三角形面积的计算的教学设计

时间:2022-10-08 23:20:47 教学资源 投诉 投稿
  • 相关推荐

三角形面积的计算的教学设计(通用5篇)

  在教学工作者实际的教学活动中,有必要进行细致的教学设计准备工作,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写呢?下面是小编为大家收集的三角形面积的计算的教学设计(通用5篇),仅供参考,欢迎大家阅读。

三角形面积的计算的教学设计(通用5篇)

  三角形面积的计算的教学设计1

  教学内容:

  《现代小学数学》第九册第31~35页,三角形面积的计算。

  教学目标:

  一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

  二、能运用三角形面积计算公式进行有关的计算。

  三、渗透对立统一的辩证思想。

  教学过程:

  一、复习引入。

  1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

  出示:

  2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

  3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

  【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

  二、新课展开。

  (一)实践活动。

  1.让学生拿出已准备好的如下一套图形。(同桌合作)

  (1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

  (2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

  (3)分组讨论:

  ①各三角形的面积是多少?请填入表格内。

  ②三角形的面积怎样计算?

  (4)汇报、交流,初步得出三角形面积计算方法。

  【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

  2.验证。

  (1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

  数学课堂教学参谋

  (2)汇报、交流:学生有几种剪拼法,就交流几种。如:

  ①

  6×4÷2 6×(4÷2)

  =12(平方厘米) =12(平方厘米)

  ②

  6×4÷2 6÷2×4

  =12(平方厘米) =12(平方厘米)

  【设计意图:通过验证,培养学生科学的`态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

  (二)归纳、小结。

  1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

  2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

  (三)应用。

  例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

  学生试做后,反馈、评讲。

  【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

  三、巩固练习。

  (一)基本练习。

  1.口算出每个三角形的面积。

  ①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

  2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

  这些三角形的高都是____厘米,底都是____厘米。

  这些三角形的面积都是:□×□÷2=□(平方厘米)。

  3.先量一量,标出图形的长度后,再计算各三角形的面积。

  【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

  (二)分层练习。

  a组学生:做选择题。

  ①求右图面积的算式是( )。

  a.9×4÷2 b.15×4÷2

  c.15×9÷2 d.15×4

  ②求右图面积的算式是( )。

  a.5.2×3.5÷2

  b.5.2×4.1÷2

  c.4.1×3.5 d.4.1×3.5÷2

  ③求下图面积的算式是( )。

  a.25×20 b.18×25

  c.18×20 d.18×20÷2

  b组学生:做课本第15页第

  ②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

  c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

  【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

  四、课堂小结。

  这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

  【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

  五、布置作业。(略)

  (此文获“第二届全国小学课堂教学征文大赛”一等奖)

  三角形面积的计算的教学设计2

  及重点难点

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学准备

  (含资料辑录或图表绘制)

  教和学的过程

  内容教师活动学生活动

  一、练习

  二、总结

  1、第5题

  可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

  2、第6题

  要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  3、第9题

  测量红领巾高时,可以启发学生把红领巾对折后再测量。

  4、第10题

  要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

  5、思考题

  每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的'面积是8平方厘米。

  通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

  三角形面积的计算的教学设计3

  教材分析:

  三角形面积的计算是在学生掌握了平行四边形面积的计算方法的基础上进行教学的。由于在前面的学习中,学生对转化的数学思想有了初步的了解和认识,因此可以通过知识的迁移,放手让学生探究三角形面积的计算方法。本节课的重点在于让学生理解、掌握平行四边形面积的计算公式,而通过学生自主探究、发现三角形面积计算公式的推导过程则是本节课的难点。

  设计思路:

  本节课的设计力求体现“以学生发展为本”的教学理念,让学生在学习小组内,通过折一折、剪一剪、拼一拼的操作,亲身经历新知的形成过程,体验“转化”思想在几何体知识中的作用。同时在获取新知的过程中大胆放手,让学生充分运用旧知进行迁移,自主探索,培养学生的创新知识和创新能力。

  采取小组学习的`教学形式,为学生营造一种宽松、自由的探索氛围。

  教学准备:

  1、 每人准备一个学具袋,内有两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,大小各异的任意三角形3个;

  2、 量具一张,铅笔一支,剪刀一把;

  3、 视频展示台、电脑、实物投影仪。

  教学过程:

  一、揭示课题

  师:上一节课我们研究了平行四边形面积的计算方法,怎样计算平行四边形的面积?

  我们是怎样发现这一计算公式的?

  ①学生回忆公式推导过程。

  ②电脑动画演示。

  小结:将图形转化成我们会求面积的图形,是一种重要的数学研究方法。今天我们用同样的办法研究三角形面积的计算。

  揭示课题——三角形面积的计算

  二、探究新知

  1、学生操作

  每位同学都一袋学具,看看谁能利用这些图形发现三角形面积的计算方法。

  a、 学生动手操作;

  b、老师巡视。

  学生把自己的发现用教具贴在黑板上。

  2、汇报、交流

  师:观察这些图形,你发现了什么?

  a、 学生在小组内互相说。

  b、指名说。

  3、推导公式

  师:根据你们的发现,你能推导出三角形面积的计算公式吗?

  学生小组讨论,说说自己是怎样推导的。

  教师根据学生的回答动态演示课件,帮助学生直观建立转化思想,清楚地理解公式推导的由来。

  4、小结

  刚才我们通过剪、拼、割、补等方法,推导出三角形面积计算公式。

  说一说:三角形面积计算公式是什么呢?如果用s表示面积,a、h分别表示底和高,用字母怎样表示公式?

  板书:三角形的面积=底×高÷2

  =a h÷2

  附板书设计:(略)

  三角形面积的计算的教学设计4

  教学内容

  第75页及练习十八1-4题

  教学要求:

  1、理解三角形面积公式的推导过程,并能正确地运用公式计算三角形的面积。

  2、通过教学培养学生分析、推理能力和实际操作能力,发展学生的空间观念。

  3、在指导操作过程中,引导学生运用转化的方法探索规律。

  教学重点

  三角形面积计算公式的推导。

  教学难点

  理解公式中除以2的道理。

  教具:

  准备三种类型的三角形,每种2个完全一样,投影片若干。

  学具:

  完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

  教学过程:

  一、复习铺垫

  1、提问:谁能说说长方形、平行四边形的面积计算公式是怎样的?

  2、(幻灯出示)口答:计算图形面积

  二、导入新课

  幻灯出示一个三角形

  提问:它是一个什么图形?

  它的底和高分别是多少?

  它的面积怎样算呢?板书课题:三角形面积的计算。

  三、讲授新课

  (一)、用数方格的方法计算三角形的面积。

  幻灯出示课本第75页上面的图,教师说明不够一格的都按半格算。让学生说出它们的底和高各是多少?面积是多少?

  得出用数方格的方法计算三角形的面积不准确,又很麻烦。

  质疑:怎样计算三角形的`面积呢?

  (二)、通过操作总结三角形的面积计算公式。

  1、从直角三角形推导。

  我们能不能把三角形转化成已经学过的图形,再进行计算面积呢?

  (1)让学生动手拼,教师将学生拼出的图形一一展示出来。

  (2)这些图形中哪些图形的面积你们会算?

  (3)每个直角三角形的面积与拼成的长方形和平行四边形的面积有什么关系?

  教师重述:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半。

  2、从锐角三角形推导。

  (1)让学生试拼,可以相互讨论。

  (2)教师指导,突出旋转和平移。

  (3)每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?

  教师强调:每个锐角三角形的面积是拼成的平行四边形面积的一半。

  3、从钝角三角形推导。

  (1)学生操作。

  (2)每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

  4、归纳总结规律。

  通过以上实验可以看出:两个完全一样的三角形,不论是直角三角形、锐角三角形、钝角三角形都可以拼成一个平行四边形。大家想想:

  (1)这个平行四边形的底与三角形的底是什么关系?高又怎么样?

  (2)这个平行四边形的面积和三角形的面积有什么关系?

  得出:三角形的面积=底×高÷2

  (3)如果用S表示三角形面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式用字母怎么表示呢?

  板书:S=ah÷2

  (三)、运用面积公式计算三角形的面积。

  1、出示数方格求面积图:谁能用公式计算方格图上的三个三角形的面积?三个三角形的面积为什么都相等?

  2、出示例题让学生试做。

  说一说计算三角形面积为什么要除以2?

  3、看书质疑。

  4、做一做书本第77页

  四、课堂小结

  提问:1、这节课我们主要研究什么?

  2、求三角形的面积有几种方法?哪一种求面积的方法更方便,更准确?

  3、要求三角形面积必须知道什么?怎样求?

  五、巩固练习

  练习十八1、3(1)

  六、课堂练习

  三角形面积的计算的教学设计5

  教学内容

  三角形面积计算的练习(练习十八5~10题)

  教学要求:

  1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2.能运用公式解答有关的实际问题。

  3.养成良好的审题、检验的习惯,提供正确率。

  教学重点

  运用所学知识,正确解答有关三角形面积的应用题。

  教具准备

  展示台

  教学过程:

  一、基本练习

  1.填空。

  (1)三角形的面积=,用字母表示是。

  为什么公式中有一个“÷2”?

  (2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是()平方米,平行四边形的面积是()平方米。

  2、练习十六2题

  二、指导练习

  1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪两个三角形的'面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来

  2.练习十六第7题

  (1)让学生尝试分。

  (2)展示学生的作业

  可能有:a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。

  b、也可把原三角形先二等分,再把每一份分别二等分。

  3、练习十六9*

  让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4

  4.练习十六第3题:已知一个三角形的面积和底,求高?

  让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。

  三、课堂练习

  练习十六第8题。

  四、作业

  练习十六第4、5题。

  课后记:

【三角形面积的计算的教学设计】相关文章:

梯形面积的计算教学设计06-21

《三角形的面积计算》教学反思09-03

三角形面积的教学设计01-12

三角形面积教学设计03-16

《三角形的面积》教学设计03-17

三角形的面积教学设计03-28

梯形面积的计算教学设计5篇06-21

梯形面积的计算教学设计(5篇)06-21

三角形的面积教学设计【热门】06-24

三角形的面积教学设计【精】06-24