高一集合知识点总结
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,他能够提升我们的书面表达能力,让我们一起认真地写一份总结吧。你所见过的总结应该是什么样的?下面是小编整理的高一集合知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
高一集合知识点总结1
1、收集相关概念
1、集合的含义
2、集合中元素的三个特征:
(1)世界上最高山的元素确定性如:
(2)元素的互异性,如:集合中的任何两个元素都是不同的
(3)元素的无序性:集合中的元素之间没有顺序。例如:{a,b,c}和{a,c,b}表示同一集合
3、集合表示方法:列举法和描述法。
注:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N*或N整数集Z有理数集Q实数集R
1)列举方法:逐一列出集合中的元素{a,b,c……}
2)描述方法:描述集合中元素的公共属性,写在大括号内表示集合方法。{xr|| x-3>2} ,{x| x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合分类:
(1)有限集含有有限个元素的'集合
(2)无限集含有无限个元素的集合
(3)空集没有任何元素的集合例:{x|x2=-5}
二、集合间基本关系
属于:;包含于:;
属于与包含的区别:
它属于元素与集合之间的关系,例如:元素A属于集合A{a,b}
包括集合与集合之间的关系。例如:集合AA{a}包含在集合B中{a,c}
1、“包含”关系-子集
注意:有两种可能性(1)A是B的一部分,;(2)A和B是同一集合。
反之:集合A不包括在集合B中,或集合B不包括集合A中,记作A B或B A
2、“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设A={xx2-1=0} B={-1,1} “如果元素相同,则两集相等”
即:①任何集合都是它自己的子集。AA
②真子集:如果AB和AB,B也就是说,集合A是集合B的真子集,记作A B(或B A)
③如果AB, BC ,那么AC
④如果AB同时BA那么A=B
3.不含任何元素的集合称为空集,记为空集Φ
规定:空集是任何集合的子集,空集是任何非空集的真子集。
有n个元素的集合,包括2n个子集,2n-1个真子集
三、集合操作
高一集合知识点总结2
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:集合中的任意两个元素都是不同的
(3)元素的无序性:集合中的元素之间是没有顺序的。如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N*或N+整数集Z有理数集Q实数集R
1)列举法:将集合中的元素一一列举出来{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
属于:;包含于:;
属于与包含于的区别:
属于是元素与集合之间的关系,例如:元素a属于集合A{a,b}
包含于是集合与集合之间的.关系。例如:集合A{a}包含于集合B {a,c}
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:①任何一个集合是它本身的子集。AA
②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)
③如果AB, BC ,那么AC
④如果AB同时BA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
高一集合知识点总结3
一.知识归纳:
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:n,z,q,r,n*
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈a都有x∈b,则ab(或ab);
2)真子集:ab且存在x0∈b但x0a;记为ab(或,且)
3)交集:a∩b={x|x∈a且x∈b}
4)并集:a∪b={x|x∈a或x∈b}
5)补集:cua={x|xa但x∈u}
注意:①?a,若a≠?,则?a;
②若,则;
③若且,则a=b(等集)
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系
①a∩b=aab;②a∪b=bab;③abcuacub;
④a∩cub=空集cuab;⑤cua∪b=iab。
5.交、并集运算的性质
①a∩a=a,a∩?=?,a∩b=b∩a;②a∪a=a,a∪?=a,a∪b=b∪a;
③cu(a∪b)=cua∩cub,cu(a∩b)=cua∪cub;
6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:
【例1】已知集合m={x|x=m+,m∈z},n={x|x=,n∈z},p={x|x=,p∈z},则m,n,p满足关系
a)m=npb)mn=pc)mnpd)npm
分析一:从判断元素的共性与区别入手。
解答一:对于集合m:{x|x=,m∈z};对于集合n:{x|x=,n∈z}
对于集合p:{x|x=,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以mn=p,故选b。
分析二:简单列举集合中的元素。
解答二:m={…,…},n={…,…},p={…,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。
=∈n,∈n,∴mn,又=m,∴mn,=p,∴np又∈n,∴pn,故p=n,所以选b。
点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。
变式:设集合,则(b)
a.m=nb.mnc.nmd.
解:
当时,2k+1是奇数,k+2是整数,选b
【例2】定义集合a*b={x|x∈a且xb},若a={1,3,5,7},b={2,3,5},则a*b的子集个数为
a)1b)2c)3d)4
分析:确定集合a*b子集的个数,首先要确定元素的个数,然后再利用公式:集合a={a1,a2,…,an}有子集2n个来求解。
解答:∵a*b={x|x∈a且xb},∴a*b={1,7},有两个元素,故a*b的子集共有22个。选d。
变式1:已知非空集合m{1,2,3,4,5},且若a∈m,则6?a∈m,那么集合m的个数为
a)5个b)6个c)7个d)8个
变式2:已知{a,b}a{a,b,c,d,e},求集合a.
解:由已知,集合中必须含有元素a,b.
集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
评析本题集合a的个数实为集合{c,d,e}的真子集的个数,所以共有个.
【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求实数p,q,r的值。
解答:∵a∩b={1}∴1∈b∴12?4×1+r=0,r=3.
∴b={x|x2?4x+r=0}={1,3},∵a∪b={?2,1,3},?2b,∴?2∈a
∵a∩b={1}∴1∈a∴方程x2+px+q=0的两根为-2和1,∴∴
变式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求实数b,c,m的值.
解:∵a∩b={2}∴1∈b∴22+m?2+6=0,m=-5
∴b={x|x2-5x+6=0}={2,3}∵a∪b=b∴
又∵a∩b={2}∴a={2}∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合a={x|(x-1)(x+1)(x+2)>0},集合b满足:a∪b={x|x>-2},且a∩b={x|1
分析:先化简集合a,然后由a∪b和a∩b分别确定数轴上哪些元素属于b,哪些元素不属于b。
解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1]b,而(-∞,-2)∩b=ф。
综合以上各式有b={x|-1≤x≤5}
变式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)
点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。
变式2:设m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有满足条件的a的集合。
解答:m={-1,3},∵m∩n=n,∴nm
①当时,ax-1=0无解,∴a=0②
综①②得:所求集合为{-1,0,}
【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为q,若p∩q≠φ,求实数a的.取值范围。
分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。
解答:(1)若,在内有有解
令当时,所以a>-4,所以a的取值范围是
变式:若关于x的方程有实根,求实数a的取值范围。
解答:
点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。
三.随堂演练
选择题
1.下列八个关系式①{0}=②=0③{}④{}⑤{0}
⑥0⑦{0}⑧{}其中正确的个数
(a)4(b)5(c)6(d)7
2.集合{1,2,3}的真子集共有
(a)5个(b)6个(c)7个(d)8个
3.集合a={x}b={}c={}又则有
(a)(a+b)a(b)(a+b)b(c)(a+b)c(d)(a+b)a、b、c任一个
4.设a、b是全集u的两个子集,且ab,则下列式子成立的是
(a)cuacub(b)cuacub=u
(c)acub=(d)cuab=
5.已知集合a={},b={}则a=
(a)r(b){}
(c){}(d){}
6.下列语句:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为
{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示为{1,1,2};(4)集合{}是有限集,正确的是
(c)只有(2)(d)以上语句都不对
7.设s、t是两个非空集合,且st,ts,令x=s那么s∪x=
(a)x(b)t(c)φ(d)s
8设一元二次方程ax2+bx+c=0(a<0)的根的判别式,则不等式ax2+bx+c0的解集为
(a)r(b)(c){}(d){}
填空题
9.在直角坐标系中,坐标轴上的点的集合可表示为
10.若a={1,4,x},b={1,x2}且ab=b,则x=
11.若a={x}b={x},全集u=r,则a=
12.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是
13设集合a={},b={x},且ab,则实数k的取值范围是。
14.设全集u={x为小于20的非负奇数},若a(cub)={3,7,15},(cua)b={13,17,19},又(cua)(cub)=,则ab=
解答题
15(8分)已知集合a={a2,a+1,-3},b={a-3,2a-1,a2+1},若ab={-3},求实数a。
16(12分)设a=,b=,其中xr,如果ab=b,求实数a的取值范围。
四.习题答案
选择题
12345678
ccbcbcdd
填空题
9.{(x,y)}10.0,11.{x,或x3}12.{}13.{}14.{1,5,9,11}
解答题
15.a=-1
16.提示:a={0,-4},又ab=b,所以ba
(ⅰ)b=时,4(a+1)2-4(a2-1)<0,得a<-1
(ⅱ)b={0}或b={-4}时,0得a=-1
(ⅲ)b={0,-4},解得a=1
综上所述实数a=1或a-1
【高一知识点总结】相关文章:
高一知识点总结03-28
高一英语知识点总结09-27
高一函数知识点总结12-01
高一化学知识点总结02-27
高一物理知识点总结11-03
高一语文知识点总结12-23
高一化学知识点总结09-07
高一物理知识点总结11-14
高一物理知识点总结10-06
高一英语必修一知识点总结11-02