相同。

  2.乘法算式中,两个乘数交换位置,积不变。

  3.算式各部分名称及计算公式。

  乘法:

  3 × 4 = 12

  (乘数) × (乘数) = (积)

  4.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

  5.乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  6.熟练地背诵1-6的乘法口诀,顺着背、倒着背、竖背等多种方法。

  7.乘法口诀关系到下册的除法的计算,务必背熟。

  8.乘法、乘加、乘减、加减的应用,要求首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。

  9.用表内乘法求商。

  七、观察物

  1.从前.后.左.右不同的位置观察到的物体形状不一样。

  2.根据立体图形判断平面图形,根据平面图形判断立体图形。

【二年级数学上册知识点总结】相关文章:

初三数学上册的知识点总结12-20

二年级数学上册知识点总结10-31

初一数学上册知识点总结09-22

最新初三数学上册的知识点总结04-25

初二上册数学知识点总结11-02

数学的知识点总结08-22

数学六年级上册知识点总结07-16

五年级数学上册知识点总结07-13

初中数学的知识点总结01-12