《轴对称图形》教学反思
作为一名到岗不久的人民教师,我们的任务之一就是教学,借助教学反思我们可以拓展自己的教学方式,那么问题来了,教学反思应该怎么写?以下是小编为大家收集的《轴对称图形》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《轴对称图形》教学反思 篇1
《轴对称图形》是一个较抽象的概念,“识别轴对称图形,找出常见轴对称图形的对称轴,感受图形的对称美”是课程标准中对这一内容的要求。在这节课中,采用多媒体演示、实物教具,让学生在折一折、猜一猜、画一画、剪一剪等动手操作活动中,培养学生的观察、想象和表达的能力。
一、谈谈自己对这节课的教学理解:
教材没有给出轴对称图形的严格的数学定义,只是让学生通过直观理解轴对称图形的特征,如沿对称轴对折后两边完成重合(或用学生最常用的语言说:对折后两边都一样)来描述对轴对称图形的'理解。而对于“在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等”的性质,则是安排在三年级下册进行教学,因此这节课认识轴对称图形是为以后进一步研究轴对称图形做铺垫,按照新课标要求,本学期安排认识轴对称图形的教学中,不再要求学生画对称轴,而是通过对折,观察展开的剪纸上的折痕来理解对称轴的含义。
二、我设计的教学环节:
(一)从直观的生活情景引入教学。
我创设了帮老师挑选风筝的生活情景,让学生通过观察,对比,从中获得对物体的对称现象的空间概念的理解,化抽象为形象,变空洞为具体,使学生初步感知生活中的对称现象。找出生活中的对称现象,从而渗透“生活中处处有数学”的新的“数学思想”。
(二)动手操作,理解新知。
此环节是通过对“对称”现象的理解后,通过动手折一折,让每位学生都参与活动,在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时利用多媒体的动画演示,通过直观的演示,让学生初步感知什么是“完全重合”,自主去建构“轴对称图形”的概念,当然这时的表述是不具体的,老师适时点拨,进行示范,规范学生的数学语言,反复让学生折一折,说一说,“像这样对折后,两边完全重合是轴对称图形”。最后再次让学生动手操作,两人一组,判断剩余图形是不是轴对称图形。
(三)猜一猜,剪一剪,运用新知。
“猜一猜”游戏,出示物体、图形的一半,想象另一半,不仅加深对轴对称的认识,还为“剪一剪”活动提供了素材。
“剪一剪”活动,我是先让学生讨论制作轴对称图形的这个动手操作环节,充分培养学生的观察能力、想象能力及表达能力,这样能充分锻炼学生的空间思维的发展,把对称应用到实际中。展示作品,通过欣赏同学的作品,感受数学中对称这一应用让生活变得美丽。此时我利用学生的作品引导学生用自己的话来描述什么的图形是轴对称图形,找出对称轴。
(四)拓展,欣赏生活中的对称美。
三、不足及改进地方:
1、轴对称图形定义引出太早。针对此知识构建教学环节可以略作调整,先建构“对称”,通过动手折“对称图形”的平面图形后,观察留下的折痕,认识对称轴,再出示轴对称图形定义。这样定义会扎根学生脑海。
2、课堂上舍得花时间培养学生的动手能力、表达的能力却占有了探究“圆是不是轴对称图形,它有几条对称轴。”但我想数学课上知识学的不在多少,重要的是学生掌握了学习的方法。虽然此环节没有按计划完成,倘若孩子们的兴趣高涨,有了验证的方法,这个问题课下不就迎刃而解了吗?
《轴对称图形》教学反思 篇2
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学。
请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的`窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折。
通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。<
《轴对称图形》教学反思 篇3
本课主要使学生认识轴对称图形的一些基本特征,知道对称轴,能正确判断一个图形是否是轴对称图形,并会制作一些简单的轴对称图形。
在课上,我首先出示实物图片,让学生感知对称,然后通过让学生把图片对折,体会什么是轴对称图形,感受图形特征,并认识对称轴;接着从实物图片上升到平面图形,再通过让学生创造一个轴对称图形以及一系列练习,巩固认识。
在教学中,主要有以下优点:
一、利用多媒体,吸引学生注意
在教学中,首先让学生初步感知对称,我出示了一系列美丽的对称的图片,包含自然界的美丽景象以及古今中外的一些雄伟建筑,配上背景音乐,这些对称图形给学生带来了视觉上的冲击,赞叹声连连,学生自己观察,教师适当介绍,课堂氛围活跃。
二、实践操作中探索新知
《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方法。”本课安排了折一折、比一比、画一画、剪一剪、猜一猜等活动,使学生的多种感官都参与在其中。
首先让学生折一折蝴蝶、天坛、飞机图形,比一比,使学生认识到这些图片对折后都是两边大小、形状一样,两边一模一样的,感知完全重合。接着,要求学生独立创作一个轴对称图形,学生手脑并用,充分发挥自己的想象,创造出了很多美丽的轴对称图形,在做的过程中,进一步强化了完全重合的特征,再要求学生猜一猜这些美丽的图形是从哪张纸上剪下来的,使学生体验成功的喜悦。后面的试一试以及练习中,碰到学生有分歧的地方,也鼓励学生动手去验证。学生在丰富的动手操作中,探索出了轴对称图形的.特征,数学思维也得到了培养,这充分体现了把课堂还给学生,学生是课堂的主体,教师只是对课堂的流程加以控制,使全体学生真正成为学习活动的主人。
三、融入爱国主义教育
整节课以爱国主义教育为主线,在引入新知,欣赏图片的时候,就把中国的伟大建筑放在最后,介绍的时候也是重点介绍。在通过对折,感知完全重合时,再次指出天坛是我国著名的建筑,雄伟壮观。练习题,将书本上判断一串英文字母是否是轴对称图形的题目,改为判断China这个英文单词中,哪些字母是轴对称图形,并适时进行爱国主义教育,如询问China的中文意思,当学生说出中国时,我用激昂的语调指出:噢,是伟大的祖国!我们都为自己身为中国人而感到骄傲!学生瞬间也被我的热情所感染。接着,要求学生判断中国这两个汉字是否是轴对称图形。然后组织学生判断我们的国旗是否是轴对称图形。最后出示了咱们的国宝:熊猫,一方面展示中国地大物博,另一方面提升自己作为中国人的自豪感。
这一系列的设计不仅仅仅围绕今天的主题:认识轴对称图形,会判断是否是轴对称图形,在知识技能掌握的同时,渗透民族文化,也向学生进行了爱国主义教育,使学生在情感上得到一个升华。
四、对学生回答,及时给予评价
关注学生的回答,对学生正确的回答立即给予肯定,对出彩的答案,带头送上掌声。如判断图形是从哪张纸上剪下来,交流方法时,有同学说到可以将下面的纸片展开,这正是我需要的答案,而且很少有学生会提到,因此,在他回答后,我立马对他的答案进行了肯定,鼓励其他孩子把掌声送给他,并用多媒体出示他的想法。及时对孩子的回答进行评价,能够激发学生参与课堂的热情,感到自己被老师期待着,肯定着,产生一种自我实现的满足感,进而享受课堂。
当然这节课,还有一些不足之处。
教学机智还有所欠缺,对学生给出的一些出乎意料的回答,处理时显得有些手忙脚乱,缺乏处理问题的敏锐性以及果断性,有些犹豫不决。如引入新知时,要求学生给6张图片分类,有学生说到按对称和不对称来分,我追问:你说的对称是什么意思?学生答:两边一模一样。此时,我可以适时的带领大家一起观察蝴蝶图片,让学生再次感受蝴蝶两边是一样的,大小、形状是相同的,让学生对对称的含义有一个具体的感知。回想当时处理的过程,显得很拖沓,浪费了不少时间。
此外,在处理试一试时,我预设第二个三角形学生会说不是轴对称图形,但在上课时,学生产生了分歧,因此,我因势利导,让孩子们想个办法,他们说可以折一折,通过对折孩子们发现这一个三角形,两边不能完全重合,不是轴对称图形。得到我要的答案后,我就直接去处理平行四边形了。课后反思,我觉得我可以立马追问:是不是所有的三角形都是轴对称图形呀?只有什么样的三角形才是轴对称图形?将三角形的知识点夯实,然后再去处理平行四边形,我觉得会更恰当。
在今后的教学中,我将再接再厉,努力提高自己的教学水平。
《轴对称图形》教学反思 篇4
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2 剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。
这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。
三、想办法做出以各轴对称图形、并分组展示自己的作品。
这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。
1
本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
2、五年级数学下册《因数与倍数》的教学反思
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。
(3)因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。
3、五年级数学下册《合数与质数》的教学反思
在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中体验了解决问题的喜悦或失败的情感。 2
一、学生参与面广,学习兴趣浓。
新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,我注重面向全体学生,使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望。如:让学生利用学具去摆拼,用“2、3、4……12个小正方形分别可以拼成几种长方形的方法去体验质数与合数的不同之处,以操作代替教师讲解,激发了学生的学习兴趣和求知欲,使全体同学都参与到“活动”中来,课堂气氛愉快热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。
二、从学生的角度出发,把课堂的主动权还给学生。
课堂教学,学生是“主角”,教师只是“配角”,教学中应把大量时间和空间留给学生,使每个学生都有学习、讨论、观察,思考的机会。在教学中我除了给学生动手拼摆的机会,还让学生把几个数(如2、3、4、5、6、7、8、9、10、11、12等)进行分类。尽管学生可能分类标准不一样,但他们都能把只有两个因数的数分在一类,把含有2个以上的因数的数放在一起。这样教师就可以顺势引导学生说出什么叫质数,什么叫合数。再让学生用自己的语言归纳合数与质数。在这个过程中,引导学生参与知识的形成过程,有利于培养和提高学生获取知识的能力。
三、点燃学生智慧的火花,让学生真正活起来。
爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在本节课的课后我设计了这样一个环节,你还想研究质数、合数有关哪些方面的知识。这个学习任务既是给学生在课堂上一个探究的任务,也是给学生在课外留下一个拓展的空间。使每个学生都能根据自己不同的水平去探究属于自己的数学空间,从而让不同的学生在数学上得到了不同的发展。
4、五年级数学下册《公因数和最大公因数》的教学反思
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并 3
且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。
对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。
一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。 《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?” 学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的`检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛 “对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?
三、让学生进行独立思考和自主探索
通过学生的猜测,我把学生的提出的问题进行了整理:
(1) 什么是公因数与最大公因数?
(2) 怎样找公因数与最大公因数?
(3) 为什么是最大公因数而不是最小公因数?
(4) 这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。
5、五年级数学下册《最小公倍数》的教学反思
《最小公倍数》这节课,如何让学生的学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。我是从以下几个方面来做:五年级下册数学反思
一、创设情境 激发兴趣,使学生主动的参与到学习中去。
“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。我从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。使这些枯燥的知识变成鲜活、灵动数学,让学生在解决问题的过程中既学到了知识,又体念到了学数学的快乐。五年级下册数学反思
二、培养学生自主探究的能力。五年级下册数学反思
教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思考、探索研究数学。在研究最小公倍数的意义时,设计了例举法找最小公倍数、最小公倍数猜想、分解质因数比较,一系列开放的数学问题,让学生有足够的思维活动空间来解决问题,自主地进行探究性活动,使学生体念到数学数学就在我们的身边。
三、挖掘不足 有待改进
1、课初的情境创设虽考虑到与例题之间的联系,但过渡得不够好。
2、如何激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。
《轴对称图形》教学反思 篇5
本课教学重点是使学生初步认识轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法。
成功之处:
纵观这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。
在教学过程中,本课的教学设计体现:数学问题生活化,注重培养学生观察、交流、操作、探究能力的培养,让学生充分经历知识的形成过程,在教学过程中建构具有教育性、创造性、实践性、操作性的学生主题活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以学生的自主活动和合作活动为主。使学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。结合观察和操作活动,引导学生欣赏有关图案、图片的对称美,使学生在获取数学知识的同时,受到了美德熏陶,培养学生积极健康的审美情趣。让学生剪自己喜欢的图形然后给他们分类,即通过大量的现实生活中的轴对称图形来认识轴对称的概念,让学生观察、体验生活中的对称现象,从而探索、发现出图形中的轴对称特征,然后让学生体验轴对称在现实中的广泛应用.数学与生活紧密联系,教学中让学生带着数学走出课堂,走进生活去理解生活中的数学,去体验数学的价值。本节课我抓住对称图形的特点师生一起欣赏生活中一幅副精美的对称图片,给学生带来美的感受。让学生在学习中感受到生活中处处有数学,让学生在学习中体验学数学、用数学的乐趣,培养学生积极探索的精神,激发对数学学习的兴趣,培养学生感受美的能力。采用多种方式进行评价:
1.对能否列举出生活中的一些对称现象,能否根据轴对称图形的基本特征“做”出一些轴对称图形。都能给与恰当的评价。
2在评价过程中,关注学生的情感,价值观。
不足之处:
1、练习的层次性。在设计教案时我就在思考如何在练习中体现层次性,一直没有能够得到满意的解决。
1、导入自然贴近学生生活,但有些平淡。在处理本节课的重点时,处理得过急没有注意到个别差异。
3、教师的语言不够丰富,对学生激励性的语言不够,希望以后在这方面能做得更好一些。
本课的教学是了解生活中的.对称现象,认识轴对称图形的一些基本特征,能正确识别轴对称图形,能画出轴对称图形的对称轴,会设计简单的轴对称图形;通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生动手、创新的能力;在认识、制作和欣赏轴对称图形的过程中,感受物体和图形的对称美。
从整个过程来看,《轴对称图形》的教学是完整的,我主要分成了:激趣导入新课,引出课题、合作探究、练习、小结和欣赏对称图形这五个部分。也许这就是我进步的一点地方了。
在各位老师真诚的点评下,我对自己的这节课有了更好的认识:
1、最大的缺点,重点不突出。整节课有点像完成任务,很快就过去了。
2、剪对称图形环节,是不是可以直接让学生看书,再剪。
3、练习讲解中,应先讲解简单的,再讲复杂的;另外,应重视学生课堂上出现的错误。
4、最后的欣赏环节是不是可以改为让学生自由发挥,再一次剪对称图形。
一个人的力量是有限的,希望自己在教学的道路上得到更多这样的点评,也能够在这样的点评中不断进步。
《轴对称图形》教学反思 篇6
这节课之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:让学生在观察中让思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主。
反思这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生始终保持着高昂的学习情绪,切身经历了做数学的全过程,感受了学习数学的快乐,品尝了成功的喜悦。
一、 利用多媒体引入游戏,激发兴趣
本课利用多媒体引入游戏,一开始就吸引了学生们的注意力,提高了学生的参与互动的兴趣,为引入课堂主题打好了埋伏。通过猜一猜的游戏,让学生在猜的过程中,初步感知轴对称图形的特征,激起矛盾,也激起了学生想探知的欲望,很自然地把学生带入课堂。
二、利用多媒体引导实践操作、激活思维
叶澜教授曾在新基础教育课题实验中提出:要把课堂还给学生,让课堂焕发生命的活力。学生是学习的主人,教学最终要落实到个体的学习行为上,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而内化为己有,在学习实践中逐步学会学习。
本课为了让学生充分体验到轴对称图形的这一特征,安排了折一折、比一比,猜一猜、剪一剪,一系列活动,让学生多种感官参与教学活动中。在新授教学时并没有采用传统的灌输手段,而是把学生看作是课堂的'主角,利用多媒体展示让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形都是对称的,并通过小组动手操作来验证它们为什么是对称的,采用对折的方法来折一折,让每位学生都参与活动,在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时教师就利用多媒体的动画演示,通过直观的演示,让学生初步感知什么是完全重合,最后教师在学生动手操作、形成初步感知的基础上配合课件动态出示轴对称图形的概念,让学生了解这些图形的基本特征,形成感性的认识。
在整个教学的过程中,在解决难点的环节处理上,教师让引导学生画对称图形时,不是一步步地告诉学生怎么画,而是让学生先看着给定的图形,先观察对称轴在哪里,然后再思考对称的点在哪里,让学生有一个思考内化的思维过程,放手让学生自主探究,进一步体会和深化学生对对称图形特征的理解,活动的设计体现了以学生为主体,引导学生主动探索,让学生在活动中感悟,在活动中体验,使学习知识和提高能力同时得到发展。
三、 利用多媒体联系生活、丰富情感
本课的结尾利用多媒体展示让学生欣赏古今中外著名的对称建筑,中国剪纸,生活中学生感兴趣的汽车标志,让学生感受到数学与生活的联系,特别是古建筑和中国剪纸的展示渗透到数学中,这不仅是学习数学的好材料,而且还是渗透民族文化的好题材。
这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能,另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,非常利于学生主体性的发挥,创新能力的培养。
《轴对称图形》教学反思 篇7
本节的教学时间较为充裕,这主要是考虑到要给学生时间去自主探索、动手实践,如果不能给这一过程以足够的时间,那么学生自己的探索和发现很可能流于形式,不利于学生全面地获得数学知识。
一、教学建议
内容呈现的形式为:“问题情境----探索活动----归纳总结-----结论”因此在数学学习过程中,如果只是为学而学,学生容易感到乏味,提不起兴趣,收不到好的效果,而经历知识的形成与应用过程,将有利于学生的理解与应用数学获得成功的经验,增强其学好数学的信心,因此教学过程也应尽可能的展现知识的形成过程与应用过程,即“问题情境----建立模型----解释应用与拓展”的模式展开。因此在对这一部分教学时,应充分利用课本上所安排的大量关于折纸,画图,操作,猜想等大量贴近学生生活中的有趣的问题情境,引导学生在做中体验和感受,在经历观察操作推理想象的过程中,感悟本章的.数学本质
二、教学反思
在教学中我紧密联系生活实际来设计教学过程,教学环节,整个过程我充分让学生动手,让学生自己发现问题,解决问题,让学生感受轴对称图形的美,让学生充分感知数学美,激发学生爱数学的情感。但课后,我想了又想:还是不应该一上来就把抽象的事物展现给学生,应把实际转化成抽象,这样更能让学生自然而然地接受。在让学生画图形的另一半,使成为轴对称图形时,不应该拘泥于一种形式,放开,让学生选任意一边为对称轴画另一半,这样的话,效果会更好,更能发展学生的思维。最后环节,应该让学生通过学的知识,画轴对称图形。既然学了,就应该让学生尝试运用学过的新知画轴对称图形,再一次把抽象回归到生活中。总的来说,这节课该放手还是不够放手,作为老师应该多相信学生,相信学生是能做到的。
《轴对称图形》教学反思 篇8
第一课时学习了轴对称图形的有关知识以后,接下来就是今天的第二课时,画轴对称图形的另一半,对于每一个孩子来说,动手能力差空间思维能力差是普遍存在的现象,就比如说简单的一件事,作业本中垫格纸的使用,教师已经要求了孩子们在作业本的使用过程中,要注意书写的格式,以及作业本中的上、中、下部分的留白,可走上一大圈,你仍然会发现,原来孩子们不是不知道,就是不知如何来操作,如果没有一个合适的垫格纸,他们是很难把这项要求做到位的,于是一节课中,我逐一的教孩子们怎样使用垫格纸,也许正是由于我们过多的关注了孩子们的学习,而忽视了孩子们的动手能力,更忽视了孩子们的动手对于智力和生活能力的培养的重要性,才让孩子们面对如此小的问题,竟然不知所措,在教他们的过程中,我也发现了很多孩子也做了,但做的或是相反,或是不知如何下手,在我的内心深处,真的是有一种既焦急,同时,又觉得自己的责任重大的感觉。
接着说这节画轴对称图形的另一半的课堂。我先是提出了研究的问题“仔细观察画在方格中的轴对称图形,你发现了什么?”接下来让他们与小组同学交流,由小组长负责梳理报告,与全班同学交流,接下来的时光,孩子们能够展示出了对称点距离对称轴的距离都是相等的,同时,也让同学们更清楚地知道在轴对称图形中,各个部分与整体之间的关系,接下来的自己画另一半,孩子们展示了自己的画法,一种是找距离,一种是找对称点的方法,最后,让同学们使用找对称点的`方法,孩子们在大屏幕前的操作,让同学们又一次得到了正确方法的启示。
整个活动是紧凑的,但其中另外的惊喜才是更可贵的,一是孩子们不由自主地发现,找图形中角的顶点的对称点是非常关键的,二是在方格图中,斜线与横线竖线的距离是不能用一个标准来衡量的,三是在交流的时候要与大家一起交流,不要顾左右而言它,要能够积极的参与进来,而非是一种想说自己的意见的情况,四是要敢于把自己不同的想法说出来,不要人云亦云。
正是在不断地锤炼中,我们的课堂才会越来越成熟,也正是在不断地打磨中,你才能发现原来我们可以在细微之处做的更好,一是坚持去做,一是不断地用慧眼去发现,在做与思中让自己的课堂更适合孩子们的发展!
《轴对称图形》教学反思 篇9
《轴对称图形》新人教版二年级下册数学第三单元的内容。教材主要借助生活中的实例和学生操作活动判断哪些物体是对称的,找出对称轴,并初步地、直观地了解轴对称图形的性质。
一节成功的课堂教学,不仅是要让学生掌握所学的知识,更重要的是要创造一种和谐愉悦的气氛,让学生能够从中感受到学习的乐趣,并主动地去探求知识,发展思维。本课的教学我充分多媒体的作用,让学生在观察中思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主。
1、从兴趣入手,以兴趣为先导,创设了轻松的心境。针对小学生年龄偏低,抽象思维能力还相对较弱的实际情况,我借助游乐场里的游乐项目有哪些入手,这样做到了“寓知识于娱乐,化抽象为形象,变空洞为具体”,使学生的学习具有形象性、趣味性。使学生在情境中发现数学信息,找出数学规律,渗透“生活中处处有数学”的新的“数学思想”。
2、本课为了让学生充分体验到轴对称图形的这一特征,我安排了剪一剪、折一折、比一比,猜一猜等活动,通过大量的动手操作,让学生多种感官参与教学活动中。学生在整个动手操作的过程中,进一步体会了对称图形的形成,感受到了对称图形的内在美。通过欣赏同学的作品这一活动,使学生在欣赏漂亮图案的同时与大家分享“创造美”的.愉悦,体验数学的美和创造的美。学生在相互交流和观摩同学作品的过程中也会受到启发而获得一份宝贵的学习资源。
3、需要进一步改进的方面。
上完本节课后感到自己的教学机智还不够敏锐,一些细节的处理不完善。如:找生活中的轴对称图形时,有一个同学拿着自己三角板说是轴对称图形,这是我应该把这个三角板拿起来给全班同学看看,以免让学生误会所有的三角板都是轴对称的。还有,上完本节课后感到自己的语言连贯性有待加强。
《轴对称图形》教学反思 篇10
《轴对称图形》是数学西师版教材三年级下册第六单元《轴对称》中的第二课时。我在两年前曾为数学市级骨干教师上过展示课,两年后再上,只是在个别环节上做了一些修改,但面对不一样的学生,不一样的心境,又有了很多不一样的感悟。
我所执教的这节课是在上节课认识了生活中的对称现象的基础上,来认识图形中的对称,也就是轴对称图形。要让学生经历观察、操作、交流的过程,初步认识轴对称图形及对称轴;在学习的过程中,培养学生的空间想像力;感受图形的对称美,体验到学习数学的乐趣。低年级学生由于其年龄特点,具体形象思维仍占优势,学习新知识在很大程度上还要靠具体形象或表象、动作进行思维,因此在学习时单靠教师讲是不行的。操作就是培养学生能力的一种重要措施。
一、学具操作中可以激发学习兴趣。
与由教师讲授和个人自学相比,学具操作可以更好地激发学生的学习兴趣,调动学生学习主动性、积极性。激发学生的学习兴趣是发挥学生认知活动中的主体作用的'重要条件。在低年级课堂教学中,每当我们让学生进行学具操作时,学生总是兴趣盎然,热情很高。究其原因,主要有:
(1)低年级学生由于其年龄比较小,经常表现出爱的程度上得到满足,使他们在操作中体验到成功与快乐,因而总是情趣较浓。
(2)学具自身不论是在颜色、设计的形状等方面都近似于儿童玩的一些拼插玩具,能够吸引学生对它进行操作。
(3)让学生进行学期操作能够给学生提供一个自己去探索发现学习知识的自由空间。正如赞习夫所说:"教学法一旦触及学生情绪和意志领域,触及学生的精神需求,这种教学法就能发挥高度有效作用。"让学生进行学具操作正是这样的教学法。
二、在学具操作中可以发挥学生潜能,使他们主动探索知识,提高课堂教学效果。
提高课堂教学效果是教学改革追求的一个具体目标。让学生进行学具操作有利于这一目标的实现。让学生进行学具操作改变了以往"教师讲,学生听;教师演示、学生看;教师问、学生答"被动局面。在教学中体现了以学生为主体,教师为主导方针,使学生在教师指导下动手、动口、动脑,自主地探究知识,实现从不知到知,从已知到新知矛盾转化,形成新知识网络,提高课堂教学效果。抽象概念的掌握要从动作开始,让学生动于操作学具可以使丰富的信息源源不断刺激细胞,以控制学生情绪使注意集中在学习活动中。
在教学新知的这个环节里,为了让学生自主的探究和发现轴对称图形的特点,我将教材中的例1、例2进行了整合。让学生在第一次图形的对折过程中明白完全重合的概念:是形状、大小一样,边缘重在一起的。并通过第二次对折三等分圆的错例分析,强化学生对完全重合的认识。在理解了什么是完全重合后,给出轴对称图形及对称轴的概念。在这个环节的最后,通过观察正方形的不同折痕,发现不同的对称轴,有意识的渗透了有的图形的对称轴不止一条的观点。
三、在学具操作中可以发展思维能力,培养创新意识。
动态学具操作为学生思维能力提供直观支持。学生的思维能力是在学习知识,运用知识的过程中逐步形成和发展的,低年级学生正处在于由具体形象思维为主的抽象思维为主发展过渡阶段,运用学具操作,引导学生思考,把操作思维和语言表达紧密结合起来,使学生在感知认识基础上经分析、综合、抽象思维化。促进了思维发展,为学习抽象数学知识和数学思维发展奠定坚实基础,同时也会擦出创造性思维火花。教学中第一个练习设计为判断轴对称图形,从对折过度到在头脑里想对折的过程,培养学生的空间想像力。因此,让学生动手操作学具是发展学生思维能力,培养创新意识的重要渠道之一。
在教学的过程中,也有很多需要改进和注意的地方:
1、在操作的过程中,老师给予学生的要求还不够明确,有些学生没有真正的静下心来听清老师的要求,对操作的过程不清楚。加强对孩子操作的指导,给孩子提出明确的要求,并让学生真正的听懂要求,是相当重要的。
2、在教学中对时间的把握不够,在由我示范的剪纸过程这个环节中,用的时间比较长;而在这个时间段学生却无事可做,显然浪费了时间。我后来想如果在课前将剪纸做好,只展示剪纸的步骤,可能会好一些。
3、这节课在放手让学生自主探索和解决问题上还不是很够,如果让学生自己说出自己的想法,或许会更好。
《轴对称图形》教学反思 篇11
这节课是人教版小学数学二年级下册中的学习内容,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:让学生在观察中让思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主。反思这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。
一、 利用多媒体引入,激发兴趣本课利用多媒体出示的一张娃娃脸引入,一开始就吸引了学生们的注意力,提高了学生的参与互动的兴趣,为引入课堂主题打好了埋伏。通过猜一猜的游戏,让学生在猜的过程中,初步感知轴对称图形的特征,激起矛盾,也激起了学生想探知的欲望,很自然地把学生带入课堂。
二、利用多媒体引导实践操作、激活思维叶澜教授曾在新基础教育课题实验中提出:
“要把课堂还给学生,让课堂焕发生命的活力。”学生是学习的主人,教学最终要落实到个体的学习行为上,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而内化为己有,在学习实践中逐步学会学习。本课为了让学生充分体验到轴对称图形的这一特征,安排了折一折、比一比,猜一猜、剪一剪,一系列活动,让学生多种感官参与教学活动中。
在新授教学时并没有采用传统的灌输手段,而是把学生看作是课堂的主角,利用多媒体展示让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形都是对称的,并通过小组动手操作来验证它们为什么是对称的,采用对折的方法来折一折,让每位学生都参与活动,在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时教师就利用多媒体的动画演示,通过直观的演示,让学生初步感知什么是“完全重合”,最后教师在学生动手操作、形成初步感知的基础上配合课件动态出示“轴对称图形”的概念,让学生了解这些图形的基本特征,形成感性的认识。
在整个教学的过程中,在解决难点的环节处理上,教师让引导学生画对称图形时,不是一步步地告诉学生怎么画,而是让学生先看着给定的'图形,先观察对称轴在哪里,然后再思考对称的点在哪里,让学生有一个思考内化的思维过程,放手让学生自主探究,进一步体会和深化学生对对称图形特征的理解,活动的设计体现了以学生为主体,引导学生主动探索,让学生在活动中感悟,在活动中体验,使学习知识和提高能力同时得到发展。
三、 利用多媒体联系生活、丰富情感本课的结尾利用多媒体展示让学生欣赏古今中外著名的对称建筑,中国剪纸,生活中学生感兴趣的汽车标志,让学生感受到数学与生活的联系,特别是古建筑和中国剪纸的展示渗透到数学中,这不仅是学习数学的好材料,而且还是渗透民族文化的好题材。这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能,另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,非常利于学生主体性的发挥,创新能力的培养。
《轴对称图形》教学反思 篇12
本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。
一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。
这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的`操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。
二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论。
《轴对称图形》教学反思 篇13
《轴对称图形》是人教版二年级上册数学的教学内容。在这阶段教学中,让学生初步认识了轴对称图形,会判断轴对称图形并画出对称轴,能用剪刀剪出简单的对称轴。为了上好这节课,我认真阅读了教师用书,认真撰写教案,并精心设计教学课件。
课后,总觉得这节课教学效果不理想,感觉学生学得很累。认真分析一番,认为原因有以下几点:
1.教学内容和时间安排上不合理。课前,我认为这个内容不是本册的重点,决定用1课时授完。课后,才发现这样安排,时间太仓促,学生对新内容的消化可以用一个成语来形容:囫囵吞枣,这也学一点,那学一点,动手操作、练习、思考的时间大大缩水,最终未能掌握好新内容。
2.对教学内容的重难点把握不到位。由于在教学内容和时间安排上不合理,导致学生的思考、练习的时间不够,对教学内容的重难点没能深入地思考、理解,给学生的'学习造成困难,重难点不够突出。
3.教学缺乏引导策略。特别是画对称图形,让学生画,画完后教师演示,这样匆匆而过,学生没有真正体会找对应点在画轴对称图形的作用。这里我没有引导学生深刻掌握,导致学生对对称轴的认识仍很肤浅,不能很好的正确地画出对称轴。我认为教学策略是影响教学效率的主要原因,学生没有教师的引导,学生只能是在原地踏步。
由于以上原因,造成这一节课重点不突出,难点没有突破,教学主线不鲜明,效率低。知道了自己教学上还存在的不足,我将继续对数学教学进行研究实践,希望在今后的课堂上能上出越来越精彩的数学课。
《轴对称图形》教学反思 篇14
本节课的内容是在学生认已有的对称知识的基础上,结合学生熟悉的生活情境进行教学的,重点教学轴对称图形的性质和画法。
成功之处:
1、课件演示,直观形象。在教学中,首先出示一些轴对称图形的图片,让学生观察这些图形有什么特点,从而引出轴对称图形的概念。在例1的教学中通过出示小松树图形,让学生认识轴对称图形的对应点,然后数一数每个对应点到对称轴的距离,从而发现轴对称图形的性质是对应点到对称轴的距离相等,最后通过连线对应点,学生会发现对应点的连线垂直于对称轴。在这一系列的教学中,学生通过课件的直观演示,非常容易发现其中的秘密,学得也自然轻松,感兴趣。
2、依据性质,学习画法。在例2的教学中,先出示图形的一半,让学生独立思考如何画轴对称图形呢?也就是另一半呢?通过学生的交流讨论,得出轴对称图形的画法,即先定点——定出每条线段的端点;再画对应点——依据轴对称图形的.性质对应点到对称轴的距离相等;最后连点——依次连接每个对应点。在轴对称图形的画法中紧紧联系轴对称图形的性质,可以使学生进一步加深对性质的理解和应用。
整节课的安排,努力贯彻“学生为主体、教师为主导”学生自主发展的教育原则。教师只是对概念的引入加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考;操作、联想;讨论、口述,这样将有利于每位学生积极动脑、动手、动口、耳闻、目睹,各种器官并用,使全体学生真正成为学习活动的主人
不足之处:学生在画轴对称图形时,不按照画法去做,而是照葫芦画瓢按照自己的方法去画,虽然有的同学能画对,但是也存在个别学生出现错误的画法。再教设计:强化画轴对称图形的画法,让学生不仅要知其然还有知其所以然,明白不仅仅画对就可以,还要知道依据轴对称图形的性质,这样才能加深对轴对称图形性质的理解。
【《轴对称图形》教学反思】相关文章:
轴对称图形教学反思04-22
《轴对称图形》教学反思07-26
小学数学轴对称图形教学反思04-08
轴对称与轴对称图形教学设计06-18
《认识轴对称图形》教学反思(精选6篇)05-14
《轴对称图形》教学反思(通用6篇)12-28
《轴对称图形》的教学反思(通用18篇)03-22
《轴对称图形》教学设计01-12
“轴对称图形”教学设计05-10