《圆周长》教学设计

时间:2022-07-05 15:41:04 教学资源 投诉 投稿

《圆周长》教学设计

  作为一位兢兢业业的人民教师,时常需要用到教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。如何把教学设计做到重点突出呢?以下是小编为大家收集的《圆周长》教学设计,希望对大家有所帮助。

《圆周长》教学设计

《圆周长》教学设计1

  教学目的:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:

  1、理解圆周率的意义。

  2、推导并总结出圆的周长的计算公式并能够正确计算。

  教学难点:

  深入理解圆周率的意义。

  教学过程:

  一、复习准备:

  (一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?

  (二)创设情境:龟兔赛跑。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  二、新授教学。

  (一)定义。

  1、小乌龟跑的路程就是正方形的什么?小白兔呢?

  2、什么是圆的周长?请你摸一摸你手中圆的周长。

  3、今天我们就来研究圆的周长。

  (二)推导圆的周长公式。

  1、学生讨论。

  (1)正方形的周长和谁有关系?有什么关系?

  (2)你认为圆的周长和谁有关系?

  2、猜测。

  看图后讨论:圆的周长大约是直径的几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?

  3、实践操作。

  (1)目的:用不完全归纳法得出圆的周长约是直径的几倍。

  (2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。

  (3)填写表格。

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  (4)汇报小结

  看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?

  (三)认识圆周率、介绍祖冲之。

  1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。

  2、介绍祖冲之。

  (四)总结圆的周长公式。

  1、怎样求周的'长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  教师板书:C=d

  2、圆的周长还可以怎样求?

  教师板书:C=2r

  3、圆的周长分别是直径与半径的几倍?

  (五)课堂反馈。

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  三、巩固练习。

  (一)判断。

  1、=3.14()

  2、计算圆的周长必须知道圆的直径。()

  3、只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1、较大的圆的圆周率()较小的圆的圆周率。

  a大于b小于c等于

  2、半圆的周长()圆周长。

  a大于b小于c等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。

  四、课堂小结:

  通过这堂课的学习,你有什么收获?你还有什么问题吗?

  五、课后作业。

  (一)求下面各圆的周长。

  1、d=2米

  2、d=1.5厘米3.d=4分米

  (二)求下面各圆的周长.

  1、r=6分米

  2、r=1.5厘米

  3、r=3米

  六、板书设计。

  圆的周长

  C=dC=2r

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  活动要求:

  1、各个组成部分面积分配合理,布局合理。

  2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。

  3、要有娱乐活动场所、休息场所、小路。

  4、算出各个部分的面积。

《圆周长》教学设计2

  教学内容:新课标人教版小学数学六年级上册第四单元p62----64页

  学习目标:

  知识与技能: 理解圆周率的意义,掌握圆的周长的计算公式。

  过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

  感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育

  其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。

  教学重难点和关键:

  重点:推导圆周长的计算方法。

  难点:学生以合作实践,讨论交流的方式探究圆周率的含义。

  关键:理解圆的周长与直径的关系。

  教学具的准备:

  多媒体课件,模型圆,几个直径不同的圆形,线、直尺等。

  教学过程:

  (一)复习铺垫

  出示课件(广场,找学过的平面图形)为理解圆周长的含义做好铺垫。

  (二)教学新知

  1.在情境中内化概念

  (1)由情境图,(课件出示广场图从中找学过的平面图引入新课。生,找出了圆。师,如果沿圆形喷水池走一周的长度,实际就是求圆的什么呢?生:周长。师:上节课大家对圆,有了很多的了解,今天我们继续探究有关圆的知识。)(板书:圆的周长通常用字母C)

  同学心里已经知道圆的周长指的那部分,那你们拿出自己的圆片,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?

  师生共同小结:围成圆的曲线的长是圆的周长。

  既然圆的周长是曲线那能不能用直尺直接测量呢?

  2、测量圆的`周长

  (1)、这条曲线的长度你有没有办法测出它的长度呢?(让学生独立思考10秒左右)

  (2)、然后四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)

  (3)、小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(用滚动、绕绳的方法)。(结合学生的方法配以课件演示)

  课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)

  (板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。

  (4)、今天老师也带来了圆,想请一位同学上来测量一下,谁愿意?

  (5)、演示:转动的风车,形成圆形,问:你怎么不量呢?(这个圆会动,很难测量……如果把地球近似地看成一个球,绕赤道一周的长度是多少,这一周的长度你能测量出来吗?

  (6)、小结:看来象这样动态的圆或很大的圆测量其周长确实存在很大的困难,这就需要我们探究出一种像长,正方形周长的计算公式一样普遍使用的方法来解决圆周长的问题。

  3.在探究中理解公式(探究圆周长的规律)

  (1)设疑激思

  同学们想一想正方形的周长和什么有关系?(边长)哪圆的周长又与什么有关呢?( 到底是不是这样呢?我们来看一个实验。)(出示课件 电脑演示:从小到大依次出示2个虚圆)看来圆的周长的确与它的半径有关,与半径有关也就与直径有关,到底有什么样的关系这个问题要同学们自己去发现,请同学们用我们上面的滚动法或绳测法测量手中圆的周长,并算出周长和直径的比值填如下表.)

  测量对象

  圆的周长(厘米)

  圆的直径(厘米)

  周长÷直径=

  交流实验报告单,得出结论。

  师:哪个小组愿意把你们组填写的表汇报一下。(生报数师填表)从他们汇报的数据,同学们发现了什么吗?

  生:直径与周长的比值是三点多。

  师:其他小组有不同意见或补充吗?

  生;虽然圆的大小不一样,但我们算得周长也是直径的3倍多一些。

  师:凡是通过测量计算发现你的圆周长是直径的3倍多一些的同学请举手。

  师:这说明圆的周长除以直径的商是有规律的。在我们所测量的这些圆中,每个圆的周长都是直径的3倍多一些!如果再换成其他的圆是不是也有这样的规律?请同学们看电脑演示。

  通过观察的确是这样,师:同学们真了不起,刚才,同学们测量了大小不同的圆,但却有相同的发现。(圆的周长是它直径的三倍多一些) (板书:圆的周长总是它的直径的3倍多一些。)

  (2)认识圆周率

  ①、实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。

  ②、听了这个故事,你有哪些感受?(我自豪,我骄傲。太了不起了,)师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。

  ③、师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。

  “圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。

  根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)

  ③ 、同学们通过自己的努力得出了求圆周长的公式,要求圆的周长,需要知道什么条件?(直径)

  做一做 同学们现在我们能不能解决转动的风车,形成的圆的周长的问题?如果老师告诉你风车的半径是10厘米,你能算出周长吗?

  老师给同学们带来了一个圆桌,它的直径是0.95米,你会算它的周长吗?(例1)

  做一做.一辆自行车的车轮半径是0.33米.车轮滚动一周自行车前进多少米?(得数保留两位小数)

  (三)巩固练习

  1.计算下面各圆的周长。

  d=2米 r=6分米 d=1.5厘米 r=1.5厘米

  2.判断题

  (1)π=3.14 ( )

  (2)大圆的圆周率比小圆的圆周率大 ( )

  (3)直接是2厘米的圆的周长是 ( )

  3.14×2=6.28米

  (4)半径3米的圆的周长是

  3.14×3=9.42米

  3.知识的拓展应用

  计算广场圆形喷水池的周长。(计算两个圆的周长,环形,小圆的直径是40米,环宽5米)

  (四)评价小结

  通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?

  师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!

《圆周长》教学设计3

  教学内容:苏教版小学数学第十册第98—99页。

  教学目标:1、理解圆周率的意义,掌握圆的周长的计算公式。

  2、通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

  3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。

  教学重点:理解和掌握求圆的周长的计算公式,能计算圆的周长。

  教学难点:动手操作,探索圆的周长与直径的关系。

  教学具准备:教师准备多媒体课件、学生实验报告表。学生准备直尺、直角三角尺两把、一角、五角、一元硬币名一枚、绳子。

  教学过程:

  一、联系生活,激活内需

  同学们,为了倡导低碳生活、共建绿色家园,重庆一支自行车队伍头戴钢盔,身穿印有“环保、低碳”字样的文化衫,人手一辆自行车,从奥体中心出发,驶向主城各个方向,庞大的阵容吸引了不少市民关注。(课件出示图片)但是,他们选择的自行车却是不一样的,请同学们看两张图片。(课件出示自行车的两张图片及议一议的内容)

  议一议:(1)车轮转动一周,谁的车走得远呢?为什么?什么是车轮的周长?

  (2)车轮的周长和什么有关系?圆的周长与什么有关系?圆的周长与直径有怎样的关系呢?

  揭示课题:圆的周长

  【评析:从现代生活理念出发,也是从学生已有的知识经验出发,感知车轮转动一周的远近与车轮的周长有关,车轮周长的大小就是圆的周长的大小,圆的周长与直径的长短有关。一方面让学生受到了环保教育,另一方面也让学生自我发现研究圆的周长要从研究周长与直径的关系入手,也产生了进一步探究的必要性。】

  二、实验操作,探究新知

  1、在情境中内化概念

  同学们已经知道圆的周长指的那部分,那你们拿出自己准备的硬币,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?

  师生共同小结:围成圆的曲线的长是圆的周长。

  2、测量圆的周长

  (1)既然圆的周长是曲线那能不能用直尺直接测量呢?怎么测量呢?(让学生独立思考10秒左右)

  (2)四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)

  (3)小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(结合学生的方法配以课件演示)

  课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)

  (板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。

  3、探索规律

  圆的周长与直径到底有怎样的关系呢?利用你手中的硬币及工具来测量一下圆的周长与直径。下面请同学们选用自己喜欢的方式以小组为单位进行测量,记录测量数据,并通过计算寻找周长与直径的关系,看看你们组发现了什么。把结论填在表的下面。(课件出示实验报告表,并让每组拿出课前发的表格。)

  物品名称

  周长

  直径

  周长与直径的关系(计算)

  一角硬币

  五角硬币

  一元硬币

  我们发现的规律是:

  小组合作完成,全班交流实验结论。预设:圆的周长是直径的3倍多一些。

  4、老师操作,即课件演示测量圆的直径和周长的过程。

  师:老师也测量了圆的周长与直径,你们想看一看吗?演示课件。

  总结:圆的周长总是直径的3倍多一些。

  5、认识圆周率

  (1)实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。

  (2)听了这个故事,你有哪些感受?师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。

  (3)师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。

  “圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。

  根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的`周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)

  【评析:以小组学习的形式,放手让学生去探求圆的周长,目的是体现让学生进行自主探索的教学思想,同时也培养学生的合作意识与能力。这里提供三种不同的圆让学生求周长,向学生渗透“化曲为直”的数学思想及方法。通过介绍圆周率,在头脑中完善对圆的周长计算方法的认知,促进学生的自我建构,激发一定的民族自豪感和探索精神。】

  三、巩固应用,内化知识

  1、独立完成。

  (1)“试一试”。

  计算例4中三个自行车车轮的周长大约各是多少厘米。

  (2)“练一练”。

  有一种汽车车轮的半径是0.3米。它在路面上前进一周,前进了多少米?

  3、小组合作完成。

  (1)你知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程吗?要解决这个问题你想得到什么样的数据?

  (2)(出示图片)圆形花坛的直径是20米,小自行车车轮的直径是50厘米,绕花坛一周车轮大约滚动多少周?

  【评析:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程,体会到学以致用。实例计算可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为课后实践题打下很好的伏笔。】

  四、回顾反思,评价小结

  通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?

  师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!

  五、课后拓展,走进生活

  小组合作完成,应用这节课学到的知识,想办法测量一下,从学校大门口到影剧院门口的距离大约是多少米。

  【评析:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力。】

  板书设计:

  圆的周长

  圆的周长是直径的3倍多一些

  圆的周长=直径×圆周率

  C=πd

  C=2πr

《圆周长》教学设计4

  教学过程

  设计意图

  课堂活动一:创设情境,引起猜想:认识圆的周长

  (一)激发兴趣

  这天,我们还来学习有关圆的知识。老师要先给大家讲一个故事。(边讲述边课件演示)小黄狗和小灰狗比赛跑,两只小狗都从同一点出发,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰狗得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1.回忆正方形周长:

  师:小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:

  师:那小灰狗所跑的路程呢?(师根据学生的回答板书课题:圆的周长)

  师:圆的周长又指的是什么意思?

  生:圆一周的长度,叫做圆的周长。(师板书:围成圆的曲线的长)

  师:请同学们闭上眼晴:“想像”,圆的周长展开后,会怎样?

  生:一条线段。

  师:请同学们拿出老师发给你的圆形橡筋,并剪断,看看成什么?

  学生齐答:也是一条线段。

  3.动手体会:每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  课堂活动二:动手操作,引导探索

  (一)讨论圆周长的测量方法

  1、讨论方法:下面,老师要请各学习小组利用手中的测量工具,互相合作,动手测量圆的周长。测量完后,相互交流一下,有几种方法?(学生讨论,动手测量)

  2、反馈:哪个小组派个代表来说说你们小组是怎样测量出圆的周长?

  (学生说出三种方法:绳测法、滚动法、软皮尺测,老师进行演示)

  3、小结各种测量方法:(板书)

  转化

  曲直

  4.创设冲突,体会测量的局限性

  在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是不是所有的圆都能用这种方法测量出它的周长的?同学们请看(老师甩动绳子系的小球,构成一个圆)小球的运动构成一个圆,又比如(老师演示摩天轮),你能用绳测、滚动的方法直接量出它的周长吗?

  这说明用绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。研究圆的周长首先应思考圆周长跟什么有关系。

  (二)讨论正方形周长与其边长的关系

  要探讨圆的周长到底与什么关系?先探讨正方形周长与其边长的关系

  (课件出示一个表格)

  正方形

  周长

  边长

  周长:边长

  1、

  1cm

  2、

  2cm

  3、

  3cm

  我的发现:正方形的周长与它的边长的比值是()。即正方形的.周长是它的边长的()倍。(多媒体显示)。

  (三)探讨圆的周长与直径的关系

  1、请同学们看屏幕,认真观察比较一下,想一想,圆的周长跟什么有关系?(多媒体教具演示:圆的周长与它的直径长短有关)

  提问:你们是怎样看出圆的周长和直径有关系?

  小结:圆的直径越长,它的周长就越长。这说明圆的周长和直径有关系。

  2、学生测量出圆的周长,并计算周长和直径的比值

  圆的周长跟直径有关系。有什么关系呢?圆的周长跟直径是否存在着倍数关系呢?下面我们来做个实验。小组分工合作,用你喜欢的方法测量出圆的周长和直径,并计算出周长和直径的比值,得数保留两位小数,填好报告单,第四栏可用计算器。

  《圆的周长》实验报告单

  实验目的:找出圆的周长与直径之间的关系。

  实验材料:3张圆形纸片、直尺、三角板、棉线、剪刀、计算器。

  测量的物品

  周长(C)

  厘米

  直径(d)

  厘米

  周长与直径的

  比值(C/d)

  圆形纸片1

  圆形纸片2

  圆形纸片3

  我们的发现:

  (学生测量、计算、填表,在展示台出示结果)

  请一组同学上台展示表格,师询问:从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

  学生汇报结论:这些圆的周长都是直径的3倍多一些。(师板书)

  师:那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看屏幕,仔细观察。(多媒体教具演示:圆的周长总是它的直径长度的3倍多一些。)

  板书

  师根据课件演示介绍圆的周长都是直径的3倍多一些圆周率

  课堂活动三:认识圆周率、介绍祖冲之

  师:表扬全班同学。圆的周长到底比它的直径的3倍多多少呢?那里,我给同学们讲一个古代数学家祖冲之测量圆周率的故事。

  (1)多媒体课件介绍圆周率的知识及祖冲之对圆周率的贡献。早在20xx年前,我国古代数学经典《周髀算经》就指出:“圆经一而周三”的说法,意思是圆的周长是它的直径的3倍,约1500年前,我国伟大的数学和天文家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲数学家要早1000年左右.此刻世界上最大的环形山,就是以祖冲之的名字命名的。我们确实就应为前人的聪明、智慧感到自豪和骄傲。之后瑞士的数学家欧拉用希腊字母∏代表圆周率。(板书::∏).圆周率是一个无限不循环小数。在计算时,如果用这个无限小数参加计算是不方便的,故通常将∏取两位小数。(板书π≈3.14)

  (2)谈感想,理解误差。

  看完这段资料,“读了这则故事,你有何感想?”

  生1:我要向祖冲之爷爷一样努力学习,做一个对人类有贡献的人。

  生2:我们组刚才测量时不够细心,今后我们要向祖冲之爷爷学习,做一个细心的人。

  课堂活动四:总结圆的周长公式

  1、刚才我们透过实验可知:圆周率是怎样得出来的呢?

  根据小组学生回答教师板书:

  圆周率=圆的周长÷直径==π是一个固定的值

  2、由此我们可知,如果明白直径如何求周长呢?

  教师板书:圆周长=直径×圆周率

  如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  教师板书:C=πd

  3、圆的周长还能够怎样求?

  教师板书:C=2πr

  4、圆的周长分别是直径与半径的几倍?

  课堂活动五:课堂反馈

  一、决定.

  1.Π=3.14()

  2.圆的周长是它的半径的∏倍。()

  3.圆的直径越大,它的圆周率就越大。()

  4.只要明白圆的半径或直径,就能够求圆的周长。()

  5.大圆的圆周率比小圆的圆周率大。()

  三、实践操作

  2.电脑课件出示主题图。如果圆形花坛的直径是20米,它的周长是多少米?。(让学生独立完成,群众订正)

  问题2:小自行车车轮的直径是50cm,绕花坛一周车轮大约转动多少周?

  (学生完成后,让学生打开课本64页例1对照,反思自己的解答过程)

  (注:评析问题2时,能够推荐学生用估算来解答。)

  3.解答开始的问题

  这天我们学习了圆的周长的计算方法,此刻我们来帮忙小黄狗和小灰狗算一下它们跑的路线,看看小灰狗为什么会赢,小黄狗为什么会输。

  小黄狗跑的路线是正方形的周长,小灰狗跑的路线是圆的周长,动手算一算,谁跑的距离远?

  10米

  四、拓展延伸

  看,小黄狗和小灰狗又要比赛了,这一次小灰狗沿大圆跑一圈,小黄狗沿两个小圆“∞”跑一圈,谁跑的路程长呢?好好想一想。

  课堂活动六:全课总结,反思评价

  1、同学们,这天我们一齐研究了圆的周长,下面我们来谈一谈本节的收获。

  2、评价自己小组合作学习的表现如何。

  课外活动:家庭作业

  1、基本练习:完成课本第64页做一做第1、2题。

  2、提高练习:完成课本第65页练习十五第2、3题。

  3、操作练习:画一个周长是12.56厘米的圆。

  板书设计:

  利用了生动的课件创设了教学情境,激发了学生参与的兴趣,为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举两得;而且,动画的演示过程,很好地展示了圆周长的概念,并透过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了周长的概念,为后面的学习奠定了基础。

  感知动作同人的心理活动是密切联系的,动作记忆保留的时间更长久。小学生在其数学思维活动中,视觉映象起着相当重要的作用,如果透过活动强化问题解决前的感知动作思维,有利使记忆以动作效果来储存。透过让学生把圆形橡筋剪断,使学生感知化曲为直的概念。为下面探索圆的周长做好铺垫。

  利用学生好奇、好动的特点,引导学生小组合作,测量归纳出圆的周长的方法,不失时机地表扬小组的合作精神,让学生初步感受到成功的喜悦。

  教师抓住时机,甩动绳子系的小球,构成一个圆,演示摩天轮,让学生感受到用绳测、滚动的方法并不能测量出所有圆的周长,就应找到一种既简单有能准确计算圆的周长的方法,进而引导学生研究圆的周长与直径的关系。

  透过填写正方形的周长与它的边长的关系,为下面的探讨圆的周长与它的直径的关系做了一个很好的铺垫。因为学生在记忆正方形的周长时,只是记正方形的周长是4个a相加的和,很少说是正方形的周长是边长的4倍。上表的填写对于中下生的小组合作起了一样板的作用。

  透过直观的演示学生很快就找到了圆的周长和直径有关系。

  《数学课程标准》提出:“动手实践、自主探索、合作交流是学生学习数学的重要方式。”这一环节,引导学生分工合作,用自己喜欢的方法测量出圆的周长,求出比值,对所收集的信息进行分析处理,在动手的过程中发现了圆的周长都是直径的3倍多一些,并透过课件演示验证了结果。使学生在探索新知的过程中,由知识的理解者转变为知识的发现者和创造者,不仅仅理解掌握了知识,还学会了与人合作,培养了合作意识,并且感受到了成功的喜悦,体验了学习数学的乐趣。

  那里引出故事,在帮忙学生增长知识的同时,自然在对学生进行了爱国主义教育,使学生产生对数学知识一往情深的志趣。

  本环节的设计,实现由具体到抽象,由物化到内化,理解计算公式。透过转化,从而完成新知的生成。

  透过辨析让学生巩固圆周率是常数的认识,加深对圆周率的理解。

  操作练习设计紧扣课题,从解决基本练习到解决主题图中实际问题,使学生认识到,数学来源于生活,也服务于生活,对新知识有了更深一层的认识,巩固新知,发展了潜力。

  透过解答课前导入的问题,让学生体现多层次,多角度的练习,培养了学生的思维和解决问题的潜力,更能促进学生把知识和技能转化为智力、潜力。

  在解决了开始的问题后,紧跟着变化题目的图,让学生能感知当大圆的直径等于另外两个小圆的直径和时,大圆的周长等于这两个小圆的周长和。是对圆周长公式的综合应用。

  让学生谈收获,能够自我认识、总结课堂的表现与认识掌握程度,最后回忆新知、巩固新知,体验成功的喜悦。

  课外作业题目体现层次性,注重基础知识的巩固和基本技能的运用。

  围成圆的曲线的长

  圆的周长

  (实物测量方法)

  转化

  圆周率

  字母表示π≈3.14

  曲直

  圆的周长总是它的直径的3倍多一些

  圆周率=圆的周长÷直径==π是一个固定的值

  圆的周长=直径×圆周率

  字母表示:C=πd

  C=2πr

《圆周长》教学设计5

  各位领导、评委大家上午好!我今天说课的题目是《圆的周长》

  一、教材分析

  1、教学内容

  这节课是人教版小学六年级数学第四单元《圆的周长》

  第一课时

  2、教材所处的地位

  这节课是建立在求长方形、正方形的周长知识为学习基础的、是前面学习“认识圆的”进一步深化。为今后进一步学习圆的有关知识奠定基础,是相当重要的学习内容。

  3、教学目标

  (1)知识目标:让学生了解圆周率的定义。

  (2)能力目标:让学生动手操作,利用绳测法、滚动法认识圆的周长并掌握圆周长的计算公式。

  (3)德育目标:通过对学习向学生渗透爱国主义教育。

  4、重点难点

  重点:掌握圆周长的计算公式

  难点:圆周长公式的推导

  二、学情分析

  这节课的授课对象是小学高年级的学生,作为小学高年级的学生,他们已经有了一些生活实践的经验积累了一些教学知识。基本具备了分析问题、归纳问题、概括问题的能力。因此让他们在自主快乐的情境中学习。是他们感受到学习不是枯燥乏味的,而是一件快乐有趣的事情,从而乐意去学。

  三、说教法学法

  现代教育是以人为本的教育,小学数学新课标规定应着重培养学生的探索意识、探索能力、探索思维,拓展探索思维的空间。改变以前机械说教,沉闷程式化的教学设计。

  把课堂还给学生,充分发挥学生的主动性。因此,我采用的是洋思教学模式,即“先学后教、当堂训练”,在我的课堂上,学生结合自学指导,认真阅读教材,通过自主探究、合作交流、讨论来掌握新知。既培养了学生的探索意识,又让学生在课堂互动的快乐氛围接受新知。

  四、说教学过程

  我是按以下四个层次设计教学过程的:

  1、复习旧知识、导入新课

  (1)让学生找出图中直径和半径,并说出什么是圆的直径和圆的半径?直径和半径的长度有什么关系?

  (2)什么是长方形的周长?什么是正方形的周长?

  通过对就知识的复习为新授内容做了准备和铺垫。

  2、出示自学指导、指导学生认真阅读教材,掌握本节课的知识。

  自学提示:

  (1)课本63页向我们介绍了两种测量圆周长的方法,一种是滚动测量法,另一种是绳测法,拿出个小组准备的直径是10cm、15cm、20cm的`圆。完成下列表格:

  周长直径周长/直径(保留两位小数)

  (2)探究圆的定义?直径不同的圆,周长与直径的比值一样吗?这个比值叫做什么?用哪一个字母表示?读作什么?在通常计算时∏值取多少?圆周率是哪个国家的数学家谁最早提出的?

  (3)根据被除数=除数X商,如果用字母C表示周长,d表示圆的直径,圆周长的计算公式怎样表示?

  三、当堂训练、检查自学效果

  1、求下面各圆的周长

  2、一个喷水池直径是5m,他的周长是多少米?

  四、订正学生做题过程中出现的错误(后教)

  学生在求圆的周长时,不能正确的应用公式,这时我会告诉学生,已知半径求圆的周长用C=2∏r,已知直径求圆的周长,用C=∏d。

  五、本课小结

  闭上眼睛想一想,通过本课的学习你有哪些收获?学生在回忆梳理的过程中再现了本课的知识点。

  六、课堂作业、当堂批改(不少于10分钟)

  1、用C表示圆的周长,d表示圆的直径,r表示圆的半径,圆的周长计算公式可写作()或()。

  2、求下面各圆的周长

  4

  3、完成下列表格

  半径rcm直径dcmCcm

  4

  1.2

  12.56

  4、已知圆的直径是20m求圆的面积?

  附板书设计:圆的周长

  1、圆的周长的定义

  2、圆周率的定义即表示方法

  3、圆周长的计算公式C=∏d或C=2∏r

《圆周长》教学设计6

  教学目标:

  1、在观察,测量,讨论等活动中经历探索圆的周长公式的过程。

  2、理解并掌握圆的周长公式,会用字母表示,能运用周长公式进行计算。

  3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。

  教学难点:

  理解圆周率的意义。

  教具准备:

  根据教学任务和学生学习的需要,我所准备的教具有直尺、圆形硬纸板、绳子、剪刀、圆周长演示器。多媒体课件。

  学具准备:

  学生准备的学具有直尺、圆形硬纸板(大中小各一个)、绳子、剪刀。

  教学过程:

  一、创设情境

  1、出示情境图,让学生观察情境图,了解图中的事情,提出谁的车轮转动一周走的远,为什么?

  师:那车轮转动一周,谁的车走得远呢?为什么?

  学生自由回答

  3、揭示车轮周长概念。

  4、讨论:车轮的周长和什么有关,有什么关系?

  师引入并板书课题:圆的`周长。下面我们继续研究,看看圆的周长和直径还有什么关系?

  二、自主探索

  (一)测量硬币

  1、让学生用准备好的材料测量1元硬币和直径和周长。

  师:同桌合作,利用手中的材料测量出1元硬币的周长和直径。

  学生活动,教师巡视并参与。

  2、交流测量结果和方法,注意测量的过程要交流清楚。

  3、计算并观察测量的数据,推测硬币的周长与直径之间有什么关系。

  我估的硬币的周长大约是直径的3倍。

  大胆推算硬币周长与直径的关系。

  (二)测量圆片

  1、提出做一做的要求,让学生用教师准备好的圆片测量并计算。

  2、交流各组测量和计算结果,然后让学生说一说发现了什么?

  三个圆的周长都是它直径的三倍多一些

  (三)总结圆的周长公式

  1、教师介绍圆周率的发展历程,然后交流感受和启发,进行思想教育。

  师:看来,任何圆的周长都是它直径的三倍多一些,其实这个倍数是固定不变的数,我们把它叫作圆周率。板书:圆的周长÷直径=圆周率。

  师:由于我们在测量时有误差,所以得不到一个固定值。

  师:圆周率可用字母π来表示。板书:π

  教师范读,学生齐读,并在桌子上试着写一写。

  师:我们今天课上研究的圆周率,早在几千年前,我们古人就开始研究了。

  板书:π3.14

  2、引导学生根据周长÷直径=圆周率,推导出圆的周长公式并用字母表示。

  师:根据圆的周长÷直径=圆周率,如何求圆的周长呢?

  生:直径×圆周率=圆的周长

  师:如果周长用字母“c”表示,直径用“d”表示,谁来总结求圆周长的公式?

  生:c=πd师:板书

  师:那如果把直径d换成半径r呢?

  生:c=2πr师板书

  三、简单应用

  让学生试着用公式求圆的周长

  课件出示(书中例题和镜子实物图。目的:是让学生能够通过看着实物镜子,去理解金属条的长就是镜子的周长。)

  学生自己完成,指名板演

  集体订正。

  四、交流收获

  五、布置作业:83页第一题

  板书设计:

  圆的周长

  圆的周长÷直径=圆周率(π≈3.14)

  C=πd或c=2πr

  3.14×40=125.6(厘米)

  答:这根金属条的长至少是125.6厘米。

《圆周长》教学设计7

  教学目标:

  1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

  2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

  3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:能正确、熟练地进行圆周长和面积的计算。

  教学难点:从探究活动过程中去发现圆与正方形之间的关系。

  教学准备:课件,学具。

  教学过程:

  一、复习旧知,梳理体系

  直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

  教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

  小组合作,让同学们把所学的知识整理一下,然后进行汇报。

  汇报交流,课件出示相关内容。

  (1)圆的认识:

  圆心O:决定圆的位置;

  直径d:决定圆的大小;

  半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

  圆是轴对称图形,有无数条对称轴。

  (2)圆的周长:

  围成圆的曲线的长度叫圆的周长。

  圆周率:周长与直径的比,是个无限不循环小数。

  圆周长的计算:。

  (3)圆的面积:

  由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

  圆面积计算:。

  圆环的面积:。

  【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

  二、基本练习,整合知识

  教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

  1.说说下面各题的最简整数比:

  (1)一个圆的半径和直径的比是多少?(1:2)

  (2)一个圆的周长和直径的比是多少?(:1)

  (3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)

  周长的'比是多少?(2:3)

  面积的比是多少?(4:9)

  【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

  2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)

  (1)这个公园的围墙有多长?

  教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)

  (2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)

  (3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

  (4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

  【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

  三、探究学习,培养能力

  1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

  (1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

  (2)剪完圆后,哪张白铁皮剩下的废料多些?

  教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

  (3)根据以上的计算,你发现了什么?

  【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

  四、回顾总结,交流收获

  教师:说说这节课我们学习了什么?你有什么收获或问题?

  【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

《圆周长》教学设计8

  一、教学目标

  (一)知识与技能

  理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。

  (二)过程与方法

  经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。

  (三)情感态度和价值观

  通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  二、教学重难点

  教学重点:理解和掌握圆的周长的计算方法。

  教学难点:圆周率的探究。

  三、教学准备

  多媒体课件。

  四、教学过程

  (一)创设情境,引发思考

  1.情境导入,揭示课题。

  教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)

  学生:给它加一个箍。

  教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?

  教师:求铁皮的长度,就是求圆的什么?

  学生:求铁皮的长度,也就是求圆的周长。

  教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)

  学生:圆一周的长度叫圆的周长。

  教师:圆的周长与我们之前学习过的图形的周长有什么区别?

  学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。

  2.合理猜想,确定方向。

  教师:圆的周长与圆的什么有关?

  学生:直径、半径。

  教师:圆的周长是直径的几倍?

  学生:……

  教师:怎么验证你的猜测呢?

  学生:量一量,算一算。

  【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。

  (二)设计方案,展开探究

  1.探讨设计方案。

  (1)如何化曲为直?

  教师:圆是曲线图形,尺子是直的,怎么办?

  学生:滚一滚,绕一绕……

  (2)如何减少误差?

  教师:测量结果可能不准确,有什么办法尽量准确一点呢?

  学生1:多量几次,选出现次数量多的数据。

  学生2:用计算器计算,提高正确率。

  教师:除不尽怎么办?

  学生1:用分数表示。

  学生2:取近似数。

  教师:一般保留两位小数,比较方便。

  【设计意图】圆与学生以前学习的图形有本质的区别——它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。

  2.操作获取数据。

  小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。

  物品名称

  周长

  直径

  周长与直径的比值

  (三)交流讨论,提升认识

  1.交流质疑。

  (1)小组汇报,教师直接将结果输入电脑。

  【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的'真实性,增强了授课的互动与趣味性,又便于开展讨论。

  (2)质疑不同数据。

  教师:为什么测量计算的结果不相同?

  学生1:测量有误差,绳子绕的松紧程度不同。

  学生2:尺子不够精确,不到一毫米只能估计。

  教师:是不是尺子再精确一点,测量结果就准确无误?

  教师:有没有其他的方法?

  教师:有没有唯一的得数?

  【设计意图】讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。

  2.概括小结。

  (1)圆周率的意义及读写。(课件出示内容。)

  任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.1415926535……但在实际应用中常常只取它的近似值,例如≈3.14。

  (2)概括周长计算公式。

  如果用C表示圆的周长,就有C=d或C=2r。

  (四)联系实际,解决问题

  1.例题教学。

  (1)出示教材第64页例1。

  一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?

  (2)学生尝试解答。

  (3)规范书写。

  C=2r

  2×3.14×33=207.24(cm)≈2(m)

  1000÷2=500(圈)

  答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。

  2.巩固练习。

  (1)求下面各圆的周长。

  ①2×3.14×3=18.84(cm);

  ②3.14×6=18.84(cm);

  ③2×3.14×5=31.4(cm)。

  (2)解决问题。

  ①一个圆形喷水池的半径是5 m,它的周长是多少米?

  2×3.14×5=31.4(米)

  答:它的周长是31.4米。

  ②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)

  3.77÷3.14≈1.2(米)

  答:这个圆柱的直径大约是1.2米。

  【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。

  (五)课堂小结,拓展延伸

  1.这节课你有什么收获?说一说圆的周长与直径的关系。

  2.介绍中国古代对圆周率的研究及伟大成就。

  【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。

《圆周长》教学设计9

  【教学内容】

  《义务教育课程标准试验教科书. 数学》(苏教版)六年制五年级下册第十单元第98-102页,例4,例5和例6及练一练和练习十八。圆的周长,周长计算公式。

  【教材分析】

  这部分内容是在学生认识圆的基本特征的基础上,引导学生探索并掌握圆的周长公式。首先引导学生从生活经验出发,借助观察、比较进行猜想,再具体描述圆的周长的含义,并让学生通过进一步的思考,认识到圆的周长与直径的关系。最后引导学生根据对测量圆周长活动过程的理解,推导出圆的周长公式。然后让学生应用刚刚掌握的公式计算圆的周长,解决简单的实际问题,巩固对公式的理解。

  【教学目标】

  1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。

  2、培养学生的观察、比较、概括和动手操作的能力。

  3、对学生进行爱国主义教育。

  【教学重点】

  圆的周长和圆周率的意义,圆周长公式的推导过程。

  [教学难点]

  圆周长公式的推导过程。

  【教学准备】

  多媒体课件、实物投影、圆、绳子、直尺、圆规等。

  【教学过程】

  一、情境创设,生成问题

  1、出示一个正方形花坛和一个圆

  问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?

  预设一:看哪个跑得步子多。

  预设二:计算它们的周长,进行比较更为简便。

  2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系?

  预设一:C=(a+b)×2

  预设二:C=2a+2b

  3、什么是圆的周长?

  让学生上前比划,圆的周长在那?那一部分是圆的周长?

  得出定义:围成圆的曲线的长叫做圆的`周长。

  二、探索交流,解决问题

  (一)圆周长的公式推导。

  1、探索学习。

  (1)你可以用什么办法知道一个圆的周长是多少?

  (2)学生各抒己见,分别讨论说出自己的方法:

  预设一:用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

  预设二:把圆放在直尺上滚动一周,直接量出圆的周长。

  那么用一条线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?

  用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

  设计意图:引导学生从生活经验出发,借助观察、比较进行猜想:到底怎样测圆的周长。进而激发学生进一步探究圆的周长是如何求出来的兴趣。

  2、动手实践。

  (1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。

  (2)引生看表,问你们看周长与直径的比值有什么关系?

  预设:都是3倍多,不到4倍。

  (3)你有办法验证圆的周长总是直径的3倍多一点吗?

  (4)阅读课本P102,介绍圆周率,及介绍祖冲之。

  ∏=3.1415926535…… 是一个无限不循环小数。

  3、得出计算公式。

  圆的周长=圆周率×直径

  C = ∏d或 C = 2∏r

  设计意图:教材通过示意图对这两种方法做了清楚的说明,这有利于学生学会具体的测量圆周长的方法,又能使学生从中体验“化曲为直”的策略。

  (二)、解决新问题。

  1、解决情境题中的问题。

  学生独立完成,小组内订正。

  2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车约转动多少周?

  小组内想出解决的办法,并在全班交流。

  预设一: 已知 d = 20米 求:C = ?

  根据 C =πd 20×3.14=62.8(m)

  预设二: 已知: 小自行车d = 50cm

  先求小自行车C = ? c=πd

  50cm=0.5m 0.5×3.14=1.57(m)

  再求绕花坛一周车约转动多少周?

  62.8 ÷1.57=40(周)

  答:它的周长是62.8米。绕花坛一周车约转动40周。

  设计意图:引导学生根据圆的周长公式列式解答。这样有利于学生提高综合应用数学知识和方法解决实际简单的实际问题,巩固对公式的理解的能力。

  三、巩固应用,内化提高

  1、求下列各题的周长。

  书本102页练习十八的第1、2题

  2、判断正误。

  (1)圆的周长是直径的3.14倍。 ( )

  (2)在同圆,圆的周长是半径的6.28倍。( )

  (3)C =2πr =πd 。 ( )

  (4)半圆的周长是圆周长的一半。 ( )

  设计意图:通过这些小题的练习,让学生进一步加深对相关知识的理解。

  四、回顾整理,反思提升

  通过这节课的学习你都知道了什么?还有什么不懂的呢?

《圆周长》教学设计10

  【教学内容】

  新课标人教版六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。

  2.能利用圆的周长的计算公式解决一些简单的数学问题。

  3.培养学生的观察、比较、分析、综合及动手操作能力。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。

  难点:理解圆周率的意义。

  【教具、学具】

  课件、软尺、直尺、绳子、圆形。

  【教学过程】

  课前交流:请同学们唱一首歌。

  (设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)

  一、创设情景,生成问题

  国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。

  (设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。

  (设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)

  二、探索交流,解决问题。

  师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。

  师:同桌想一想圆的周长怎样测量?

  师:把你的好方法在小组内交流一下。

  (设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

  师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?

  (设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。

  师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。

  师演示(线绕圆一周,然后量出线的长度。)

  师:还有其他的方法吗?

  生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。

  师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。

  生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。

  师:这个办法也很妙!其他同学还有要补充的吗?

  生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。

  师:你的想法可真不简单!

  师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。

  师:刚才大家找到了这么多求圆的周长的好的`方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?

  生:能!

  师:正方形的周长和什么有关?

  生:周长是边长的4倍,

  师:那么圆的周长和什么有关系呢?

  生:圆的直径越长圆越大,所以周长就越长。

  师:那周长和直径有怎样的关系呢?

  (设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)

  师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。

  师:现在大家通过填写表格发现了什么?

  生:在测量中发现,大小不同的圆的周长是不同的。

  师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?

  生:是由半径(或直径)唯一决定的。

  师:圆的周长与直径或半径之间到底存在着怎样的关系?

  生:每组算的结果不大一样,但都是3点多。

  师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?

  生:一样。

  师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。

  师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?

  我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)

  师:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  师:从表中我们可以看出圆的周长÷直径=圆周率

  (板书:圆的周长=π×直径)。

  如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。

  生读:c=πd c=2πr

  师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?

  生:圆的直径或半径。

  (设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)

  三、回顾整理,反思提升。

  这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?

  (1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。

  (2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。

《圆周长》教学设计11

  教学目标:

  1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、初步学会透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:推导并总结出圆周长的计算公式。

  教学难点:深入理解圆周率的意义。

  教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。

  教学过程

  一、情景导入:

  师:老师这里有一张图片,同学们想看吗?

  师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?

  师: 我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?

  师:这节课我一起研究圆的周长。

  板书课题:圆的周长

  二、探究新知:

  1、圆的周长含义

  师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。

  师:围成圆的曲线的长叫做圆的的周长。

  2、测量圆的周长 师:怎样才能知道圆的周长是多少呢?师: 请同学们拿出准备好的圆片,你能想办法测量出它的周长吗? 生测量活动,师巡视。

  师:谁愿意说说你是怎么测量的?

  师:还有不同测量的方法吗?

  师多媒体演示。

  我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。

  我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。

  师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。

  生:用绳子量出水池的`周长。

  师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。

  师:有没有比测量更科学、更简便的方法呢?

  生:计算

  3、探究圆的周长计算方法

  ①探究圆的周长与直径的倍数关系

  师:如何计算圆的周长呢?

  师:我们可以回想一下,计算长方形的周长需要什么条件,怎么计算?

  师:计算正方形的周长需要什么条件,怎么计算?

  师 :同学们看,计算长方形、正方形的周长都需要一定的条

  件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。

  师:如果圆的周长与直径有关,又有什么关系呢?

  师 我们再来看,长方形的周长与它的条件长和宽之间有什么关系。

  师:正方形的周长与它的条件边长之间有什么关系。

  你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。

  这个倍数会是几呢?同学们来猜测一下,这个倍数大于几

  生1:大于2;

  生2:大于3;

  生3:大于4;

  师:能说说你是怎样想的?

  师:你从图上来看,圆的周长与直径之间的倍数会大于几。

  生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。

  师: 有理有据。我们再来看,圆的周长和直径之间的倍数会小于几呢?

  生猜并说理由。

  师:这个问题有点难,老师来作个辅助图形,请看大屏幕。

  (师多媒体演示圆外切正方形)

  师:你发现了什么?

  生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。

  师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?

  生:计算。

  师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。

  下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。 (小组活动,师巡视。)

  师:一定注意要测量准确,减少误差。

  (集体汇报交流)

  师:哪个小组愿意把你们的计算结果给大家展示一下。

  (生说并展示结果)

  师:请同学们来观察这些圆的周长除以直径的商,有什么特点。

  生:都比3大一点。

  师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。

  师:会读吗?(板书pài)

  师:一起读,用手在桌子上写几遍。

  师:会写了吗?

  师:π就是圆的周长除以直径的商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?

  生:测量不准确。

  师:很会分析问题,我们计算出的这些商都不一样,是因为测量有

  误差造成的。

  师:老师这里有关于圆周率的历史资料,同学们想看吗?

  师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)

  师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?

  师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。

  生:圆的周长等于圆周率乘直径。

  师:如果用字母C表示,那么C=?

  (板书C=πd)

  师:如果知道了圆的半径,我们还可以怎样计算圆的周长?

  (板书:C=2πd)

  师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。

  由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)

  三、实践应用:

  师:现在我们来解决几个问题好吗?

  1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。

  2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)

  3、判断题

  4、思考题

  四、小结。

《圆周长》教学设计12

  教学内容:小学数学实验教材十一册第107~108页“圆的周长”

  教学目标:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2、培养学生的观察、比较、分析、综合及动手操作能力;

  3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:推导并总结出圆周长的计算公式。

  教学难点:深入理解圆周率的意义。

  教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,

  以及直尺、绸带,测量结果记录表,计算器,投影资料等

  教学过程:

  一、创设情境,引起猜想:

  (一)激发兴趣

  播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1、回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2、认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  [评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿

  (三)讨论正方形周长与其边长的关系

  1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  2、怎样才能知道这个正方形的周长?说说你是怎么想的?

  3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  [评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

  (四)讨论圆周长的测量方法

  1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  2、反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (4)初步明确运用各种方法进行测量时应该注意的问题。

  3、小结各种测量方法:(板书)转化

  曲直

  4、创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  5、明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

  [评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的'方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。

  (五)合理猜想,强化主体:

  1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩

  2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

  向大家说一说你是怎么想的。

  3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  4、小结并继续设疑:

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  [评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。

  二、实际动手,发现规律:

  (一)分组合作测算

  1、明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

  提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

  测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。

  (二)发现规律,初步认识圆周率

  1、看了几组同学的测算结果,你有什么发现?

  2、虽然倍数不大一样,但周长大多是直径的几倍?

  3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)

  板书:圆的周长总是直径的三倍多一些。

  (三)介绍祖冲之,认识圆周率

  1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

  3、这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4、理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  5、解答开始的问题

  现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

  (四)总结圆周长的计算公式

  1、如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长=直径×圆周率

  C=πd

  2、如果知道圆的半径,又该怎样计算圆的周长呢

  板书:C=2πr

  追问:那也就是说,圆的周长总是半径的多少倍

  [评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

  三、引导质疑,深入领会(略)

  四、巩固练习,形成能力

  1、判断并说明理由:π=3。14()

  2、选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

  a、大圆的圆周率大于小圆的圆周率;

  b、大圆的圆周率小于小圆的圆周率;

  c、大圆的圆周率等于小圆的圆周率。

  3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  五、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  [评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

  六、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

  绕8字跑,谁跑的路程近

  [总评]

  纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。

《圆周长》教学设计13

  教学内容:

  冀教版《数学》六年级上册第六单元一课时

  教学目标:

  1、知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握圆的周长的计算公式,并能正确地计算圆的周长;能利用圆周长计算公式解决简单的实际问题,发展应用意识。

  2、能力目标:通过对圆周长测量方法和圆周率的探索,圆的周长计算公式的推导等数学活动,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力及团队合作精神。

  3、情感目标:通过介绍我国古代数学家祖冲之在圆周率的伟大成就,对学生进行爱国主义教育。

  教学重点:

  能利用公式正确计算圆的周长。

  教学难点:

  理解圆周率的意义,圆的周长计算公式的推导。

  教学准备:

  课件,直径不同的圆,细绳,软皮尺,直尺,计算器。

  教学过程:

  一、导入

  师:老师给同学们带来了两位老朋友了。(课件出示长方形和正方形)

  师:相信大家对长方形和正方形都有很多的了解了,我不让大家介绍了,老师要问同学们两个问题。”

  1、什么叫长方形和正方形的周长?

  2、长方形和正方形的周长和什么有关?

  学生思考后回答:围成长方形四条边长的总和叫长方形的周长,围成正

  方形四条边长总和叫正方形周长。长方形的周长和它的长和宽有关,正方形周长和边长有关。

  (课件出示圆形)

  师:“你对圆形有哪些了解?”

  学生能说出圆的各部分名称,直径是半径的2倍,圆有无数条对称轴,对称轴就是圆的直径。

  师:那什么是圆的周长呢?

  生:围成圆一圈弧线的长度总和叫圆的周长。

  师:那你还想知道哪些圆的知识呢?

  生:我想知道圆的周长和面积。

  师:这节课我能满足你们的一个愿望,我们一起来研究的是圆的周长。

  (板书课题)

  二、探索新知

  1、周长的测量(自主发现、动手操作)

  师:利用准备的学具,测量一枚一元硬币的.周长,看哪位同学的方法最准确?

  学生说出三种方法:绳测法、滚动法、软皮尺测,学生边说边进行演示。

  2、圆周与直径的探究

  师:在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。大家想一想圆的周

  长与什么有关系。生“直径。”

  师:你们是怎么看出圆的周长和直径有关系?圆的周长跟直径是否存在关系呢?我们一起来研究一下。

  3、小组合作探究圆周长与直径、半径的关系。

  师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。

  小组合作要求:

  1、利用手中的学具测量物品中圆的周长和它的直径。

  2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)

  3、观察得到的数据,你发现了什么?

  师:哪个小组先汇报?先说说你们采用的方法,再说结果。生:绕线法。生:滚动法。

  学生汇报几组数据,教师板书。

  师:通过刚才的动手操作,你们发现了什么?哪个组说说?生:圆的周长÷直径=3倍多一些。

  师:打开数学书,我们自学83页知识来了解。

  学生自学了解了圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,叫做圆周率,用字母π表示。圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值。

  (板书:圆周率π)课件出示补充祖冲之小知识窗

  早在1500多前,我国古代的数学家祖冲之就精密地计算出圆周率的值在3.—3.之间。这是当时计算出的最精确的圆周率的值,比国外科学家的发现要早1000多年。师:看完这个小知识,你有什么想法?生:祖冲之真伟大,我们的祖先非常的有智慧。师:我们的祖先很聪明,我们更应该发扬光大。师:圆的周长怎么求呀?生:圆的周长=直径×师:板书C=πd谁来说说你是怎么理解的?生:C表示圆的周长,d表示直径,π表示圆周率,

  C=πd师:如果知道半径,应该怎样写?生:C=2πr师:你是怎么想的?

  生:在同一个圆里,直径是半径的两倍。

  三、实践与应用

  1、一面圆镜的镜面直径是40厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米?

  2、求圆的周长

  (1)r=6

  (2) r=10

  (3) d=5

  3、校园里有一颗大柳树,我想知道柳树的直径,你们有什么办法吗?同学们课下求一求。

  四、教师小结

《圆周长》教学设计14

  【微课简介】

  《圆的周长公式推导》一课是小学数学新人教版六年级上册的一个知识点,适用于对圆的各部分名称已有初步认识并将学习计算圆的周长公式的学生学习。在这个知识点学习中,学生应用互动软件《圆的工具》辅助学习,通过小组合作的探究活动,对比、分析、概括出圆的周长与直径、半径的关系,推导出圆的周长公式。

  【教学背景】

  数学是一门需要思维的学科,在学习过程中,有些学生会出现囫囵吞枣的现象,知其然而不知其所以然。圆的周长公式推导是关于圆的知识学习中的一个重难点,理解圆的公式推导过程是帮助学生学习圆周长公式的关键。由于本班学生已经是六年级的学生,在平时的训练中体现出良好的信息技术能力,于是将公式推导这一部分设计为学生应用互动学习软件,在预设的任务中以同桌俩俩合作和四人小组合作的方式进行探究式的学习活动。这样的自主学习活动更注重于学生学习内容的获取过程,让学生在学习过程中自主、积极地去探究,通过“再发现”、“再创造”,建构数学模型,从而对所获得的知识有更深刻的理解和掌握,并灵活应用所学知识解决实际问题,充分体现了“授之以鱼不如授之以渔”的教学理念。而现代化技术的运用,则让学生在有限的时间里经历数学建构的过程,关注到学生的个体差异,为学生的学习创造了良好的环境,提高了学习效率,获得较好的教学效果。

  【教材分析】

  圆的周长公式推导是小学数学六年级上册的一个知识点。为了突破这个知识的重难点,应用学习互动软件《圆的工具》辅助学生进行探究活动,让学生自主探究圆周长与直径的关系,推导出圆的周长公式。学生在这一活动中,用交互工具建构数学模型,应用对比、分析、概括等去解决问题,在合作探究中获得能力发展。

  【学情分析】

  本班学生是六年级学生,具有良好的信息技术能力,在学生的知识系统中,对于圆的各部分名称有了初步的认识。在此基础上,本节课的学习任务是要学生借助学习软件,在给出的任务和要求中自主探究完成实验活动,从而归纳出圆的周长计算公式。

  【教学目标】

  推导并总结出圆周长的计算公式。

  【教学重难点】

  推导出圆周长的计算公式。

  【教学方法】

  以引导探究为主的探究法。

  【学习环境与资源】

  1、学生分组,每一组至少有一台联网的计算机。

  2、探究工具软件《圆的工具》

  3、学生探究活动纸

  【教学过程】

  这一环节主要是进行实验探究,构建模型。

  一、出示实验任务,提出实验要求。

  1、把用来记录探究数据的学生活动纸分发给学生。

  2、介绍实验软件:圆的工具

  3、出示探究活动一的任务:

  二、学生应用软件开展数学实验

  1、同桌合作,轮流进行操作和记录;

  【软件使用说明】

  2、四人小组进一步协作整理数据,发现规律;

  学生应用软件探究圆的周长和直径的关系,将相关数据填入活动报告单,小组进行汇报交流,获得结论。

  当学生在完成作业纸时,根据需要可引导学生。例如,当问“圆的直径和周长之间有什么样的关系?圆的周长和直径的关系会不会随着周长的变化而变化”时,引导学生通过观察、对比、分析、归纳出圆周率是固定的一个数值,从而对圆周率有一定的认识,并推导出圆的周长计算公式。并让学生讨论并归纳:“根据圆的半径和直径的'关系,如何用半径算出圆的周长?”

  这样的过程将探索圆周率的过程简单化,借助现代化技术提高了课堂效率,丰富了学生对圆的认识和理解。

  3、组间分享:通过组间的汇报,相互补充各组的发现,阅读相关资料,了解圆周率。

  三、建构数学模型

  1、通过实验和交流,发现圆的周长和直径的倍数关系,能用直径或半径计算圆的周长。

  2、学会按顺利整理数据的实验方法。

  【教学总结】

  圆的周长公式推导过程在教学中一直是个难点,以往都是让学生拿着圆形物体进行直径、周长的测量,从数据中去寻找周长与直径的关系。这样的操作过程既耗时又费力,且容易出现测量误差导致计算结果出现较大的差距等情况。因此,在设计这节课的时候,我采用了计算机软件的模拟操作,使得整个操作过程的数据精确化,学生借助计算机操作获得的一系列数据,既能获得活动探究所需的数据,又能节约很多操作时间,从而使得整节课的重心放在数据搜集、整理和分析上,学生在一系列精确的数据中获得感知,从而顺利推导出圆的周长公式,实现高效课堂的教学目的。

《圆周长》教学设计15

  教具、学具准备:

  多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。

  教学过程:

  一、 认识圆的周长

  1.情境导入。

  师:同学们,看过《米老鼠和唐老鸭》吗?

  师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?

  (生齐鼓掌!)

  师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)

  2.迁移类推

  师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?

  (1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)

  (2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?

  (围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)

  师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。

  (3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)

  师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?

  (板书课题:圆的周长)

  (4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。

  师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。

  (完成板书:围成圆的曲线的长叫做圆的周长)

  师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。

  3.实际感知

  师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。

  二.测量圆的周长

  1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)

  师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)

  2.小组汇报:(预设)

  (1)师:哪个小组愿意来汇报?

  方法一:用线绕

  师:谁来与老师配合绕给同学们看看?

  (师生合作用绕线的方法去测量圆周长)

  师:这样绕了以后,怎么就知道了圆的`周长呢?(生说明)

  师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)

  (2)师:除此以外,还有别的方法吗?

  方法二:把圆放在直尺上滚动一周。

  师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)

  (3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)

  师:真的吗?谁敢来试试。

  指名一生上台测量黑板上的圆。可能用线绕。

  师:有什么感觉?(不方便!)

  师:那你可以把它搬下来滚动呀!

  这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。

  三、引导学生发现圆的周长和直径之间的关系

  1.猜测

  师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)

  2.验证

  师:谁知道圆的大小是由什么来决定的吗?(半径或直径)

  师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)

  师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?

  师:你感觉到了吗?

  (圆的直径越长,周长越长;圆的直径越短,周长越短。)

  师:这就说明圆的周长肯定与圆的什么有关系?

  (圆的周长与直径有关系。)

  师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。

  (生实际测量、计算、填表)

  3.展示汇报

  师:哪一个小组愿意来汇报你们的数据。

  师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)

  师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?

  4.揭示规律

  师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!

  屏幕出示图3:

  师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?

  (圆的周长总是它直径的3倍多一些)

  师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。

  5.介绍小知识。

  师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)

  五、揭示圆的周长计算公式

  师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?

  (测量出它的直径)

  师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)

  师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)

  (板书:C=πd)

  师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?

  (板书:C=2πr)

  练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?

  学生独立计算。汇报:唐老鸭跑的路程更远。

  六、应用圆周长计算公式,解决简单的实际问题.

  1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  (课件出示)

  (1)学生独立完成,汇报,弄清列式的依据。

  (2)小结:已知直径求周长可直接套用公式。

  2.通过媒体演示指导学生完成"做一做"作业。

  饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?

  小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.

  五、总结,质疑,看书内化。

  师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。

  六、巩固练习。

  1.判断。

  (1)圆周率就是圆的周长和直径的比值。

  (2)π=3.14。

  (3)半径的长短决定圆周长的大小。

  (4)同圆中,周长是直径的π倍。

  2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?

  3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?

  4.求半圆的周长:d=6厘米(图略)

【《圆周长》教学设计】相关文章:

圆的周长教学设计01-25

《圆的周长》教学设计03-07

《圆的周长》数学教学设计05-07

人教版《圆的周长》教学设计06-10

圆的周长教学设计(精选15篇)06-10

圆的周长教学设计精选15篇06-10

圆的周长教学设计(18篇)06-14

《圆的周长》教学设计精选15篇06-07

圆的周长教学设计14篇06-26

圆的周长教学设计13篇06-26