- 《三角形边的关系》教学设计 推荐度:
- 相关推荐
《三角形边的关系》教学设计模板
在教学工作者开展教学活动前,可能需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编精心整理的《三角形边的关系》教学设计模板,欢迎大家借鉴与参考,希望对大家有所帮助。
《三角形边的关系》教学设计1
一、教学目标
1、探究三角形三边的关系,理解三角形任意两边的和大于第三边;
2、能根据三角形三边的关系解释生活中的现象,提高解决实际问题的能力;
3、积极参与探究活动,获得成功体验,产生学习数学的兴趣。
二、教学重难点
重点:探索三角形三边之间的关系
难点:三角形任意两边的和大于第三边
三、教学过程
Ⅰ、创设情境,引入新课
师:同学们,昨天我们已经认识了三角形,谁能来告诉大家什么是三角形么?
生:由三条线段围成的图形叫做三角形。
师:讲得很好,也就是说三角形是由三条线段所围成的。那么是不是只要有三条线段,我们就一定能围成三角形呢?
生:是(有些答不是)。
师:现在同学们从老师发的5根小棒中选出3根,看看是否能围成三角形?好,开始。(板书:不能围成三角形能围成三角形)
生:摆一摆(上台展示)
师:任取三根小棒,有时能围成三角形,有时却围不成三角形,那么围成与围不成,跟三角形的什么有关系呢?
生:三角形的边。
师:大家回答得很好,三角形的边有什么样的关系呢?这就是我们今天要研究的.问题。(板书:三角形边的关系)
Ⅱ、自主探究,提炼规律
师:下面让我们一起来完成这个探究活动,请齐读操作要求,开始!
生:进行实验并完成表格填写(教师进行指导)
组别小棒的长度能否围成三角形两边之和与第三边的大小关系
13583+5○8;3+8○5;5+8○3
245104+5○10;4+10○5;5+10○4
33453+4○5;3+5○4;4+5○3
458105+8○10;5+10○8;8+10○5
师:坐好。大家认为有哪几组是围不成三角形的呢?
生:前两组。
师:让我们一起来看看
生1,你发现的两边之和与第三边的关系是什么?
生1:3+5=8,3+8>5,5+8>3(课件展示:3、5、8,围不成)
师:很棒,我们继续来看第2组
生2,你发现了什么?(教师手指两边之和与第三边的关系)
生2:4+5<10,4+10>5,5+10>4(4,5,10,围不成)
师:为什么这两组的小棒围不成三角形呢?
生:3+5=8,4+5<10(或有两条边的长度的和没有第三条边长)
师:说得很好,也就是说两边之和小于或等于第三边,所以这三根小棒围不成三角形。(板书:两边的和≤第三边)
师:那围成三角形的就是3、4组了,对吧?
生:对。
师:生3,你发现的两边之和与第三边的关系是什么?
生3:3+4>5,3+5>4,4+5>3看第三组的课件演示(3、4、5,围成)
师:这个呢?
生3:能围成,5+8>10,5+10>8,8+10>5
师:回答得非常棒,大家试一试将3、4组与1、2组进行对比,为什么3.4组能围成三角形?
生:它3个都是大于的(有些同学会回答:两边的和比第三条边大)。
师:那也就是说围成三角形是两边的和大于第三边(板书:两边的和>第三边?)
师:这个有问题么,大家看看屏幕,1、2组也有两边的和大于第三边呀?
生:都大于。
师:对!必须强调每组都是,即是“任意”,我们把它表示为:任意两边的和大于第三边。(板书:擦去?,补任意)
师:我们发现的规律就出现在课本的82页,大家把它画起来。(5秒)齐读。
生:三角形的任意两边之和大于第三边。(板书:三角形的任意两边之和大于第三边)
Ⅲ、巩固应用,变式提升
例判断下列三条线段是否能围成三角形?
(1)6,7,8(2)4,5,9(3)3,6,10
(学生先用三条式子来判断是否能围成三角形,教师再让学生讨论交流好方法)
通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形。
教师指导学生:将两条短的边相加与最长的边相比,如果大于,就能围成三角形。
1、判断以下几组小棒能否围成三角形,能的打“√”,不能的打“×”,并说明理由。
(1)3cm4cm5cm()
(2)3cm3cm3cm()
(3)2cm2cm6cm()
(4)3cm3cm5cm()
注:学生学会将两条短的边相加与最长的边相比,如果大于,就能围成三角形,从而提高做题速度。
2、生活中的数学
3、巩固提升
小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。
(1)第三根木条可以是多少分米?(取整数)
(2)第三边的木条的长度是a分米,那么a的取值范围是() 四、回忆新知,归纳总结 师:通过本节课的学习,你收获了什么? 生:三角形任意两边之和大于第三边。(等等) 五、板书设计 三角形边的关系 不能围成三角形能围成三角形 两边之和≤第三边任意两边之和>第三边 三角形任意两边之和大于第三边 教学目标: 1.通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。 2.引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。 3.培养学生积极的学习态度和乐于探究的数学情感。 教学重点: 掌握“三角形任意两边长度的和大于第三边”的关系。 教学难点: 运用三角形三边的关系解决实际问题。 教学准备: 课件 教学过程: 一、谈话引入 1.举例:生活中哪些物体的面是三角形的? 2.复习三角形的各部分名称。 提问:我们已经初步认识了三角形,关于三角形你已经知道了什么? 引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高…… 3.导入新课。 三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题) 二、交流共享 1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗? 2.操作交流。 (1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。 教师巡视,了解学生的操作情况。 (2)小组交流。 布置学生将各自的操作情况在四人小组内进行交流。 (3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形? 学生回答预设: ①选择8cm、5cm、4cm三根小棒,能围成三角形。 ②选择5cm、4cm、2cm三根小棒,能围成三角形。 ③选择8cm、4cm、2cm三根小棒,不能围成三角形。 ④选择8cm、5cm、2cm三根小棒,不能围成三角形。 追问:第③种情况和第④种情况为什么不能围成三角形? 引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。 教师小结:因为4cm+2cm8cm,5cm+2cm8cm,所以不能围成三角形。 3.探索规律。 师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢? (1)布置探索任务。 从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样? (2)学生独立探索。 (3)交流汇报。 第①种情况:4+58、4+85、5+84; 第②种情况:4+25、4+52、5+24。 小结:任意两根小棒长度的和一定大于第三根小棒。 4.验证规律。 提问:三角形任意两边长度的和一定大于第三边吗? (1)画一画:用三角尺画一个三角形。 (2)量一量:量出三角形的各边长度。(单位:毫米) (3)算一算:算出任意两边之和与第三边长度的关系。 (4)总结规律。 提问:通过验证,你发现三角形三边的长度有哪些关系? 师生共同总结得出:三角形任意两边长度的和大于第三边。 追问:对于“任意两边”这四个字,你是怎么理解的? 5.议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么? 引导学生得出:5厘米长的.小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。 三、反馈完善 1.完成教材第78页“练一练”第1题。 先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。 2.完成教材第78页“练一练”第2题。 这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差第三边两边之和”。 四、反思总结 通过本课的学习,你有什么收获?还有哪些疑问? 教学内容: 人教版《义务教育课程标准实验教科书数学》四年级下册第82页的内容。 教学目标: 1.知识与技能: (1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。 (2)运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。 2.过程与方法: 通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。 3.情感与态度: (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。 (2)学会从全面、周到的角度考虑问题。 教学重点: 理解、掌握“三角形任意两边之和大于第三边”的性质。 教学难点: 引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。 教学准备: 课件、学具袋。 教学过程: (课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗? 如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种) 如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种) 教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。 一、动手游戏,提出问题 教师:请同学们拿出你的1号学具袋,看看里面有什么?(三根小棒。) 三根小棒能围成一个三角形吗? 学生先猜。 教师:光猜可不行,知识是科学,咱们来动手围一围。 学生动手围,集体交流:有的能围成,有的不能围成。 教师请能围成和不能围成的同学分别上来展示一下。 同时板贴:能围成三角形,不能围成三角形 教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。 提出问题:那么,能围还是不能围,跟三角形的什么有关系呢? 引导学生明白:跟三角形的边有关系。 教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀? 板书课题:三角形边的关系(让学生收拾好一号学具袋) [设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?] 二、实践操作,探究学习 1.动手操作。 电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形? 教师说明操作要求: (1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实践操作表格); (2)在作业纸上有不同的线段,请你用两根小棒去围一围,看看是否能围成一个三角形(至少要和三条不同的线段围一围); (3)将数据和结果填写在表格中,能围成的用√表示,不能围成的用×表示。 学生活动,教师巡视指导。 2.汇报交流。 教师:下面就请同学们来汇报一下你的操作结果。 请不同的学生汇报,教师在课件中输入数据和结果。如下图: 第一边 长度(cm)第二边 长度(cm)第三边 长度(cm)能否 围成算式 631× 2× 3× 4√ 5√ 6√ 7√ 8√ 9× 10× [设计意图:既然已经知道能否围成一个三角形,与三角形的边有关系,所以教师先给出学生两根6厘米和3厘米的小棒,让学生通过动手操作得到,当第三边是几厘米的时候能围成三角形,直观明了,为后面的探究打好基础。] 3.集体探究。 第一层次:发现不能围成的原因。 (1)教师:同学们通过动手实践,发现1厘米的小棒不能围,确定吗?咱们再来验证一下。 课件演示:当三根小棒分别是1厘米、3厘米和6厘米的时候,围不成三角形。 教师:为什么围不成?你会用一个数学关系式表示出它们的关系吗? 引导学生得出:1+3<6,所以围不成。 (2)教师:下面我们再来验证一下2厘米。课件演示。 教师:你发现了什么?会用一个数学关系式表示出它们的关系吗? 引导学生得出:2+3<6,所以围不成。 (3)教师:3厘米也不能围成,是什么原因呢?课件演示。 提问:它为什么也围不成?你会用一个数学关系式表示出它们的关系吗? 引导学生说出:3+3=6,所以不能围。 (4)提出:1厘米、2厘米和3厘米的小棒都围不成。大家观察这三道算式,谁能用一句话说说什么情况下不能围成三角形阿? 板书(补上小于等于号):两边之和≤第三边 不能围成三角形 [设计意图:学生已经有了操作的初步体验,但是不能围成的原因是什么,却还没有发现。这里,通过课件直观、生动的演示和教师及时的启发、点拨,学生便会很快的发现不能围成三角形的原因了。] 第二个层次:猜想,初步得出三角形边的性质。 教师:两边之和小于或者等于第三边,不能围成三角形。同学们猜想一下,什么情况下能围成三角形呢? 学生猜出:两边之和大于第三边。 板贴:两边之和>第三边 能围成三角形? 同时,教师在旁边画上“?” 初步验证猜想: 教师:这个猜想对不对呢?这需要进行验证。看看这些能围成三角形的边,是不是具备这样的关系? 教师指着4厘米,问:当第三根小棒是4厘米的时候,谁能来说一说? 同时课件进行演示,得出:4+3>6。 课件演示。 教师指着5厘米,问:那5厘米? 得出:5+3>6 教师点击:那么下面就依次类推了。课件依次出现算式:6+3>6 7+3>6 8+3>6 9+3>6 [设计意图:由于有了“两边之和≤第三边,不能围成三角形”这个结论作基础,学生会自然而然地想到当“两边之和大于第三边”的时候就能围成三角形。这时教师及时说明,这只是猜想,要经过验证才能判断它是否正确。] 第三个层次:引发矛盾,突破难点。 教师指着表格,质疑:你们有没有发现问题啊?咱们在动手操作的时候得出9厘米不能围,可是9+3>6呀,这符合我们刚刚得出的结论啊? 先让学生说一说,然后进行课件演示。 教师:9和3这组的两边之和是大于6,可是它能围成吗?(不能)(课件演示确实不能围成。) 教师:我们再换一组看看,3和6这组的两边之和第三边9比,什么关系?(相等) 教师:那还要看哪一组?(6和9的和与3比) 引导学生明确:只通过一组来判断能否围成三角形,全面吗?那应该怎么说? 引导学生得出“任意”两字。 [设计意图:9+3>6却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什么样的关系,从而发现只通过一组两边的和来判断能否围成三角形是不全面的,必须要看三组,这样“任意”在这里的引出也就水到渠成了。] 第四个层次:再次验证,明确三角形三边的关系。 教师:下面我们利用这个结论再来验证一下,这些能围成三角形的三边,是不是都具备这样的关系?每个同学选一个你喜欢的在小组内交流。 学生交流,集体汇报。 第一边 长度(cm)第二边 长度(cm)第三边 长度(cm)能否 围成算 式 6 31×1+3<6 2×2+3<6 3×3+3=6 4√4+3>6 3+6>4 4+6>3 5√5+3>6 3+6>5 5+6>3 6√6+3>6 3+6>6 6+6>3 7√7+3>6 3+6>7 7+6>3 8√8+3>6 3+6>8 8+6>3 9×9+3>6 3+6=9 9+6>3 10× …… 教师:在同学们的猜想前面加上“任意”两字,通过再次验证后,发现它就是一条正确的结论。(教师擦掉“?”)咱们来一起读一遍。 [设计意图:加上“任意”两字以后,结论是不是就正确了呢?这时,让学生回过头来,再次验证能围成三角形的三边是不是具备这样的关系,不仅加深了学生对三角形边的关系的理解,也让学生充分经历了“猜想—验证—结论”这一科学的学习过程。] 第五个层次:找出判断不能围成的简捷方法。 教师:在这些不能围成三角形的三边中,它们也应该有几组算式?(3组) 那我们在判断它能不能围成的时候,是不是要把三组算式都找出来啊? 引导学生明确:只要找到一组不符合能围成的条件就可以了。 教师:谁能快速地说出‘10’不能围成的原因? [设计意图:怎样最快的找到不能围成的原因,在这里也应该让学生明确。方法最优化应随时有效地渗透在教学环节中。] 第六个层次:再次验证“任意”,将结论从特殊扩大到一般;同时发现判断能围成三角形的简单方法。 (1)教师:刚刚咱们是给3厘米和6厘米寻找能围成三角形的第三边,得到这样的结论的。那是不是任意一个三角形的三边都具备这样的关系呢? 教师演示课件,随意拖拉两次,让学生用估算的方法说出三边的关系。 [设计意图:一开始的研究,是从给定的3厘米和6厘米的两边着手的。在这里通过课件的直观演示,将特殊情况推广到一般情况,让学生明白任意一个三角形的三边都有这样的性质。] (2)提出:在判断能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊? 让学生先充分地进行交流。 引导学生发现:因为较小的两边的和都大于最长的边了,那么用最长的'边加一条较短的边,就一定大于另一条短边了。所以呢,这要把只要把较小的两条边加起来这一组进行判断,就可以代表三组了。还需要每组都判断吗? [设计意图:我以为,在全体学生都已经掌握的基础上,肯定会有少数学生发现判断能围成三角形的诀窍。教师的设计应当顾及到这样的学生。所以,在这里可以及时地引导全体学生都掌握简单方法。] 三、深化认知,联系实际,拓展应用 1.轻松小游戏。 教师:同学们的表现真是棒极了,老师为了表扬大家,给你做个小游戏,想不想啊? 出示:有人说自己步子大,一步能跨两米多,你相信吗?为什么? 请两个学生上来跨一步。 先让学生充分的交流。 教师:你能用我们今天学习的知识来解释一下吗? 课件演示:两腿和地面跨出的距离形成了一个三角形。 教师:可是有个人说,我可以。你们知道是谁吗? 出示姚明图片,身高:226厘米;腿长131厘米。 [设计意图:通过游戏的形式解决问题,使学生主动地把本课的知识内容纳入到自己的认知结构,同时熏陶学生逐步达到“会学”数学的境界,并再次向学生渗透看问题要全面的原则。] 2.判断:下面哪组的小棒能围成一个三角形?(单位:厘米)(有图。) (1)3、4、5 (2)3、3、3 (3)3、3、5 (4)2、6、2 [设计意图:这道基础题的练习,既是对前面所学内容的巩固,同时引导学生利用简单方法快速地进行判断。] 3.儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根三米长的木料,假如你是设计师,第三根木料会准备多长?并说明理由。 [设计意图:“从问题中来,到问题中去”,让学生用学习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。] 四、全课小结,从考虑问题要全面,引出第三边的取值范围 [设计意图:对于小学四年级的学生而言,范围的建立的确是有一定困难的。再次呈现前面的研究表格,这些数据是具体的,教师提出:“3.5厘米行吗?3.2呢?3.1呢?3.01呢?不断地向3逼近,学生自然会想到3.0001也是可以的,那该怎样表述呢?“比3厘米长”已呼之欲出;以此思考,学生不难得出“又必须比9厘米短”。这样层层递进的启发引导,发散拓宽了学生的思维,有机地渗透了无限逼近的数学思想,培养了学生抽象、概括的能力。] 教学目标: 知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。 过程与方法:积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。.能根据三角形三边的关系解释生活中的现象 情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。 教学重点: 三角形三边关系的实验与探究。 教学难点: 利用三角形三条边之间的关系解决实际问题。 教具准备: 三角形、支直尺、不同长度的.小纸条若干、分组操作记录表、双面胶、自制课件ppt 教学过程: 一、导入。 1、谈话创设情境: 这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示) 2、复习旧知: (1)(欣赏图片)你看到了什么? (2)那你能说一说,你对三角形都有哪些了解? (3)三个顶点,三个角,三条边,三角形具有稳定性; (4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。 3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课 二、动手操作、探究新知。 (一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗? 操作要求: 1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员 2、测量员量出你所选择的纸条的长度; 3、记录员做记录; 4、操作员动手拼三角形,把你拼出来的图形贴在下面; 5、组长汇报结果。 注意:相邻的两条线段要端点相连。 (二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。 展示操作结果: 试验次数三边长度(cm)结果三角形三条边的长度关系 (1)3、5、9否较短的两条边长度之和小于第三边3+5<9 (2)3、6、9否较短的两条边长度之和等于第三边3+6=9 (3)3、5、7是较短的两条边长度之和大于第三边3+5>7 (4)5、6、7是较短的两条边长度之和小于第三边5+6>7 (5)5,8,13否较短的两条边长度之和等于第三边5+8=13 (6)7,11,12是较短的两条边长度之和大于第三边7+11>12 (7)18,7,5否较短的两条边长度之和小于第三边5+7<18 (8)11,4,15否较短的两条边长度之和等于第三边4+11=15 (三)引导学生发现特性:(课件演示) 1、两条边的长度之和小于或等于第三条边的长度不能围成三角形 2、较短的两条边的长度之和大于第三条边的长度能围成三角形 3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书) 4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)? 三、精彩练习、拓展提升。(课件出示) 在能围成三角形的各组小棒下面画“√”。(单位:厘米) (5)1cm2cm3cm()(6)4cm2cm3cm() (7)3cm4cm5cm()(8)3cm3cm5cm() 四、学以致用。 (一)、课件出示:课本82页例3情境图。 1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走? 2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么? 3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书) (二)完善表格。 小棒长度(厘米)能否围成三角形 五、课堂总结。 同学们,通过今天的研究你有什么收获吗? 1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。 2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。 板书设计: 三角形三边关系 三角形任意两边之和大于第三边。 两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。 【《三角形边的关系》教学设计】相关文章: 《三角形边的关系》教学设计10-17 三角形边的关系教学教案08-29 三角形的边的教学设计02-08 《三角形三边的关系》教学反思06-12 三角形三边关系教学设计06-28 三角形的三边关系教学设计02-10 三角形的三边关系教学设计10篇05-12 看图找关系教学设计06-18 流体压强与流速的关系教学设计06-12 三角形教学设计03-13 《三角形边的关系》教学设计2
《三角形边的关系》教学设计3
《三角形边的关系》教学设计4