- 相关推荐
分数乘法教学反思(15篇)
身为一名优秀的人民教师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的教学能力,快来参考教学反思是怎么写的吧!下面是小编精心整理的分数乘法教学反思,希望对大家有所帮助。
分数乘法教学反思1
分数乘法应用题教学反思“求一个数的几分之几是多少”的乘法应用题是学生已经掌握了分数乘法的计算方法和分数乘法的意义上进行学习的。它是分数应用题中最基本的、最基础的,不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的.基础上扩展的。因此,学生掌握这种应用题的解答方法具有重要的意义。在本课教学中,我努力做到了以下几点:
一、复习铺垫,为新课做好准备
本节课中,找准单位“1”,写出数量关系式是解分数应用题的关键。因此在新课之前,我出示了这样一组练习做铺垫:
(背投出示)
1、列式解答
(1)20的1/5是多少?(2)6的3/4是多少?
求一个数的几分之几是多少,用乘法来计算。
2、找单位“1”,说关系式
(1)、男生占总人数的2/3。
(2)、红花占总数的5/6。
(3)、一本书,读了3/4。
(4)、一条路,还剩下1/4没有修。
为本节课的新知识做好了准备。
二、创设严谨的思维训练,提高学生的思维和分析能力。
小学生思维处于无序思维向有序思维的过渡阶段。因此,教师要积极地引导和帮助学生过渡这个阶段,训练思维的条理性。在教学这节课时,我特别注重让学生分析表示数量间关系的句子,也就是关键句,在关键句中找出哪个量是单位“1”,哪一个是比较的量,然后分析分率的意义,根据题意画线段图,根据线段图列出等量关系,寻求已知量和未知量,根据关系进行解答。
三、注重孩子的全体参与,让孩子在动手操作中理解题意。
解答分数问题的关键是弄清楚题中的数量关系,这也是课堂教学的重难点。运用直观的线段图来表示题中的数量关系,有助于学生理解题意。在这节课上,我让每个孩子动手,在理解题意的基础上画出线段图,然后让学生观察、分析、比较,鼓励学生互相讨论,得出哪种线段图最完整,能够看图就能知道题的意思。这一环节使每一位学生都积极认真的参与到学习之中。
这节课也有不尽人意的地方。因为这一段学习的都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是不那么理解。我想,学习了分数除法应用题,与除法进行对比练习后,学生可能才会有更深刻的理解。
分数乘法教学反思2
年级分数除法(三)的内容是用方程解决简单有关分数的实际问题,初步体会方程是解决实际问题的重要模型。教学时,由于我认为很简单,对学生分析不够,过于相信学生,用方程解答完成后,就让学生用别的方法解,同时要求画出线段图。学生虽能列出正确的算术式计算,但不能熟练画图。
发现这个问题后,我就及时的'对学生进行画图能力的训练,经过一节课的练习,大部分学生基本掌握画图的技巧。通过这节课的教学,使我深深的体会到,要想让知识真正地在师生互动中,学生得到理解、接受并掌握起来,教师就要认真地备学生,只有从学生的实际出发,因材施教,才能达到教育的最优化。
分数乘法教学反思3
《分数乘分数》的教学重点是巩固理解分数乘法的好处,探索分数乘分数的计算算理与法则。
在教学实践中继续采用“数形结合”的数学方法,帮忙学生达成以上两个教学目标。对于这天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法好处的理解还不够深刻,因此在整个的教学过程分为三个层次:
一、引导学生透过用图形表示分数的好处,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法好处,感知分数乘分数的计算过程。
二、以1/5x1/4为例,让学生先解释算式的好处,然后用图形表示这个好处,最后再根据图形表示出算式的计算过程,这样做的目的是透过“以形论数”和“以数表形”的过程让学生巩固分数乘法的好处,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。能够说整体教学的效果还好。
透过这天的.课,我对数形结合的思想有了更进一步的理解。由于分数乘法的好处和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得个性重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮忙学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮忙学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮忙学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
分数乘法教学反思4
在教学一个数乘分数的好处和分数乘分数的计算法则中,透过操作、演示、观察、比较等活动,即先形象具体,后抽象概括,帮忙学生理解分数乘法的好处和算理。在教学中,教师要引导学生操作,直观感悟,使学生参与到教学中来,充分发挥学生的主动性,调动学生的用心性。
从已学知识的基础上出发,利用知识的迁移和扩展,理解分数乘法的好处。教学时先透过对整数乘法的复习,使学生明确整数乘法的好处,再充分利用直观图,使学生清楚地看出能够用加法计算,也能够用乘法计算。
引导学生把直观操作与抽象推理相结合,理解分数乘法的计算法则的推导过程。
由于分数乘法的计算法则比较抽象,学生理解起来有必须的困难。教学时我尽量加强直观,变抽象为形象,多给学生创造对手操作的机会,激发学生学习的兴趣,使他们主动地参与到教学过程中来。在直观操作的基础上在推导出分数乘分数的计算方法,进而概括出分数乘法的法则。
培养学生良好的计算习惯和认真的学习态度。学生掌握这部分资料并不困难,但要透过这部分资料的.学习和练习,培养其认真审题、注意运算顺序、观察数字特点,、选取简便方法等良好的计算习惯和严谨认真的学习态度,为他们以后的学习打好基础。
在教学过程中,要以教师为主导,学生为主体,为学生创造参与教学活动的情景,透过操作、演示、观察、比较培养学生的抽象概括潜力,透过分析讨论,培养学生的分析综合潜力。同时,教学过程中要注意抓住新旧知识的内在联系,使学生了解知识間的横向联系。学生在联系和比较中找到了知识与知识之间的联系,并获得探索知识的体验。
还要重视学法指导,培养学生的内推力。
分数乘法教学反思5
本周学习了分数乘法,从分数乘整数到分数乘分数,从意义到计算,相对于前一个单元的内容来讲,应该是比较好理解的,但从作业情况来看,在分数乘法的计算中还是存在以下一些问题:
1、计算结果不能约分成最简分数。像9/15,16/24,3/72,35/56等这些比较常见的分数,部分学生竟然不知道该怎么约分,找不到分子和分母的.公因数。另外一种情况是,在计算过程中,约分之后又与另一个分子或分母有公因数的,往往忘记约分或看不到约分。
对策:熟记乘法口诀,用乘法口诀去寻找分子和分母的公因数。例如35/56,就想5、7三十五,7、8五十六,这样就可以看出能用7去约分,可以提高做题的效率。
2、计算过程中,让分子和分子进行约分的。
例如:7×7/10=1/10,让7和7约分。
对策:赋予算式一定的情境或故事,比如我在讲的过程中这样说:在计算中这个分数线相当于战场上的分界线,分子和分母分别是交战的双方,你想,打仗时只能去和对方的敌人对打,而不能窝里斗,打自己人。,也就是分子只能和分母约分,而不能和分子约分。这样一讲,很多学生听的饶有兴趣,而且浅显易懂,出现这种错误的几率大大降低了。
3、计算中,约分后不与原来的分子、分母再相乘的。
例如:
对策:继续讲故事,你和战友一起出去打仗了,遇到了敌人,要派一人出战(约分),战斗完毕,每个人都要有团队意识,结伴而行,几个人出去的,还要几个人一起回来。即:分子和分母都还要由两个数相乘得到。
4、其他由于不细心、书写不规范出错的。
例如有些在约分中把约分的结果写在原数的旁边,然后计算的结果又与过程写得很挤,造成计算结果混淆,看不清楚而出错。这就需要在平时的教学中对学生做题过程严格要求,规范书写,使学生养成认真、细心的好习惯。
分数乘法教学反思6
分数乘法这个单元主要学习分数与整数相乘、分数与分数相乘、分数练乘三个环节。每个环节都要解决一些实际的问题。
在分数与整数相乘中课分成学生理解求几个几分之几是多少?求一个数的几分之几是多少?分数乘分数则引导学生把分数乘分数的计算方法的掌握。所以教学起来要注重每一堂要教的是什么?怎么教?
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。
此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的.用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。
本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
分数乘法教学反思7
在数学中,加法是一种常用的计算方法,也是基础的基础,由于本课是学生第一次正式接触加法,因此学好这一课,对以后的数学学习至关重要。虽然,在学生以往的生活经历中,一些日常问题的解决使得他们对加法产生了或多或少的朦胧印象,但是,让学生真正地了解加法并运用加法解决问题,这还是第一次。因此,本节课教学的重难点是:让学生真正理解加法的含义并能运用加法去解决实际问题,用数的组成知识去做加法。
一、导入凸显分与合的思想。
加法的含义来自于分与合的思想。在教学开始时,以几组变式的分与合作为基础,铺垫让学生初步感受今天我们要用分与合来解决新问题。
二、从算理中教学。
在例题教学时,我通过图意变化,引导学生看变化的过程,说清图的意思。(校园里3个小朋友在浇花,又来了2个)。同时以提问的方式出现第三句话:一共有几个小朋友?给学生初步建立条件与问题的'概念,了解看图是要解决问题。大部分学生已经能够看图列出加法算式:3+2=5。这部分是学生的已有经验,我把重点放在了算式含义的讲解,计算教学重在算理。我 https://www.haozuowen.net/ 采用了接受式学习方式,“+”学生已经认识,而是通过口头语言和肢体语言让学生感受“+”的意义是合起来,将形象上的“合”和意义上的“合”结合起来。算式“3+2=5”中“3”、“2”、“5”的意义解释,学生能够结合具体情境来解释,说明学生能够理解数的意义了,学生能够通过分与合的经验说出算式的意义,让学生经历形象——数——符号——语言——初步将意义整合,最后将“3+2=5”意义精简为“3和2合起来是5”。
三、用今天学习的知识解决实际问题
不同层次的练习符合能力的需要,重在拓展学生的能力。
摆一摆、说一说,将摆说结合,将动作和语言相连接。
看算式,摆一摆则是对数形的结合。
说一说、填一填。让学生观察情境图,学生能够自己看图说意思、提问题、列算式。通过情境的变化,发现三道 算式中的规律,先是有经验的积累算式,再由现象观察算式,到分析算式、比较归纳。
算一算、填一填。直接写出得数,比较“2+1=3”和“1+2=3”之间的规律:加号前后交换位置的得数不变,再通过找到的规律让学生自己找算式,充分给学生空间拓展能力。
送信连一连。将连线题和有序的排一排结合在一起,将得数是5的算式全部找到。这部分环节让学生自己动手,上黑板排序、说一说,体现了学生是课堂的主体这一数学思想。
看一看,列算式。出现整幅综合图,让学生自己从图中找信息,列出相应的加法算式。学生能够充分的说图意,列出不同形式的加法算式,说明学生不但会计算,还能通过加法来解决实际问题。
四、总结突出算理。
本节课的总结关键就突出“+”的含义——合起来。在课的最后再回到导入的铺垫,用分与合的知识解决加法计算。
这节课还存在许多不足的地方。我可以通过语音语调来吸引学生的注意,而不是一味高调;在送信环节,学生一开始出现从大到小、从小到大的顺序排列,在这里可以放手让学生自己再去排一排,学生能够根据分与合的联系出现两组算式,让学生认识事物的对比过程,自主的找到算式之间的联系,而不是教师自主将这一环节延后出现;在教学中还要充分注重教是为学服务的。
分数乘法教学反思8
整数乘法运算定律推广到分数乘法是在学生已经掌握了分数乘法计算、整数乘法运算定律的基础上进行教学的。面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,反思这节课中存在的问题,应该从以下几方面改进:
1、树立学生自信心,尤其爱护后进生,培养学生口算心算、勤动手勤动脑的习惯。并对学生的多样思维应加大评价力度。评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还要继续加强。
2、课前对学生学习效果估计不足,所以使一些事先设计好的练习没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
3、上课时复习的时候应该安排一些整数乘法简便运算的题目,帮助学生回忆简便运算,为本课的简便运算打好基础。
4、例题6中本来只有前面2道题,但是备课时拔高了难度,多加了2道较难的.简便运算题目,在前面复习时没让学生回忆、做做类似的整数乘法混合运算题,所以学生做题效果不理想。
总之,通过本节课,使我在教育教学理念上有了很大的转变和提高。我认为,在落实新课改的精神上,只有做到了让教为学服务,让学生充分从事数学活动,提供学生自主探索、合作交流的机会,提高他们的思维,培养他们的创新能力,才能真正提高教学质量。
分数乘法教学反思9
分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:
例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756
(1)长江流域可供开发的矿产资源有多少种?
(2)全国的矿产资源有多少种?
其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。
然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。
首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的起到了一个干扰作用。
其次,本例中的第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的.单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的资源和全国的矿产资源×30=长江流域的矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。
最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。
综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:
例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?
(2)果园里有60果李树,李树是桃树的,李树有多少棵?
这样的设计我认为有这样几个好处:
1、单位“1”不变,都是桃树。
2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。
通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基矗
分数乘法教学反思10
分数乘法教学是六年级下期的一个教学内容之一,其实整数乘法对于同学们来说,已经不是很陌生的问题了,所以,在传授分数乘法这一知识点时,让同学们做一做整数乘整数所表示的意义,然后。让同学们通过自习的方式对今天所学内容进行迁移。在交流时,我发现大部分学生基本上理解了分数乘法的意义及与整数乘法的异同。可是还是发现了一些问题:
⑴每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化。
⑵分数乘法中:求一个数的几分之几是本册中的中心,是重点。本册所有数与代数教学内容都是围绕着这一中心展开的。
⑶在教学中要强化分率与数量的一一对应关系。在后来的混合计算这一章中进行应用题教学学生理解起来有困难。
针对以上失误,在今后教学中要补充的.内容是:
⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
⑵强化分率与数量的一一对应关系。
⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。
⑷利用分数化单位,如:2/5时=()分1/5吨=()千克
分数的教学对于本册来说,既是一个重点,又是一个难点,要在实际的练习中加以理解和应用。
分数乘法教学反思11
本节课是分数乘法式题的教学,教者有意安排了一道带分数乘法的式子题,旨在进一步提高学生的计算能力。但这节课在诸多方面已经远远超越了教者的本意,达到了一个新的境界,这是一节非常成功的数学课,本人认为这节课有以下几方面的优点:
1、改变了单纯的知识传授者的身份
在本节课中,教师积极创设了有利于学生自主学习的环境:“猜一猜,”真是这个“猜一猜”点燃了学生思维的火化,开放了学生思维的空间。教者并没有直接告知学生如何去计算,不只是单纯的进行
知识灌输,不再是用原有的“教师中心”的做法,已经站到了学生的中间,从学生的经验出发组织学生的学习,为学生提供了更多的发展机会。
2、倡导个性化的知识生成方式
新课程实施旨在扭转“知识传授”为特征的局面,把转变学生的`。学习方式为重要的着眼点,以尊重学生学习方式的独特性和个性化为基本信条、新课程要求在学科领域的教学中渗透“自主、探究、与合作”的学习方式。在本案例中,教者不再仅仅是“教教材”,当问题出现后,不再是教者面对知识的独白,并没有告知学生如何去做,而是让学生先“猜一猜”,说说自己的想法。当学生提出不同的见解后,又积极引导学生对有价值的“经验、见解”深入进行探究,共同寻求解决问题的方法。这已经超出了个人化行为,成为群体合作行为,与学生建立了真正的对话关系,超越自己个体的有限视界,填平“知识权威”与“无知者”之间的鸿沟。这一切有助于学生个性化的知识生成,更有助于学生形成“不断进取,不断创新”的精神世界。
3、把握生成,与境俱进
记得一位教育专家曾经说过这样一句话:“每一节课都有生成,只是教师有没有注意吧了。”在本案例中,教者能做到“与境俱进”,能在预设“猜一猜”的基础上,抓住生成,及时灵活处理具有“生成价值”的问题与回答,就话答话,“与境具进”,及时引导学生针对提出的话题展开探讨。整个教学充满灵动、智慧、活力,课堂教学真正做到“开放”与“灵活”,充分促进学生自主和富有个性化、创造性地学习。
课改大潮轰轰烈烈,涤荡着每一个角落。当前的课堂教学如何实施,我想本案例很值得我们学习和借鉴。
分数乘法教学反思12
本节课是一节复习课,回顾本单元的教学,我认为“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”是本单元的重点及难点。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到活动的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。
而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的`策略。具体的讲就是:通过简单的具体事例进行集体引导,再通过具体的探索要求帮助学生尝试着探索比较复杂的实例。
分数乘法教学反思13
一、以学生的数学基础为根本,创设情景,激发兴趣。
在这之前很多学生都看书了,已经有许多学生知道了分数乘整数的计算方法。开头依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设置复习题,为教学重点服务,使学生顺利掌握分数乘整数的意义与整数乘法意义相同。同时复习相同分数加法,为推导计算方法进行铺垫。
二、关注学生的思维,给学生较大的学习空间。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了不同的人学习不同的数学的理念。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的.思维发展。
三、反思不足,提炼经验。
本节课的重点是得出分数乘整数的计算方法,约分时,只能将分母与整数约分。我还没有完全放手让学生自己总结出计算方法,没时间多练。对学生还是不放心,老师讲得太多,强调的主题太多,一些注意事项没有变成学生的语言,让学生去发现,去解决,从而记忆不是很深刻。我觉得各种题型的练习还不够,没有让学生充分掌握好,跑得太快。只顾及到了成绩好的学生,从这一点,我深深体会到什么是备教材,备学生。课前要把知识点吃透把握住重点、难点,哪些要补充,哪些地方要创造性使用教材。学生以一个什么样的方式更容易接受,老师哪些地方该讲不该讲,都需要我们深思熟虑。
分数乘法教学反思14
1、每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化。
2、分数乘法中:求一个数的几分之几是本册中的'中心,是重点。本册所有数与代数教学内容都是围绕着这一中心展开的。
3、由于我没有经验,以至于在教学中没有强化分率与数量的一一对应关系。在后来的混合计算这一章中进行应用题教学学生理解起来有困难。
针对以上失误,在今后教学中要补充的内容是:
1、让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
2、强化分率与数量的一一对应关系。
3、帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同。
4、利用分数化单位,如:2/5时=( )分1/5吨=( )千克
分数乘法教学反思15
在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的把问题复杂化了。
本单元的重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:
分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。
分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。
分数乘法(三)通过对具体问题的解决,进一步巩固“求一个数的几分之几是多少”的乘法意义,并探索和理解分数乘分数的计算法则
从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。
在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。
分数乘法(二)
今天教学的内容是分数乘法(二),重点是分数乘法意义的拓展——“求一个数的几分之几是多少”,这部分内容既是这个单元的重点,也是这个单元的难点。
从学生认识过程来看,这部分知识的基础是分数意义和整数乘法的意义。在教学中我突出了类比迁移和数形结合的方法,首先改编了教材的例题——“小红有6个苹果,笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,根据呈现的已知条件学生提出数学问题:“笑笑有几个苹果?淘气有几个苹果”然后教师引导学生先用图形表示出“笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,再列出算式,最后尝试解释算式表示的意义。这样把将分数意义以图的形式呈现,做到“以形论数”,在通过对图的理解抽象出问题实质就是求“一个数的几倍(几分之几)是多少”,运用类比的方法得出“求6的2倍是多少”和“求6的1/2是多少”都用乘法,进而列出算式,完成“以数表形”,使学生理解“求一个数的几分之几是多少”用乘法的道理。
分数乘法(三)
今天的教学内容是分数乘法(三),重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。
在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个
数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
一、引导学生通过用图形表示“一尺之捶,日取其半,万世不竭”的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算积累认知。
可以说整体教学的效果很好。
通过今天的课我有了一下的认知:
1数形结合的思想在本单元教学中的渗透和其作用。
由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得中观重要了纵观教材中,数形结合思想的渗透也有着不同的层次,例如分数乘法(一)和分数乘法
(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法(三)中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
2对学生探索过程的理解。
在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算” 。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。
单元小结
第一单元的新课已经结束了,接下来的几节课都是练习课,到昨天为止已经上了三节。整理这三节课,对在新课程背景下的数学训练有了一些新的认识:
1在新课程背景,我们还要不要进行数学训练。当前无论是创优课竞赛、各级的研究课,还是论坛、博客,大家都在热衷的讨论一些教材中的新增内容,或是探究、合作的教学方法,大家似乎都不很在意数学训练,有的教师甚至一提到
“训练”马上就“色变”,认为将回到传统教育的老路上去了。我们冷静下来思考一下就会发现:我们现在所热衷的“组织学生探索数学知识,使他们经历数学知识的形成过程”实际上就是以学生“已有的知识经验”为基础的。如果学生对已有的数学知识理解掌握的不深刻、应用的不灵活,那么又如何能够进行新的认识活动呢?因此数学探索和数学训练往往是相互作用、互为基础的。
2在新课程背景下,我们需要什么样的数学训练。
数学训练不等于“机械、重复”,应该体现对数学基础知识的应用性的训练。
(1)、说理性训练。学生对一个数学知识掌握总是要经历一个由“具体——抽象——具体”的认识过程,其中数学基础知识的形成过程(具体——抽象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的'外延),这是将起到深化理解概念和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。
(2)、图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。
(3)、计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。
3新课程背景下,数学训练的地形式
数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。
根据以上的思考自己在这三节课的教学是这样安排的:
第一节:
1通过计算训练整合分数乘法法则。
2口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。
3单位转化,初步应用分数乘法意义解决实际问题。
第二节:
1解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。
2集体交流,剖析解题的思路。
3专项训练,理解分数条件(图形表征、语言叙述)。
4巩固练习,渗透对应思想