小学数学《三角形内角和》的教学设计

时间:2022-10-07 07:25:24 教学资源 投诉 投稿
  • 相关推荐

人教版小学数学《三角形内角和》的教学设计范文

  作为一名教职工,就有可能用到教学设计,教学设计是一个系统化规划教学系统的过程。怎样写教学设计才更能起到其作用呢?下面是小编精心整理的人教版小学数学《三角形内角和》的教学设计范文,欢迎阅读与收藏。

人教版小学数学《三角形内角和》的教学设计范文

  教学目标:

  1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  3、经历三角形内角和的研究方法,感受数学研究方法。

  教学重点:

  1、探索和发现三角形三个内角的度数和等于180°。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

  教学用具:表格、课件。

  学具准备:各种三角形、剪刀、量角器。

  一、创设情境揭示课题。

  1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。

  生1:大三角形大(个子大)

  生2:小三角形大(有钝角)

  (教师不做判断,让学生带着问题进入新课)

  2、什么是三角形的内角和?(板书:内角和)

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  二、自主探究,合作交流。

  (一)提出问题:

  1、你认为谁说得对?你是怎么想的?

  2、你有什么办法可以比较一下这两个三角形的内角和呢?

  生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

  生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

  生3:用折一折的办法把三个角折到一起看它们能不能组成平角

  (二)探索与发现

  活动一:量一量

  (1)

  ①了解活动要求:(屏幕显示)

  A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

  B、把测量结果记录在表格中,并计算三角形内角和。

  C、讨论:从刚才的测量和计算结果中,你发现了什么?

  (引导生回顾活动要求)

  ②小组合作。

  ③汇报交流。

  你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

  (引导学生发现每个三角形的三个内角和都在180°,左右。)

  (2)提出猜想

  刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

  活动二:拼一拼,验证猜想

  这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

  引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

  (1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。

  (2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

  (3)分组汇报,讨论质疑

  (4)课件演示,验证结果

  活动三:折一折

  师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。

  (把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。

  讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

  提问:还有没有其它的方法?

  3、回顾两种方法,归纳总结,得出结论。

  (1)引导学生得出结论。

  孩子们,三角形内角和到底等于多少度呢?”

  学生答:“180°!”

  (2)总结方法,齐读结论

  我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

  (3)解释测量误差

  为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?

  那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°

  (三)回顾问题:

  现在你知道这两个三角形谁说得对了吗?(都不对!)

  为什么?请大家一起,自信肯定的告诉我。

  生:因为三角形内角和等于180°。(齐读)

  三、巩固深化,加深理解。

  四、回顾课堂,渗透数学方法。

  1、总结:猜想—验证—归纳—应用的数学方法。

  2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

  3、课堂延伸活动:探索——多边形内角和

  板书设计:

  探索与发现(一)

  三角形内角和等于180°

【小学数学《三角形内角和》的教学设计】相关文章:

三角形内角和教学设计03-09

《三角形的内角和》教学设计03-14

《三角形内角和》教学设计04-07

关于《三角形内角和》教学设计10-11

三角形内角和教学设计15篇03-09

三角形内角和教学设计14篇06-12

三角形内角和教学设计(14篇)06-12

三角形内角和教学设计(15篇)03-29

三角形内角和教学设计(精选15篇)05-03

《三角形的内角和》教学设计15篇05-08