《函数》教学反思

时间:2022-09-28 22:10:18 教育反思 投诉 投稿

《函数》教学反思

  身为一名优秀的人民教师,教学是我们的工作之一,借助教学反思可以快速提升我们的教学能力,我们该怎么去写教学反思呢?以下是小编收集整理的《函数》教学反思,仅供参考,希望能够帮助到大家。

《函数》教学反思

《函数》教学反思1

  任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此基础上初步建立任意角三角函数概念的意义,《任意角的三角函数》教学反思。如,计算方法、定义域、值域、符号表示、有关结论(与点的位置的选取无关)后,首先提供“坐标系”作为脚手架,并引发学生的认知冲突—“在坐标系下,如何研究一个任意角的三角函数?”并以坐标系为平台,有层次的研究随角的变化,即第一象限下的锐角(认识研究方法的变化,以及符号表示的变化)——0~2π范围内的角(认识该范围内角的三角函数的`表示方法,特别是值域的变化)——不同象限下终边相同的角(逐渐形成计算一个任意角的三角函数的操作过程)。

  锐角三角函数概念教学时如果是先给一个锐角,再构造三角形,而不是象当前大多数教材中采用的直接放在一个直角三角形下,对学生概念的迁移会更有帮助。

  “任意角和弧度制”,应该完成用弧度制表示一个角α及其终边相同的角的集合如何表示,会对本节课“任意角的三角函数”概念的教学更有意义。

  新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计.

  到底应该怎样去合理定义任意角的三角函数呢让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突.在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思.这样也有助于学生对任意角三角函数概念的理解.

  让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的.培养数形结合的思想.

  《标准》把发展学生的数学应用意识和创新意识作为其目标之一,在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间,促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力,发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断,教学反思《《任意角的三角函数》教学反思》。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略,使学生认识到数学原来就来自身边的现实世界,是认识和解决我们生活和工作中问题的有力武器,同时也获得了进行数学探究的切身体验和能力。增进了他们对数学的理解和应用数学的信心。

《函数》教学反思2

  在相当长的时间准确选点进行个别指导,更不能在最后引伸出几个高难题而剥夺部分学生的作业时间。课堂上分层要求、因材施教策略的有效贯彻,正是依赖于对学生的深入了解。

  本节课的教学目标是:继续经历利用二次函数解决实际最值问题;会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题;发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。

  本 节课只有两个例题,第一个例题是有关距离问题,第二个例题是有关利润的问题。原计划本节课用一节课的.时间,但是在实际操作过程中,第一个例题就用了一节课 的时间,所以本节课要用两个课时来上。首先是复习了函数的应用,问学生经过前面对二次函数学习,给他们留下最深刻的是什么?学生马上能想到二次函数的最 值,然后引导学生利用二次函数求只值问题应该注意的事项。1、根据实际问题求出函数解析式,求出自变良取值范围;2、把解析式化成配方式,或者把利用公式 来求出函数的顶点坐标。3、检查顶点的横坐标是否在自变量的取值范围内。

  举例 有最大值还是最小值,什么时候能取到最大或者最小值?变化例子是否有最大或者最小值,什么时候取到最大或者最小值?这样做一方面巩固了最大值的取法,而且还为距离的最值问题做好铺垫。

  例题的教学采取多媒体展示,根据提供的信息化出图形,引导学生观察,求距离可以根据勾股定理列出代数式。代数式是,问题转化为怎样求这个代数式的最小值。学生很自然想到,要使代数式的值最小,也就是被开方数要最小,也就想到转化为配方形式 ;解法二,利用公式求出。

  对于第二个例题,引入的时候先回顾有关列利润的一元二次方程问题,经过市场调查,某种商品的进价为为每件6元,专卖店的每日固定成本为150元.当销售价为每件10元时,日均销售量为100件,单价每将低1元,日均销售量增加40件.要使利润500元,销售价应该定多少?

  这样做就为利润问题列出函数解析式奠定了基础,主要的难点是从表格中提供的信息,总结出单价每增加一元,日均销售良就减少40瓶。根据这一规律,就不难列出y关于x的函数解析式。

  引导学生思考,你认为商家要追求最大利润,销售价格是定的越低越好还是越高越好?让学生再次体会数学与生活的的密切联系和数学的应用价值。

《函数》教学反思3

  一、教学设计方面

  首先我在学案的设计上做了改进,没有象以前那样把自己的上课流程全部体现在学案上,而是让学案仅仅起到一个导学的作用,提纲挈领式,在学案上出现的问题比较多,而把问题的答案留给学生自己去总结,我认为这样可以激发学生学习中的热情,让他们在学习的过程中不断完善学案。

  其次就是在新知识的展现形式方面做了改进,以前的学案我总是把本节课的知识点在学案上列出,通过教师的讲解让学生从学案上划出来然后背诵,学生没有经历新知识生成的过程,虽然在当堂课上学生看起来对新知识理解的较好,但过一段时间后遗忘的很快。本次的学案设计,我把新知识的学习定位为自主学习,在学案上提出了三个问题,让学生自己通过看书和小组内交流找出三个问题的答案,并把答案总结在学案上的空白处,使学生通过自学课本和小组交流,经历概念的生成过程,培养学生阅读课本和总结问题的能力。

  二、课堂教学方面

  上面谈了自己对本节课的教学设计和一些思想,下面从两个方面谈谈自己在本节课的课堂教学方面的一点体会。我认为本堂课比较成功的做法有以下几个方面:

  1、我觉得教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。本节课,若按老的教学路子,应先告诉学生什么是反比例函数,然后让学生把反比例函数的性质背下来,最后应用反比例函数的性质去解决实际问题,这样就完成了教学任务。而新的课程标准则要求教师引导学生经历从具体情境中抽象出数学知识的过程,并在这个过程中与学生平等地交流和给以恰到好处的点拨。在这点上,我认为自己处理的比较好。我先通过两个例子让学生初步了解什么是反比例函数,让学生自己概括反比例函数的意义,画反比例函数以及将它与正比例函数比较,再通过小组讨论学生就自然而然的得出了反比例函数的的特征,且印象深刻。

  2、能驾驭教材,对学生提出的问题有灵活的解决办法并且在小组合作学习产生争议的时候,教师能放能收,处理的到位,符合新的课堂教学理念。

  3、在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生学习的组织者、参与者、合作者、促进者。特别是在处理练习时,我让学生充当老师讲解自己的观点,使我看到学生的智慧,听到了富有思想的回答,让人忍不住为他们鼓掌。在学习的过程中让学生觉得数学的'简单,不仅是一种技巧,更是一种智慧,是还原数学最朴素的状态。只有这样,才能极大地释放孩子的潜能。

  本节课的不足之处:

  在上课过程中,由于是借班上课,所以我对学生的情感关注太少。新课堂改革,不应该是对原有课堂的全盘否定,原有课堂教学中对学生的表扬和鼓励应该在新课堂教学中得到更好的体现,因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。

  通过本节课教学,使我意识到今后应注意如下几个方面:

  1、教学观念还要不断更新,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

  2、要不断学习新的教育理论,充实自己头脑,指导新课程教学实践。

  3、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。

《函数》教学反思4

  在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。

  本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的`意义.教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。

  本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。

  在学习了二次函数的知识后,我们尝试运用于解决三个实际问题.问题是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。

  教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。

  总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

《函数》教学反思5

  初中阶段所学的函数包括一次函数,反比例函数,二次函数。他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解。

  在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好。根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的'图象要了如指掌。我在教学中重点是引导学生怎样去观察图象,从图象得出其性质。如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好。反比例函数,二次函数性质也掌握的较快。

  总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识。

  初中阶段所学的函数包括一次函数,反比例函数,二次函数。他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解。

  在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好。根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌。我在教学中重点是引导学生怎样去观察图象,从图象得出其性质。如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好。反比例函数,二次函数性质也掌握的较快。

  总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识。

《函数》教学反思6

  二次函数对学生来讲,既是难点又是重点,通过我对这一章的教学,让我学到很多道理和教学方法。下面是我对二次函数的复习课的一些反思感受:

  首先,我认为在课堂上,我对知识的掌握还是有一定的欠缺,把二次函数用自己的眼光和感受想象的太简单,但是对于学生而言,这又是一个重点,尤其是一个难点。所以我课堂上有的习题深度没有掌握好,没有做到面向全体。

  其次,本节课体现的是分层教学,而我只是在后面的比赛中简单的体现分层,对于提问中得分层,习题中的分层还是做的不够好,这说明我对于分层教学的这种方法还是有待于进一步的提高,应该真正的站在学生的角度来分层。

  第三,课堂上的语言不够精辟,尤其是评价性的话语很少,很单调。没有做到让学生为我的一句话而振奋,没有因为为了争得我的一句话而好好做题等等,这是我一直以来欠缺的一个重要点。

  那么针对以上几点,我从自己的角度思考,收获了以下这些:

  1.上课之前一定要反复的推敲,琢磨课本,找出本节课知识的“灵魂”,然后站在学生的角度,仔细研究,如何讲授学生们才能愿意听,才能听得明白。尤其不能把学生想像的水平很高,不是不自信,而是不能把学生逼到“危险之地”,以免打击自尊心,熄灭刚刚点燃的兴趣之光。真正做到“低起点”。

  2.既然选择和实施了分层教学,就应该多下功夫去琢磨,去进行它。既然是分层就应该把它做到“顺其自然”,而不仅仅是一种形式。在分层的同时应该找到一个点,就是说,这个点上的问题是承上启下的,是应该全班都能够掌握的。对于尖子生,不能在课堂上想让他们吃饱,对于他们应该在课下,或者是采用小纸条的方法单独来测试,不能为了他们的能力把题目难度定的过高。再者,分层应该体现在一节课的所有环节,例如,在提问时,对于一个问题应该分层次来提,来回答。

  3.应该及时地,迅速的提高自己的言语水平。

  一堂课的精彩与否,教师的课堂语言也是很重要的一个方面,例如一节课的讲授过程,或者是对于学生的.评价等等。

  督促自己多读书,多练习,以丰富自己的语言。

  4.最后,我觉得自己真的需要多学习,多见识,这样才能提高,才能迅速的提高。对于自己的优势,我也看到了,那就是我的教学之路很长,很多方法,很多思路都有时间,有条件去尝试,所以在以后的工作中要多动脑,多为学生着想。

  俗话说“天下无难事,只怕有心人”,所以只要我认真的付出,认真的思考,我想我的明天会是美好的。

《函数》教学反思7

  今天讲授了一节新课《反比例函数》(苏科版八年级下册第九章第一节内容),从教学设计到课堂教学,课后仔细回味,觉得有很多值得反思的地方。

  关于教学设计:

  备课时,我仔细研读教材,认为本节课无论是重点和难点都是让学生掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。

  为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的`位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

  情境设置:

  汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

  (1) 你能用含v的代数式来表示t吗?

  设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。 为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

  k 一般式变形:y=k/x ,可以变形为: (1)y=kx^-1 ,(2)xy=k (其中k均不为0)

  通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

  为加深难度,我又补充了几个练习:

  1、当m为何值时,函数y=(m2+2m)xm2-m-1是反比例函数.

  2、(1)y与x成反比例,已知x=3时,y=-6,求当x=时,y的值。

  (2)y与x-1成反比例,已知x=3时,y=-6,求当x=2时,y的值。

  3、y是x的反比例函数,z是x的正比例函数,则y与z成什么关系?

  关于课堂教学:

  由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

  在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到

  如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

  对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

  而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

  经验感想:

  1、 课前认真准备,对授课效果的影响是不容忽视的。

  2、 教师的精神状态直接影响学生的精神状态。

  3、 数学教学一定要重概念,抓本质。

  4、 课堂上要注重学生情感,表情,可适当调整教学深度。

《函数》教学反思8

  通过一节新课“反比例函数”(北师大版九年级上册第五章第一节)的内容制作教学课件,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。制作起来比较麻烦,但能使课堂教学达到预想不到的效果。课后仔细回味,从教学设计到课堂教学觉得有很多值得反思的地方。

  一、教学设计

  备课时,我认真研读教材,认为本节课无论是重点和难点都要让学生掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”的复习。

  为了更好地让学生掌握“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“做一做”的有关问题,让学生体会在生活中有很多反比例关系。

  情景设置:

  第143页实例:电流I,电阻R,电压U之间满足关系式U=IR,当U=220 V时。

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表:

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  学生通过填表发现:

  当R越来越大时,I越来越小。当R越来越小时,I越来越大。

  变量I是R的函数。变量I是R的函数.由IR=220,得b=220/R.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数。

  设计意图:与前面复习内容相呼应,让同学们能在“做一做”中感受两个量之间的`函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同,从而自然地引入“反比例函数”概念。

  二、课堂教学

  在这节课中,由于备课充分,我信心十足,因此课堂气氛比较活跃。我认为最成功之处是比较充分地调动了学生的积极性、主动性。由于学生的兴趣得以激发,所以,在教授新课的过程中,师生得以互动。

  在复习“函数”这一概念的时候,很多学生感到比较陌生,显然不是忘记了就是不知道如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数的图象做了很好的铺垫。

  三、经验感想

  在这节课中,我们学习了反比例函数定义,并归纳总结出反比例函数的表达式为(k为常数且k不等于0)。还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数。一句话,多媒体教学也起到了举足轻重的作用。在电脑课件的帮助下,学生表现积极踊跃有活力,效率比较高。但是,也有不足之处,在今后的教学中,要注意不能靠以往的经验来讲课,一定要精心设置,进一步探索和挖掘教材和考点,使每一位学生都能成为真正的组织者、参与者、合作者、促进者。

《函数》教学反思9

  本节课是在七年级下册“变量之间的关系”一章的基础上,通过对变量关系的考察,使学生明确“给定其中某一个变量的值,相应的就确定了另一个变量的值”这一共性,从而归纳出函数的概念。本节最重要的任务是完成函数概念的建构,同时让学生感受出函数表示方式的多样性,从而使学生对函数有一个更为准确、全面的认识。

  1、在内容的处理上,函数的概念是相当抽象的,学生认识起来有一定的困难,为此从具有函数关系生动有趣的生活实例开始,进行分析说明以激发学生的好奇心求知欲。通过摩天轮、圆柱形物体的堆放数目和层数等一些生活实例,从图形和表格两个方面让学生体会思考其中的蕴含的变量关系,有利于学生对函数的形成全面的认识,尤其是摄氏温度T(k)与热力学温度T(k)之间数量变化,让学生明确自变量的取值范围不仅可以是正数,也可以是负数,从而使学生对自变量的取值范围有更全面的认识。通过概念的获得过程,让学生感悟抽象的数学思想,积累抽象概括的活动经验。

  2、课堂教学中,激发学生的学习积极性,帮助他们在自主探究、合作交流的过程中,真正理解和掌握基本的数学知识和技能获得广泛的活动经验,为学生提供充分的探索空间,结合引导学生独立思考,创建民主、宽松、和谐的.课堂氛围。

  3、注重学法指导,通过一例的探究活动完成学习过程,让学生经历观察、探索、分析、归纳的一个过程。自主完成本节课的学习,整个教学过程中,不论是情景引入,还是新知识的探究及拓广,始终体现学生是数学学习的主人,本课知识学习过程中都是以问题形式呈现给学生,难易有别、层次分明。不但激发了兴趣,也为学生主动学习构建新知识提供了保证。

  当然,本节课也发现了不少的问题:

  1、当遇到具体的问题时,函数概念模糊,说明少时学生尚未抓住函数的本质属性。

  2、课前安排的《绩优学案》自主探究环节完成情况不够好,部分同学抄袭他人学案。合作交流环节,学生放不开,加上知识跨度大,占用课堂时间多,致使课堂练习任务未完成。

  3、小组合作交流成效不大,还只是停留在对照答案的正确与否,不能对错对进行辨析,不能真正的体现知识从建立到内化,继而转化为解决问题的能力的过程。

《函数》教学反思10

  在新课程中,教学过程要符合学生学习过程,学生在学习过程中应该以探究、实践、合作学习为重,要善于引导学生积极参与教学过程中的探讨活动,让学生在动手实践、自主探究与合作交流的过程中来学习数学。教师的教学活动要能激发学生探求新知识的兴趣和欲望,逐步培养他们提问的意识,鼓励学生多思考。同时还要关注他们在数学学习过程中的变化和发展,关注学习方法与习惯的养成。

  在初中一元二次方程和二次函数学习的基础上,教学中通过比较一元二次方程的根与对应的二次函数的图象和x轴的交点的横坐标之间的关系,给出函数的零点的概念,并揭示了方程的根与对应的函数的零点之间的关系.然后,通过探究介绍了判断一个函数在某个给定区间存在零点的方法和二分法.并且,教科书在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法内容埋下伏笔.

  教学中,对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.分三步来展开这部分的内容.第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的`求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.

  除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型.教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个系统的整体.教学中应当注意贯彻教科书的这个意图,是学生经历函数模型应用的完整。

《函数》教学反思11

  对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的`应用作好准备。

  在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:

  1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。

  2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。

  3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.

  4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。

  以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲两节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再通过系统讲解,直到绝大部分学生理解掌握为止。

《函数》教学反思12

  函数一直是初中数学教学的重点,当然也是难点。本节课作为函数教学的第一节,其重要性不言而喻。如果上好了这节课,可以说接下来同学们对函数的理解程度就大大加深,对后续教学的帮助将非常大。

  经过全组教师的集体备课后,我在本节课上淡化了自变量与因变量的区分,而是把重点放在了函数概念的'理解以及因变量的唯一性上面。课上完之后,感觉学生们对唯一性的理解还是比较透彻的,但对于函数的概念理解还存在一知半解的现象,尤其是对于谁是谁的函数方面理解较差。

  在评课的时候,各位老师都提出了中肯的意见,我意识到我的前面几分钟自习时间仅仅只是为了体现’先学后教‘的思想,而缺乏实际性的指导;我还认识到我对变量与常量的讲授没有和前面4个问题有机结合,导致了结构分裂;我还发现了我在节奏掌控方面还是犯了老毛病:先松后紧等等一系列的不足。在此感谢给我提出宝贵意见的各位领导以及同事们。

  在今后的教学中,我会继续努力,让学生的主体地位得到体现的同时,不断加强教师的主导作用。

《函数》教学反思13

  学习用反比例函数解决实际问题,就是引导学生建立数学模型(反比例函数),把实际问题转化为数学问题,学生解决这类问题和解列方程解应用题一样,是学习上面的难点内容,除了要求学生研读题意,理顺数量关系,在学习研究问题时,通过实例使学生搞清基本量的关系,认准常量与变量,熟练等式变形,注意单位统一。

  在进行新课学习之前,我就设计了这样的问题,在实际生活中有许多的例子存在着三个基本量满足a=bc的关系,当b为常量时,a与c成正比例,当c为常量时,a与b成正比例,当a为常量时,b与c成反比例,试举出具有a=bc的关系的例子,学生能够举出很多这样的例子,再利用这样的例子加以研究,例如有学生举出路程速度时间满足:路程等于速度乘以时间,速度为常量时,路程与时间成正比例;时间为常量时,路程与速度成正比例;路程为常量时,速度与时间成反比例。在继续研究问题时,学生对于问题中的常量变量及其函数关系就能够比较快地用变化的观念来理解了。布置学生学习第56页的《阅读与思考》:生活中的反比例关系。

  课本上有几个不太妥当的地方:

  例题2的第二小问用的是具体求出t=5时v=48,再进行问题的回答,学生较难理解,我在处理时,用函数的增减性加以解释,当0<t≤5时,v随t的增大而增大,所以v≥48。或者结合函数的图象加以认识,学生理解起来更为便利。

  第54页的三个练习题都应该指明变量的单位,没有单位,函数关系式是不好确定的。

  在研究实际问题与反比例函数的关系时,一般的,自变量的'取值范围为正数,所以画出的函数图象都是双曲线的一个分支,学生在做练习时没有注意这一点,本课要做说明。由这个作业讲评引出例题1熏药消毒的问题研究,首先提出释放药物之后的反比例函数自变量的取值范围,再关注到空气中的含药量与时间的函数关系是分段函数,进而有条理地求出解析式,第二、三小问是难点,结合图形直观地解读题目,可以借助直尺放置在图形上,使直尺平行于横轴,进行平移,表出直线与图形交点的横坐标的变化和意义,学生对这样的处理有比较好的理解,联系前面学习过的农作物受冻害的题目,这个难点还是可以很好地突破的。

  对于课本第58页的两个数学活动,本来是很好的教学探究内容,由于没有在专门的课题活动课上研究,时间仓促,准备不好,走的还是只求结果之路,需要很好地改进。

《函数》教学反思14

  角三角函数是定义在直角三角形中的研究边角之间的关系,反思八:锐角三角函数教学反思。而锐角三角函数值实质上就是边与边之间的一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。

  本节课重难点就是对比值的理解,可以从以下几方面着手研究:

  (1)讨论角的任意性(从特殊到一般)(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值。

  采 用激趣设疑方法,从修建扬水站铺设水管问题入手,让学生参与问题讨论,唤起学生学习兴趣和求知欲。再根据从特殊到一般的学习方法,利用特殊角来探究锐角的三角函数,通画图,找出边的长度、角的度数,计算相关方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出相关边的长度,然后就问:三角函数与直角三角形的'边、角有什么关系,三角函数与三角形的形状大小有关系吗?整堂课都在愉快的氛围中进行。多数学生都能积极动脑积极参与思考。教学中,要关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性,教学反思《反思八:锐角三角函数教学反思》。

  在以后教学中,还要多注意以下两点:

  (1)要多花点时间来研究如何调控课堂气氛。学生的注意力是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。要不断摸索,不断实践找到合适的教学风格,每一种个性教学都是教学魅力和人格魅力的展现。

  (2)要学会换位思考,站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,学会真正把课堂还给学生,让学生来做课堂的主角。

  (3)下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。

《函数》教学反思15

  “对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

  在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。

  大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的`发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

  为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。躲猫猫教学反思多样与统一教学反思多边形面积教学反思

【《函数》教学反思】相关文章:

变量与函数教学反思10-06

函数的概念教学反思04-03

《对数函数》教学反思04-20

对数函数教学反思04-02

二次函数教学反思10-07

函数图像的变换教学反思10-06

《对数函数的性质》教学反思10-07

正比例函数教学反思04-22

函数的概念教学反思(8篇)04-12

函数的概念教学反思8篇04-12