《鸽巢原理》教学反思

时间:2022-10-06 08:44:56 教育反思 投诉 投稿

《鸽巢原理》教学反思

  作为一名人民老师,教学是重要的工作之一,写教学反思能总结我们的教学经验,那么问题来了,教学反思应该怎么写?下面是小编为大家收集的《鸽巢原理》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《鸽巢原理》教学反思

《鸽巢原理》教学反思1

  本节课是数学广角内容,也叫“抽屉原理”。实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。

  反思如下:

  1、从学生喜欢的“游戏”入手,激发学生学习的兴趣和求知欲望,从而提出需要研究的`数学问题。在上课伊始我就说“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一个凳子至少有两个同学”。相机引入本节课的重点“总有,至少”。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。

  2、引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。注重让学生在观察、实验、猜想、验证等活动中,发展合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。

《鸽巢原理》教学反思2

  鸽巢原理是数学广角的知识,比较抽象,学生难于理解,因此培养学生的兴趣很重要,只有调动学生的积极性,学生才能主动去思考去想办法,最后总结规律,找到解决问题的办法,鸽巢原理教学反思。因此课前我准备了一幅扑克,去掉大王和小王,在学生面前变魔术,我对学生说:“我随意抽出五张牌至少有两种牌是花色一样的。”有的同学半信半疑,有的同学说同意。于是我找三名同学到前面来实验,实验的结果和我是一样的。于是我有说:老师叫的三位同学玩这个游戏,不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?引入本节课的'重点“总有……至少……”。

  通过这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,只有学生主动参与到学习活动中,才是有效的教学。在教学过程中,充分利用学具操作,把4支笔放入3个杯子学习中,把5支笔放入2个杯子学习中等,都是让学生自己操作,这为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,通过学生归纳总结规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解鸽巢问题。在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。

《鸽巢原理》教学反思3

  鸽巢原理是一个重要而又基本的数学原理,通过本课教学向学生介绍抽屉原理的由来,并通过对一些简单实际问题进行模型化地研究,使学生理解抽屉原理。掌握一些研究问题的方法,达到会证明生活中的某些现象,会解决生活中的某些问题的目的。

  本课教学时主要分以下几个层次:

  一、创设情境,巧设悬念

  通过猜月份相同这个情境引入,一是使教师和学生进行自然的沟通交流;二是调动和激发学生学习的主动性和探究欲望;三是为今天的探究埋下伏笔,初步理解“至少”的含义。

  二、合作探究,建立模型

  引导学生从简单的情况开始研究,渗透“建模”思想。通过学生独立证明、小组交流、汇报展示,使学生相互学习解决问题的不同方法。通过说理,沟通比较不同的方法,让学生理解:为什么只研究一种方法(平均分的思路)就能断定一定有“至少2只笔放进同一个笔筒中”这个过程主要解决对“至少”、“总有”“平均分”这些词的理解。再通过摆或假设法继续发现规律,在这个过程中抽象出算式,并在观察比较中全面概括、总结抽屉原理,建立起此类问题的`模型。

  三、鸽巢原理的由来

  数学小知识鸽巢原理、抽屉原理的由来,采用了微课的方式呈现,向学生介绍了德国数学家——“狄里克雷”和他的“抽屉原理”。使学生感受到我们本课所发现的规律和150多年前科学家发现的一模一样,增加探究的成就感。同时了解到鸽巢原理最初的模型和在生活中的广泛应用,增加一些数学文化气息。

  四、解决问题

  通过举例、解决问题,开阔学生视野,回归课前,回归生活,通过不同类型题的设计,让学生灵活运用此原理解释生活现象。

【《鸽巢原理》教学反思】相关文章:

《鸽巢原理》教学反思700字10-28

《鸽巢原理》优秀教学反思范文10-17

鸽巢问题的教学反思08-04

鸽巢问题教学反思(精选6篇)07-06

《鸽巢问题》教学设计10-06

鸽巢问题教学设计12-06

《鸽巢问题》教学设计12-20

《鸽巢问题》数学教学反思(通用10篇)08-02

《鸽巢问题》教学设计范文(精选10篇)11-11

《鸽巢问题》优秀的教学设计范文(通用6篇)03-08