- 《运算定律与简便计算》教学反思 推荐度:
- 相关推荐
《简便运算》教学反思15篇
作为一位优秀的老师,教学是重要的工作之一,借助教学反思我们可以拓展自己的教学方式,来参考自己需要的教学反思吧!以下是小编精心整理的《简便运算》教学反思,仅供参考,希望能够帮助到大家。
《简便运算》教学反思1
这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内验证。
在教学中,要突出两大方面的特点:
1、在解决实际问题的过程中,掌握分数混合运算的计算方法。
2、注重分析问题的过程,提高学生运用知识解决实际问题的能力。
本节课的优点有:
1、这节课我创造性的使用选材。我没有用书本上的例题,因为很多学生会依赖书本不去思考。我所选择的这道题将解决实际问题与分数混合运算的学习结合起来,我引导学生先分步列式计算并说说每一步表示的意义,再列出综合算式,从而引入分数混合运算,并得出分数混合运算的顺序与整数混合运算的顺序一样,这样学生就能顺理成章地掌握分数混合运算的'计算方法了。
2、利用线段图突破难点,在这节课体现的尤为重要。由于课前让学生复习过,对于例题中的线段图学生也有所了解,所以我在教学时注重指导学生分析问题中的数学信息和数量关系,并运用线段图将这些数量关系表示出来。然后列出分布算式,学生就容易理解。
《简便运算》教学反思2
简便计算是小学计算教学中的重要组成部分。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。
近两周时间我一直在教学运算定律和简算,开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,特别是乘法结合律和乘法分配律混淆的最多。随着简算方法的多样化,简算的准确性也大打折扣。我发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。
为此,我让学生做了大量的直接简算的题。通过练习,引导学生总结出一些常见的可以简算的对象,如:“25×4”、“125×8”、“5与任何偶数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。课堂上,当简便运算的错误发生时,我试着把问题反抛给学生,让学生自己来分析问题,解决问题。问题反抛,往往会给学生一种强刺激,他们会细致深入地思考,这个地方为什么会错了呢?有没有办法解决呢?这时,学生的注意力高度集中,思考的质量最高,也就成了思维品质培养的最佳时机。如:①176—57+43②147×16+53×25③175÷25×4④75+25-75+25等,受“凑整”思想的干扰,第一小题抛出后,学生们一眼看出数字57和43能凑整,于是绝大多数的学生忽略了运算符号,违背了运算法则,纷纷列出176-57+43=176-(57+43)=176-100。看到学生们果真上当了,我马上让学生计算176—57—43,然后追问学生,这两道题都可以变成176-100吗?然后将两道题放在一起对比,找出算式的异同之处,并让学生按顺序算出两道题的结果进行验算。有了这一题的基础,学生在计算175÷25×4时就不容易出现类似的错误了。
“运用乘法分配律进行简算”是学生最不容易掌握的。乘法分配律的逆用是学生掌握的难点,老是容易出错。比如,第二道题,由于这道题与乘法分配律在表现形式上十分相近,致使一些学生容易造成直觉上的错误,误用乘法分配律解决问题,这说明学生对乘法分配律的理解还不够透彻。而少数观察仔细的学生则认为这些算法不正确!这时,我顺势让学生自己辩论,究竟能不能简便运算呢,有什么依据?各自说说理由,通过一番激烈的辩论,认为能简便运算的同学终于发现,原来两个乘法算式没有共同的因数,所以不能使用乘法分配律。有了这次简便运算的.系统练习经验,学生们对定律和性质的理解和认识更加深刻了,在后来做简便运算习题时,学生们都表现出非常的小心和仔细,避免自己犯同样的错误。
最后强调:简便运算的思路会有很多,只要把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。这样教学,不仅使学生学会了单纯的简便运算,更重要的是,使学生初步理解了学以致用的道理,真正理解了书本上的知识必须运用到实际当中去的道理。
《简便运算》教学反思3
一、教学内容:
分数混合运算和简便运算
二、教学重点:
1、利用乘法的运算定律进行简便计算。
2、根据题目中的数的特征,选择正确、合理的简便计算方法。
三、教学方法:导练法、类比法、迁移法
四、教学反思:
本课的.教学内容是分数混合运算的顺序和简便运算。由于学生有一定的学习基础和学习类推能力,所以在教学时我直接告诉学生分数混合运算的顺序和整数混合运算的顺序相同,然后通过尝试计算,观察、分析、探究得出结论:整数乘法的运算定律在分数乘法计算中同样适用。接着思考在分数乘法中怎样运用运算定律,可以使计算简便。在讨论怎样运用定律时,由于学生有了整数和小数运算定律的基础,所以我直接放手让学生自己探索解决问题,只是在最后给学生一些重要的提示和总结,这样充分体现了以学生为主体,教师只是起到了辅助性的帮助,整节课学生的学习兴趣和学习自信心都得到了充分的激发。
《简便运算》教学反思4
本节课一方面巩固学生对加法交换律和结合律的理解和运用,另一方面是让学生在学习的过程中进一步体会到学习运算律的价值。在第一节课的教学中,在揭示运算律的意义时,也曾提到过,但只是点到为止。在本节课中是作为重点来讲的。所以在教学时,要着重体现出学生运用加法运算律进行简便计算的探索过程。
一、加强了对比的力度(运用运算律和不运用运算律在计算上的对比)。
例如在教学例题:29+46+54时,首先让学生尝试自行解决,大部学生根据已有的知识,知道应该从左往右计算,先算29+46=75,75+54=129。少部分学生通过观察发现46+54能凑成100,可以先加起来:29+46+54=29+(46+54)。将两种做法让学生书写在黑板上,让学生进行观察比较。追问:第二种方法正确吗?为什么可以先计算46+54呢?(生:可以凑成100,整百数再加一个数就简便了。)这样对比的结果是显而易见的,使学生清楚地认识到进行简便计算是运用运算律的结果,同时学生也能体会到运算律的价值所在。
二、小组活动,巧妙安排,得出规律。
新课改提出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当学生的学习兴趣被激起,强着发表自己的意见时,我提出让学生通过小组合作,去验证自己的猜测,这是符合学生的内心需要的,他们需要动笔计算证实自己的想法,需要同伴合作及时解决问题,需要通过事实来证明自己是对的。合作不是盲目的`,由于合作前的充分酝酿,学生都积极投入到小组学习中。而且在合作前,我给学生提出要分工合作,使学生的活动能够有序进行。合作是成功的,先是紧张的举例验证,然后是有效的总结交流。规律的得出顺理成章,同学们体验到了探究的乐趣,体尝到了成功的快乐。我也体会到了教学的乐趣。
《简便运算》教学反思5
整数简便运算中学习了乘法交换律、乘法结合律、和乘法分配律。通过课前让孩子回忆,复习了分别用字母怎样表示,并通过实际的题让孩子们练一练整数乘法中简便运算,但给孩子们写出两道用简便方法计算的小数运算时,孩子们能够想到整数中25 *4 =100 125* 8=1000 25*8=200等经常记住的结论。
在小数中孩子们0。25遇到4也会把它结合在一起,遇到202 、101也会想到用分配律计算,但是遇到0。34*0。5*0。6= 时有点束手无策,只能让孩子观察末尾数字能否凑十,而且选择时还得考虑与水结合简单,所以小数中的`简便方法需要练习。
《简便运算》教学反思6
1、在现实情境中理解减法的运算性质。
理解减法的运算性质是本课的难点。教学时,我通过现实情境,引导学生充分理解三种不同算法之间的内在联系,结合具体情境使学生初步认知“总页数—昨天看的页数—今天的页数=总页数—(昨天看的`页数+今天看的页数)”以及“总页数—昨天的页数—今天的页数=总页数—今天看的页数—昨天看的页数”,在此基础上再通过对三个算式的观察、比较,引导学生归纳概括出减法的运算定律。这样的设计,遵循了“由具体到一般”的认知规律,降低了学生对运算性质的认知难度。
2、提炼方法,活用性质。
在归纳出减法的运算性质之后,教师通过引导学生对三种算法的特点进行比较,分析各种方法的适用范围,总结提炼出根据不同数据特征选择简便算法的具体方法,然后通过针对性练习,使学生学会合理灵活地选择算法进行简便计算,有助于培养学生简便运算意识,提高运算能力。
3、通过针对性练习培养学生简便运算的能力。
连减时,通常存在三种不同的算法,即依次减去两个数,或者减去这两个数的和,或者先减去第二个数再减去第一个数。至于哪种方法更简便,要看具体的数据特点。因此,引导学生根据数据的特征合理选择算法对培养学生简便运算的能力尤为重要。教学时,我通过引导学生对三种算法进行比较分析,总结出各种算法所适用的数据的特征,然后通过针对性的练习,使学生学会灵活地选择简便算法。
《简便运算》教学反思7
这节课,我设计了很多练习,但这些练习题都是学生经常会混淆的计算题,也是很容易出错的题,我把学生比较常见的一些错误类型的题放在练习中加深学生印象。比如,把总页数改成266,使学生看到此时依次计算更简便,如遇到这种情况,选用先减第二个减数的算法就不适合了。又如,改错题中的672-36+64,学生由于受到前面知识的迁移很容易就会先算36+64来凑整,但简便计算方法是不能随意用于加减混合计算的。通过计算让学生切实感受简便计算方法的多样化,提醒学生要先审题,再根据数字特点来选择最简便的方法。
这节课既要抓住知识的核心问题“连减的'简便运算”引导学生主动探索、积极投入知识的发现、理解、掌握、运用的过程,又要点到为止,淡化教的痕迹,充分利用个别学生的资源影响全体,展开教学,开放式的教学活动给学生充分的信任,使学生更乐于探索、善于交流、敢于评判,真正成为学习的主人。
《简便运算》教学反思8
《运算定律和简便运算的复习》教学反思经过思考的课堂,老师游刃有余,学生思维得到拓展。不同的学生都有所进步。
1、本节课我本着学生为主体,教师为主导。而且本身就是一节复习课。所以凡是学生能说清的,我绝不添言;学生说不清的,练着说;还说不明白,优秀学生引领。
2、把教学目的给孩子,把学习方案给孩子。放手让学生自主复习运算定律,并小组同学互说定义和字母表达式,并思考如何把定律和性质进行分类合理。学生的'表现让我惊异。两种分类方法说的头头是道。思路清晰:可以根据四则混合运算,进行分类:加法有加法交换律,加法结合律;减法的运算性质;乘法有乘法交换律、乘法结合律、乘法分配律;除法有除法的运算性质。
还可以根据运算符号变换分类:加法交换律、乘法交换律;加法结合律、乘法结合律;减法的运算性质、除法的运算性质;乘法分配律。给学生机会,他会还你一个奇迹!
3、在乘法分配律的汇报过程中,学生的理解表达能力受阻,一方面原因是小组讨论学习的过程中,实效性还有所欠缺,只挑选容易的定律进行交流,自主复习内容不够全面。另一方面此部分内容有一定难度,也是本节课复习的重难点所在,后面习题针对此项进行了重点复习,进行了补充。
4、我认为本节课,基础练习题目全面,有口答,有分析判断,有应用题目动笔,拓展训练能够从出题者的思维角度自主发散思维,总结简便运算的规律。使简便运算更加活学活用。
《简便运算》教学反思9
运算定律与简便计算,共包括了五个定律和两个性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c
连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)
大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:
1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)
34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)
2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的.混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学
4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4
5.针对逆向运用,有以下规律
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
《简便运算》教学反思10
小学阶段的数学总复习,我本着每天复习内容少而精的原则,把所要复习的内容理解透掌握好。
本课我只设计了两个环节,(1)复习运算定律,(2)运用运算定律进行简便运算。在复习运算定律时,让学生通过具体的例子表示运算定律,为下一步的灵活运用奠定了基础。在总复习时不能满足于掌握常见的五个运算定律,要加以引申,扩展学生的知识面。应用运算定律进行简便运算时,我改变以往的做法,老师出题学生做,而是让学生自己自编或搜集简便运算的题目。这样学生积极性更高了,看我编的.题目能不能选上。学生在编题和选题时要进行大量的阅读,这本身就是一个自我复习的过程。学生出的题目很出乎我的意料,学生们精选的题目具有以下三个特点:
(1)覆盖面全,涵盖了小学阶段所有的简便运算的类型。
(2)关注了学生易错的题目。
(3)关注了一些生僻的解法。我们要相信学生,给学生一个舞台学生会还你一片精彩。
最后还找了一些学生平时容易出错的题目供学生判断和一些思维拓展题供学生计算,让学生以竞赛、限时做题看谁做得又多又对等多种形式进行训练,计算题枯燥无味,学生在测试中,如果做的好,采取一些鼓励机制,如加分或加星等。
整堂课下来学生的精力高度集中,教学效果也很好。
《简便运算》教学反思11
《简便运算复习课》教学反思通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解了简便运算的基本理念,并能够掌握简便运算的'方法。在复习之前,孩子们对于减法、除法以及乘法分配率三种情况理解不太好,因此不能很好地做出此类题目。通过今天的练习,孩子们知道了,减法的性质:一个数连续减去两个数,就等于减去这两个数的和;同样也明白了,除法的性质:一个一个数连续除以两个数,就等于除以这两个数的积;之后在计算此类题目时,错误明显减少,此类题目也增加了孩子们计算的信心。在此基础上进一步练习乘法分配率,也取得了一定的效果。在今后的学习过程中,简便运算的练习不能断,加强练习,让孩子们一看到类似的题目,自然而然地想起简便运算,深入到自己的生活中去。
《简便运算》教学反思12
一、调整教材顺序,促进有效教学
“乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600×25×49600÷25÷49600÷25×4
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的'简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
四、加强应用训练,促进有效教学
例1、求下列图形“L型”菜地的面积;
9厘米21厘米9厘米
例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?
例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。
1、学校一共买了多少个羽毛?
25×12
=25×4×3
2、买羽毛球一共花了多少元?
32×25
=8×4×25
3、每枝羽毛球拍多少元?
330÷5÷2
五、加强错例分析,促进有效教学
例1:25×32×125例2:32×125
=25×4+8×125=4×(8×125)
=4×8×4×125
例3:463-82+18例4:9600÷25×4例5:25×(400+4)
=463-(82+18)=9600÷(25×4)=25×400+4
《简便运算》教学反思13
[建议]:
1、“先学后教+当堂训练”教学模式不能学形式。如果不看自己所教班级的实际情况,把整个“引导——学练——堂堂清”教学模式的形式的一切一切,照搬过来,可以说,您的收获一定大不了,甚至会出现退步,可能要出现成语中“鸡飞蛋打”的效果。要把“先学后教—当堂训练”教学模式的实质和所教班级、学情联系起来,取其精华,这样才会取得较大的成绩。遵循的原则:凡是能使学生学习变好、能使学生习惯好转的方法、要求都可以强化,但千万不要在原方法和制度的基础上动作过大,否则学生、老师都吃不消,循序渐进,使这些方法和制度逐渐加强。
2、“先学后教—当堂训练”教学模式,有利于培养学生的自学能力,更有利于分层推进,这就需要教师一步一步地扔掉原来的不好的方法和经验。“先学后教—当堂训练”教学模式最主要的就是:学生是主体,在知识的学习中主要以学生自学、学生讲解为主。但有的老师总认为自已不讲讲,学生不会,不自己讲讲,学生总结不全面,这就错了。如果学生总结的深度不够或者各方面不全,那是老师“引导”这个工作没有做好。就需要我们在“引导”的内容上下功夫。只要引导得当,学生可能比老师想得全面。
3、“先学后教+当堂训练”教学模式。无论是备课还是上课、无论是自习还是作业批改,要真正按照“先学后教—当堂训练”教学模式去教好学,工作量是特别繁重的。课前预习你一定要分析清课程的知识点、重点、难点,还要把引导的内容和过程设计一下,即使在上课时的设计和实际不一定相吻合也要认真设计好,因为这是有的放矢的第一步。课上的巡回指导和提问会使感到劳累。课下的辅导和作业更需要的细心和奉献。
4、“先学后教+当堂训练”教学模式。如果学生从来没有自己预习过课本、从没有自己总结过知识点、从没有自己讲过课、没有养成认真听讲的习惯,那在开始时就要有个思想准备:设计教学的每一个环节都可能出现失败,这就需要教师严格落实“一丝不苟的学习态度、一滴不漏的学习要求、始终如一的学习习惯”的学风训练,执行好学习常规。
5、“先学后教+当堂训练”教学模式。不能是教师只学模式的形式,不研究教学实质,第二就是不能持之以恒。只要认准了目标,就一定要走下去,不管在学习、教学的道路上有多少阻力和挫折,只有执着地追求、探索,就一定会成功。如果能正确地分析学习中的各个环节,并把已经成功的目标教学、创新教学应用到教学中去,成绩肯定比现在还要好,课堂教学水平肯定有质的飞跃。
[反思]:
在本单元教学过程,我们主要采取利用讲学稿“先学后教,当堂训练”的教学模式进行教学,我们觉得有以下几点是比较成功的':
1、简便计算不仅是一种知识技能,它更是一种优化思想,这种优化思想不是一节课就能完成的的事,它不能灌输,更不能速成,它需要一个长期感悟的过程。
2、简便计算与学生的数感是密不可分的。因此,培养学生良好的数感,对于学生提高运算能力,大有益处。
3、简便运算的思路会有很多,我们要注意培养学生算法多样化,培养学生灵活、合理选择算法的能力。
4、在教学中,教师要把各种简算题型分类整理,让学生从整体认识到个别比较,加深简算的印象。同时,加强变式、逆向的练习,提高学生举一反三、有效迁移的能力。
5、简便计算的意识还要渗透于解决问题中,在没有“简便计算”这样的显性要求下,学生也能考虑简便计算。
6、我们应该努力让学生在简便计算的过程中,逐渐提高简算的兴趣,逐渐掌握简算的依据,逐渐领会简算的技巧,真正具备简算的意识,让学生明白三个层次:
①、进行简算应该由一定的运算定律、性质作为依据;
②、必须正确、适当地运用运算定律、性质进行简算;
③、应该根据数据特征灵活选用运算定律、性质。
《简便运算》教学反思14
本节课的内容是在学习减法性质的基础上教学的。学生不仅知道了一个数连续减去两个数,可以减去两个数的和,还知道减法其数学模型。
成功之处:
1.沟通新旧知识间的联系,搭建学生学习的脚手架。通过减法性质的复习,建构减法与除法之间的联系,使学生对于新知的学习,不感觉困难,而是通过推想,得出除法的性质:一个数连续除以两个数,可以除以两个数的积。
2.给学生留有充分的自主学习时间,掌握两种方法解决问题的解题思路。例题的教学采用了独立思考,小组合作学习的学习形式,让学生在组内充分发表自己的看法,知道每种方法要先求什么,再求什么,为什么?
不足之处:
1.练习中注重了基本形式的练习:4800÷25÷45100÷3÷17,忽视了变式练习,导致错误率高的问题。
2.部分学生对于特殊数的简便计算还存在计算错误。
再教设计:
1.注重对课堂节奏的`把握,掌握好练习的时间和学生做作业的时间,做到习题精而少,有针对性。
2.注重对习题的变换练习,全面而缜密的设计练习题。
《简便运算》教学反思15
满校园都洋溢着愚人节的气氛,权且满足了学生这兴奋的心情吧!
到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。
这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的跟着提上来了,今后的练习课,当然是跟计算有关的练习还可以继续采取这样的'形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。
然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!
这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。
【《简便运算》教学反思】相关文章:
《简便运算》教学反思04-16
《连减的简便运算》教学反思04-03
《运算定律与简便计算》教学反思04-23
运用运算律进行简便运算教学设计03-30
分数乘法简便运算教案08-25
集合运算教学反思02-28
《混合运算》教学反思03-26
《数的运算》教学反思09-12