- 相关推荐
《反比例意义》教学反思
作为一名到岗不久的人民教师,我们需要很强的课堂教学能力,教学的心得体会可以总结在教学反思中,教学反思要怎么写呢?下面是小编帮大家整理的《反比例意义》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
《反比例意义》教学反思1
课堂教学是对学生进行思想品德教育的最有利时机,数学教材本身也蕴含着丰富的思想教育内容。我在教学时,经常结合学生的实际,采用灵活多样的方法,挖掘教材中的思想教育内容,有针对性的对学生进行思想品德教育。例如,出示小朋友读《安徒生童话选》例题时,我告诉学生在课余时间要多读书,增长知识;在练习李明骑自行车的练习时,提醒学生在上学放学路上要注意交通安全。简短、温馨的话语,温暖滋润了学生的心,拉近了师生的.距离。
根据我自己的反思及听课老师的点评,本节课还需改进的地方有:
一、复习正比例的知识时分的过细,只复习正比例的意义就可以了,这样学生就可以根据正比例的意义判断正比例,为学习反比例奠定基础,还可以节约时间。
二、教师在课堂上要更加用心的倾听学生的发言,发现学生不规范的语言要及时提醒更改。例如有个别学生说:一个量扩大,另一个量增加,5乘以6,这些地方平时我都提醒学生注意,但是这节课没有及时纠正。
三、教师对学生的评价性语言要丰富,富有针对性,能调动学生的积极性,培养自信心。
四、反比例的知识是个难点,很抽象,学生往往硬套意义来判断,因此,讲解例题和练习时,要多设计图表型的题目,让学生形象的看到两个量的变化规律,直观的计算、比较出两个量的积一定,简明的理解反比例的意义。
五、数学课上,计算题、应用题和正、反比例的意义等内容主要靠学生分析、对比、概括、判断等,有时整节课枯燥无味,如何让这种课也能变得生动有趣,活泼精彩,还需要教师好好思考。
《反比例意义》教学反思2
这部分内容是在学生认识了正比例的意义以及应用的基础上进行教学的,主要任务是使学生认识反比例关系的意义,掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例。由于学生凭借正比例的学习,因此这节课可以做一个“放手”的老师了。
课上先回忆如何去判断两种相联的量成正比例关系,然后出示信息窗的表格,问这两种量成正比例吗?学生马上得出不成,因为两种量的比值是不一定的。从而引导学生观察表中数据,小组讨论:
(1)哪两种量是相关联的量?
(2)这两种量的变化规律与正比例的两种量的变化规律有什么不同?
(3)这种变化有没有规律?是怎样的规律?课上重点研究(2)和(3)两个问题,得出这两种量的变化规律是一种量在变大,另一种量在变小,一种量变小,另一种量变大,是相反的',突出反比例的一个“反”字。不管这两种量怎样变化,但是万变中有不变,这两个量的积是不变的(一定的)。揭示这两种量是成反比例的。让学生说说成反比例的三个条件,受正比例的影响,学生一下就说出来了!然后我直接给出,“糖果厂包装一批糖果,每袋糖果的粒数和装的袋数是否成反比例,为什么?”学生也很流利地把问题解决了
最后出示三个填空:填成正比例、反比例或不成比例
长方形的面积一定,长和宽( )。
三角形的面积一定,底和高( )。
圆锥的底一定,圆锥的体积和高( )。
第一小题没有问题,第二小题问题比较多,都说不成比例,第三题有的同学不动脑筋,受反比例影响也说是成反比例了。
整节课我很顺利地完成教学任务,在知识的迁移性的应用上我感觉挺不错,而这也让我明白打牢知识的基础才能很好的发挥知识的迁移性,它能让自己的教学轻松自如,让孩子们对学习更加充满自信,更能体验到学习成功的快乐。
《反比例意义》教学反思3
教学过程:
一.复习旧知、铺垫引新
师:上一节课我们一起学习了正比例的意义,那么怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?
生:两种相关联的量,一种量变化另一种量也随着变化,当这两种量中相对应量的比的比值一定,也就是商一定时,我们就称这两种量是成正比例的量。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,可以用式子y/x=k(一定)。
教者板书用字母表示的式子。
师:说得真好!×××你能再复述一遍吗?
生2复述。
师:那么同学们能判断下面两种量是否成正比例吗?为什么?
出示:
(1)时间一定,行驶的路程和速度
(2)除数一定,被除数和商
生1:时间一定,行驶的路程和速度成正比例。因为行驶的路程/速度=时间(一定)。
生2:除数一定,被除数和商成正比例。因为被除数/商=除数(一定).
师:在日常生活中我们经常遇到单价、数量和总价这三种量,你能说出单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?
生1:这三种量有这样三种关系:单价×数量=总价、总价÷数量=单价、总价÷单价=数量。当单价一定时,总价和数量成正比例;当数量一定时,总价和单价成正比例。
师:说得真好!如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。
二.交流讨论、探究新知
出示例3的表格。
师:这里有一组信息,同学们仔细看一看这里提供了哪些信息?指名一生回答。
生:这里告诉我们用60元钱去买本子时的几种可能发生的一些情况。
师:嗯!请同学们围绕这样几个问题展开讨论:(出示讨论提纲)
(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?
(2)你能找出它们变化的规律吗?
(3)猜一猜,这两种量成什么关系?
待学生讨论片刻之后师提问:谁来将刚才讨论的结果跟大家做个交流。
生:表中列举了单价和数量两种相关联的量,一个量扩大另一个量反而缩小,一个量缩小另一个量反而扩大,在变化的过程中相对应的量的乘积始终是60。我想这两种量之间就是成反比例的关系。
师:大家同意他的观点吗?
生齐:同意!
师:与正比例相比,大家觉得这样两种量有什么特征呢?
生:首先要是相关联的量,一个量变化另一个量也要跟着变化。成正比例的两个量在变化过程中比值不变,而这里的两种量在变化的过程中是积不变。
师:那我们就可以说,这两种量具有什么样的关系呢?
生:这两种量的关系就是反比例关系。
(教者根据学生的回答作相应的板书)
师:真会观察思考!
投影出示“试一试”
师:你能根据表中已有的信息将表填写完整吗?
生:每天运18吨,需要运4天;每天运12吨,需要运6天;每天运9吨,需要运8天。
师:为什么这样填?
生:每天运的吨数乘以时间要等于总吨数72吨。
师:根据表中数据,你能回答表格下面的问题吗?
生1:相对应的两个数的乘积是72。
生2:这个成绩表示的是工地要运水泥的总吨数,它们之间的关系可以用式子:每天运的吨数×天数=总吨数。
生3:每天运的吨数和需要的天数成反比例。因为每天运的吨数和需要的天数是相关联的两种量,其中一个量变化,另一个量也随着变化。在变化过程中,相对应的数量的乘积总是不变,都是72。所以,这道题中的两种量是成反比例的关系,每天运的吨数和需要的天数是成反比例的量。
师:仔细观察刚才研究的例3和“试一试”,它们有哪些共同的地方呢?
生1:它们提供的两种量都是相关联的量。一种量扩大,另一种量缩小;一种量缩小,另一种量扩大。
生2:这两道题里面的两种量的乘积都不变的。第一道题中两种量的乘积都是60,第二道题中的两种量的乘积都是72.
师:反比例的关系也可以像正比例一样用字母式子把它们的关系表示出来吗?
生:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用:x×y =k(一定)来表示。
三、巩固应用 、拓展延升
1.师:请大家把书翻到第65页,“练一练”中每袋糖果的粒数和装的袋数成反比例吗?为什么?
生:这道题中的每袋糖果的粒数和装的袋数成反比例。因为:每袋糖果的粒数和装的袋数是相关联的两重量,而且每袋糖果的粒数和装的袋数的乘积都是300。
师:你认为要判断两种量是否成反比例,要从哪几个方面来考虑。
生:一要看这两种量是否相关联,二要看相关联的两种量的乘积是否始终不变。
2.师:请大家把书翻到第68页,看书上的第六题。请大家写出几组对应的每本页数和装订本数的乘积,再比较乘积的大小。(稍等片刻)
师:谁来汇报一下你写的几组乘积,它们有什么关系?
生:我算了这样几组:10×90=900;12×75=900;15×60=900;20×45=900;25×36=900。它们的成绩相等,都等于900。
师:这个乘积表示的是什么呢?
生1:这个乘积表示的是纸的总页数。
生2:这个乘积表示的就是用来装订练习本的纸的总页数。
师:每本练习本的页数和装订的本数成反比例吗?为什么?
生:成反比例。因为每本练习本的页数和装订的本数是相关联的两种量,一种量变化的时候,另一种量也随着变化,在变化的过程中,每本练习本的页数和装订的本数的乘积保持不变。所以,每本练习本的页数和装订的本数成反比例关系。
3.师:观察第7题中的两种量,每天装配的数量和需要的时间成反比例吗?
生:每天装配的数量和需要的时间成反比例。
师:你是怎样判断的?
生:每天装配的数量和需要的'时间是两种相关联的量,并且这两种相关联的量中相对应的量的积始终不变都是1600。所以每天装配的数量和需要的时间成反比例。
4.师:下面我们一起看第8题,首先请大家根据方格图中的长方形将表格填写完整,并思考表格下面两个问题。
稍等片刻后,师:通过表格的填写和研究,你发现什么了吗?
生:我发现长方形的面积一定,长方形的长和宽成反比例。长方形的周长一定,长与宽不成反比例。
师:为什么呢?
生:长方形的长和宽是相关联的两种量,当面积一定时,长和宽的乘积是一定的,所以长方形的面积一定时,长方形的长和宽成反比例。而周长一定时,长和宽的和是一定的,积并不一定,所以长方形的周长一定,长与宽不成反比例。
5.师:这里有一道题,同学们判断一下。
100÷x=y,那么x和y成什么比例?为什么?
小组交流讨论。
师:同学们有讨论出什么结论了吗?
生1:我觉得他不成什么比例。
师:为什么呢?
生1迟疑片刻后:看了不像。
师:其他同学有不同意见吗?
生2:我觉得这里的x和y两个量成反比例。
师:能说说理由吗?
生:我们可以将这个等式的两边同时乘以x,等式变为xy=100,这说明x和y的乘积是一定的,那么,x和y成反比例。
部分学生不约而同鼓起掌。
师咨询生1:同意他的观点吗?
生1点头示意。
四、课尾盘点、总结反思
师:这节课你学会了什么?你有哪些收获?还有哪些疑问?
生1:我知道了两个相关联的量,一种量变化另一种量也随着变化,如果两种量中相对应的量的乘积是一定的,我们就说这两种量成反比例关系,这两个量就是反比例关系。
生2:在判断时,我们应该运用学过的知识,灵活判断,而不能看表面,比如老师出的最后一道题。
师:同学们说得真好,希望同学们课后能利用时间找一找生活中还有哪些量是成反比例的量,以帮助自己更好的认识反比例。
教学反思:
本节课内容比较抽象、难懂,学生掌握有一定得困难。怎样化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在本课的教学中做了一些尝试。
一、创设情境,激发求知欲望。
我从学生身边发掘素材,组织活动,让学生从活动中发现数学问题,从而引入学习内容和学习目标。这就激发了学生学习数学的兴趣,激起了自主参与的积极性和主动性,为自主探究新知较好的创设了现实背景。
二、深入探究,理解涵义
在演示的基础上,我又不失时机地组织学生合作学习,讨论、分析,因而取得满意的效果:学生自己弄清了成反比例的两种量之间的数量关系,初步认识了反比例的涵义,体验了探索新知、发现规律的乐趣。
三、比较猜想,归纳规律
我考虑到例题比较相近,因此要注意学习方式必须加以改变。因此我采取把自主权交给学生方式,营造了民主、宽松、和谐的课堂氛围,因而对例题的学习探索取得了比较好的效果。然后通过例题与例题进行比较,归纳出成反比例的两种量的几个特点,再以此和正比例的意义作比较,猜想出反比例的意义。最后经过验证,得出反比例的意义和关系式。既达成了本课的知识目标,又培养了推理的能力。
《反比例意义》教学反思4
(1)对教材内容安排的思考
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高。
(2)对练习题型、题量的思考
第一堂课在教学的时候,对于课本上的练一练没有进行选择,要求学生全部解答,结果发现学生化的时间比较多,而且效果也不是特别的理想。有了上次的经验,教师做适当的补充和引导,在第二节课的时候,学生的完成情况就比较理想,时间不多效率也高。
另外,由于在课始的导入环节中的未知每本页数与装订的本书的求解就已经知道求解方法,所遇课堂学生就没有刻意的去讲解,结果从课后的练习第二题来看,学生的掌握情况不是很好,虽然有些同学已经利用的了反比例的方法解答。后来想想本堂课学习的是反比例,既然已经学习了反比例,对于课后安排的这样的习题就不应该还只是利用上节课的方法去解答,应该很好的把这堂课所学习到的'知识利用起来,一来是学生进一步理解反比例,二来可以为后面学生学习利用反比例解答应用题留下伏笔。
(3)对正、反比例数量关系的书写的一点思考
在课堂上讲解:长方形的面积一定,它的长和宽。这道题是,想到三角形是否学生也能正确的解答,于是就补充了:三角形的面积一定,它的底与相应的高是不是成反比例?为什么?
这个问题的提出,使我对于为什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚为什么要用字母表示,现在想想,字母的标识其实是最能用数学语言来判断是不是成反比例,所以可以写成ah=s(一定)来说明底和高成反比例。这样学生在书写数量关系的时候,思维方法就会更明确。
《反比例意义》教学反思5
学习了正反比例的意义后,学生接受的效果并不理想,特别是离开具体数据根据数量关系判断成什么比例时问题比较大,一部分同学对于这两种比例关系的意义比较模糊。为了帮助学生理解辨析这两种比例关系,我利用了一节课时间进行了对比整理,让学生在比较的过程中发现两种比例关系的'异同后,总结出判断的三个步骤:第一步先找相关联的两个量和一定的量;第二步列出求一定量的数量关系式;第三步根据正反比例的关系式对照判断是比值一定还是乘积一定,从而确定成什么比例关系。学生根据这三个步骤做有关的判断练习时,思路清晰了,也找到了一定的规律和窍门,不再是一头雾水了,逐渐地错误减少了。看来在一些概念性的教学中必要的点拨引导是不能少的,这时就需要充分发挥教师的主导作用,学生的理解能力是在日积月累的过程中培养起来的,教给学生一定解题的技巧和方法能提高教学效率。
《反比例意义》教学反思6
我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。
生活是数学知识的源泉,正反比例是来源于生活的。
其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的感性材料,重过程练习
课上学生基本能够正确判断,说理也较清楚。
教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的.时间获得最大的学习效益的方法都是成功的,都是有价值的。
《反比例意义》教学反思7
接到学期公开课任务的当天晚上就开始着手准备,查找相关资料,做到心中有数,怕自己做的不好,很是紧张。第二天先写好了常规的教学设计,也算是雏形已定。我觉得对我自己来说,教学设计一定要先把握好教学目标的分析,所以我参照要求设定了合适的教学目标。初稿是按照流水帐形式,和平时上课一样,按照复习引入、讲授新课、分析例题、练习巩固、归纳小结、布置作业等程序进行。初稿交给指导老师后,孟主任建议其中的复习引入环节做大的调整,对习题的设置也给出了指导建议,修改后流畅了很多。随后设计了学卷,给董老师把关指导。因为我定位于层次相对高的学生,在习题的数量设置、坡度设置上不合理,难度不适宜。有些题目过于简单,毫无价值;而有些则过难,在课堂上会耽误很多时间,于是想到变式训练,在题目设置的顺序和难度上下功夫。
在第一次试讲后,发现引入部分太拖沓,用了10分钟时间才归纳得出反比例函数的定义和形式,随后的两个针对定义设计的稍难的题目就直接跨过到待定系数法求反比例函数解析式,课程结束得比较匆忙。
在备课组老师的指导下,重新设置了题目的数量,第4题中原来为了复习设置了五个小问题,在函数概念上纠缠过多,反而引起学生理解困难;把引入部分第5题的练习由原来的四个减少到两个,剩下了的两个留在第7题作为练习。由于函数解析式的形式通过归纳与对比形成新知识并不需要太多雷同的题目,这样引入时间大大减少,而列关系式的题目难度并不大,把第一次的逐题讲解变成了答案展示,节约了近10分钟时间。其实开始是对学生的水平不太相信,怕题目过难,学生不能迅速完成,时间证明,引入部分的题目难度不大,学生能迅速完成,而我还是按照自己的想法进行第一次的试讲,所以时间显得很紧张,没有顾及学生的实际水平。
第3题的最后一问“反比例函数kxy=还可以表示成什么的形式” ,这个问题显得很宽泛,学生也无从下手,不知从哪个角度入手,也不明白老师想问的问题到底是什么,这是一个无效的设计。后来结合要求,丽涛说新课只要求学生能辨认出伪装后的反比例函数或者说经过等价变形的反比例函数的形式,因此问题改成了以选择题的'形式出现,这样学生也有了一定的目标范围,也不会因为问题设置不合理而耽误过多时间。当他能正确选择出答案时,也说明他知道了这几个答案是由标准形式经历了怎么样的等价变形而得到的。
第6题目更改设计后是使得教学过程流畅了很多且节约了时间,但是在实际上课过程中,对这个问题忽略了,认为学生能直接选择出答案就是他们已经牢记了这些形式。此处应该在学生选择了正确答案后,教师最好再花2分钟的时间讲解下变形过程,同时也回顾了分式的乘法、负指数的意义等知识,加深知识点之间的联系;或者让学生口头回答他选择的理由。总之在这里应该停顿回顾下这个重要的知识点,以加深对新知识的印象,及时总结归纳反比例函数形式的特点,要能突破这个学生理解的难点,要不会对第8题的影响就比较大。
第5题在讲解过程中花了过多的时间,说明前面kxy=及其变形讲解不透彻。k值(反比例系数)不能顺利求出,表示y是的x反比例函数疑惑颇多,讲解费时,在成反比例和反比例函数之间有混淆。经过对比板书,学生明白了题目要求的是y与x成反比例 ,为了巩固对反比例概念的理解,增加了练习6。
在讲解用待定系数法求反比例函数的解析式时,原来只设计了讲解例题,随后的巩固练习与例题几乎完全相同,只是改变了数据而已,这样的题目设计对学生来说是很不愿意接受的,但是用待定系数法求函数的解析式是一个重要的方法,学生必须动手写一次,难度又不能加大太多,怎么办呢?就结合小组活动,让学生动起来。虽然多了考察内容,但是都是最基本的内容,难度没有加大太多,学生也能按照顺序顺利解决问题
课堂归纳小结第一次设计的时候,就是问一句“本节课你有什么收获?”,对于这些宽泛的问题,学生一般都不知怎么回答,所以要紧扣定义,引导学生。这样,学生知道了本节课的内容,也明白了空白处就是本节课的重点要掌握的部分了。
在讲课的过程中,与学生的互动较少,没有充分调动起学生的积极性,自己也有点紧张,学生也有点紧张。 在数次不停修改教学设计的过程中,自己的认识也在不断提高,题目设计水平也有了提高,指导老师,还有我的同事都给了我不少的建议和帮助,才使我的设计更臻完善,在此也感谢他们!
《反比例意义》教学反思8
我利用了一节课时间进行了对比整理,让学生在比较的过程中发现两种比例关系的异同后,总结出判断的三个步骤:
第一步先找相关联的两个量和一定的量;
第二步列出求一定量的数量关系式;
第三步根据正反比例的关系式对照判断是比值一定还是乘积一定,从而确定成什么比例关系。学生根据这三个步骤做有关的判断练习时,思路清晰了,也找到了一定的规律和窍门
看来在一些概念性的教学中必要的.点拨引导是不能少的,这时就需要充分发挥教师的主导作用,学生的理解能力是在日积月累的过程中培养起来的,教给学生一定解题的技巧和方法能提高教学效率。
《反比例意义》教学反思9
苏霍姆林斯基说过:“在人的心灵深处,总有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”这种需要在儿童的身上表现得更为突出。一旦学生的学习兴趣被激发起来,他们就希望通过自己的努力来获取知识,从而体验成功的喜悦。
考虑到学生学习基础、能力的差异,练习设计为学生提供多层次、多种类的选择,以满足不同层次学生发展的需要。以上的几个练习分成三个层次,设置了三个智力台阶,适合不同层次学生的需要,为不同层次的`学生提供取得成功机会,使他们在练习中获得成功的体验,树立积极自信的信心。
现在数学与实际生活联系越来越密切,应用性越来越强,我在这节课的练习设计也反映这一特点,其中有许多与现实生活及各行各业密切联系的习题,既有学生做练习,骑车上学,又有学校烧煤、买课桌,农民播种,工厂运货物等问题。使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
《反比例意义》教学反思10
我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。
生活是数学知识的源泉,正反比例是来源于生活的。我在本课教学中,首先通过系列训练,将教材知识转换为学生喜闻乐见的形式,不仅使学生思路清晰地掌握知识体系,而且能在规律上点拨启发,所以学生主动性高,回答问题时能从不同角度、不同方位去思考,既开动了学生脑筋,又培养了学习兴趣。
其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的感性材料,重过程练习,让学生亲自经历知识的发生、发展过程,注重培养探究、创新意识,以达到教师主导与学生主体的有机结合,使零散的知识得到有效整合和扩展延伸,形成学生自己固有的知识体系.
课上学生基本能够正确判断,说理也较清楚。但是在课后作业中,发现了不少问题,对一些不是很熟悉的关系如:车轮的'直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?学生在判断时较为困难,说理也不是很清楚。可能这是学生先前概念理解不够深的缘故吧!以后在教学这些概念时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后在进行相关形式的练习,我想对学生的后继学习必然有所帮助。
教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的,我以后会大胆尝试,努力创造民主和谐、轻松愉悦、积极上进,共同发展的新课堂吧!
《反比例意义》教学反思11
首先简单复习了一次函数、正比例函数的表达式,目的是想让学生清楚每种函数都有其特有的表达式,对反比例函数表达式的总结作了一个铺垫。其次利用题组(一)题组(二)对反比例函数的三种表示方法进行巩固和熟悉。
例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的`,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。
题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。
虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。
《反比例意义》教学反思12
今天上午的第二节课,我试讲了《正、反比例的意义》。这节课上完以后,给我感触最深的是第一层次(认识量、变量,建立两种相关联的量这个概念)的教学。这个环节处理得很不好(具体的下面介绍),学生没有很好地建立“两种相关联的量”这个概念,也就影响到了对正、反比例意义的理解。
我自己很清楚,不管怎么说,“两种相关联的量”这个概念教学的'失误是我造成的,后来我明白了,如果在学生回答了“路程和时间这两种量在变化”后,我顺势说一句“读一读这些数据”,随后再接着问:“谁随着谁变呀?”这样就会很顺畅地得出:路程随着时间的变化而变化(或是时间随着路程变),我们就把这两种量叫做两种相关联的量。最后再用表(2)中的两种量来巩固这个概念。这样的教学设计应该就能够使学生很好地建立这个概念了,也就圆满地完成了这一层的教学内容。
《反比例意义》教学反思13
我在反比例函数的意义的教学中做了一些尝试。由于学生有一定的函数知识基础,并且有正比例的研究经验,这为反比例的数学建模提供了有利条件,教学中利用类比、归纳的数学思想方法开展数学建模活动。
一、创设情景,引入新课。
我选择了课本上的探究素材,让学生从生活实际中发现数学问题,从而引入学习内容。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析问题再组织学生通过充分讨论交流后得出它们的相同点,概括、发现规律,在此基础上来揭示反比例的`意义,构建反比例的数学模型就显得水到渠成了。
二、深入探究,理解涵义
为了使学生进一步弄清反比例函数中两种量之间的数量关系,加深理解反比例的涵义,体验探索新知、发现规律的乐趣。我设计了例题1使学生对反比例的一般型的变式有所认识,设计例题2使学生从系数、指数进一步领会反比例的解析式条件,至此基本完成反比例的数学的建模。以上活动力求问题有梯度、由浅入深的开展建模活动。教学中按设计好的思路进行,达到了预计的效果。此环节暴露的问题是:学生逐渐感受了反比关系,但在语言组织上有欠缺,今后应注意对学生数学语言表达方面的训练。
三、应用拓展:
设置例题3的目的是让学生得到求反比例函数解析式的方法:待定系数法。提高学生的分析能力并获得数学方法,积累数学经验。设置两个练习,让学生充分理解并掌握反比例函数的应用。
另外课堂中指教者的示范作用体现的不是很好,板书不够端正,肢体语言的多余动作,需要在今后的教学过程中严格要求自己,方方面面进行改善!本次公开课得到备课组长刘燕老师的认真指导。
《反比例意义》教学反思14
通过本次的教学展示,总体感觉自己整节课的教学流程清晰,教师对本节课的两个重点突破较好,学生都理解了比例的`意义。
但本节课也存在着一些不足之处:
(1)整节课一味担心自己的教学任务不能完成,对学生放手不够,有牵着学生走的嫌疑。
(2)教师讲解太过仔细,以至拓展练习无法完成。在今后的教学中将加大“放手”力度,多注意培养学生创新思维。
一、把“分层”理念贯穿于整节课堂
学生是一个个鲜活的个体,知识基础和生活经验各不相同,所以教学中我尽最大努力照顾到所有的学生,使他们每一个人都得到应有的知识和不同程度的提高。
在整个教学过程中,我灵活运用《分层测试卡》这一教学资源,把其中的题目按照难易程度和层次的不同选择性的适时融入教学,为学生理解正比例的意义而服务。
二、关注学生的学习过程
数学学习是一个思考的过程,没有思考就没有真正的数学学习。
《反比例意义》教学反思15
《成反比例的量》是在学习《成正比例的量》之后学习的。为了吸取上次课的教学经验,我改变了教学方法,目是调动学生学习的兴趣,培养学生自主学习的能力。
一、复习旧知,引入新知。
上课时,以已学过的正比例的意义为切入点,让学生们先说一说成正比例的量的意义,并要求说出它的特征来;让学生们说一说生活中有哪些成正比例的量,再说说你是如何来判断这两个量是否成正比例关系。这样既复习了旧知,又为学习新的知识做好了一定的铺垫。再出示课题:成反比例的.量。让学生们自己提出疑问:如成正比例的量是一个量增加,另一个量也增加,一个量减少,另一个量减少,那成反比例的量是不是一个增加,另一个量就减少呢?成正比例的两个量是比值一定,那成反比例的量是什么一定呢?
二、自主探究,学习新知。
有了一些疑问,相信学生们会急着想要解决呢!我就顺势提出让学生们自己看书来寻找这些答案,然后再进行交流。在交流的过程中,让学生对别人的发言及时补充和发表自己看法,这样既学会了思考,又培养了学生学会倾听的学习习惯。接着对成正比例的量和成反比例的量进行比较,找到新旧知识之间的联系与区别。在整个自主学习的过程中,学生们很好地利用已有知识和经验的迁移,理解了反比例的意义,不仅让学生获得了数学知识,还增强了自主学习数学的信心,同时还培养了学生自主获取新知识的能力。
这课学生自主学习的积极性都很高,学习效果较好,为了鼓励学生学习的积极和主动性,一是人人能自主积极参加新知的探索与学习;二是大家能充分合作,发挥出了各自的能力;三是大家学会了如何利用旧知识来学习新知识的方法;四是很多同学通过自主学习获得知识后,有一种快乐感和成就感。
本节课内容比较抽象、难懂,学生掌握有一定得困难。怎样化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在本课的教学中做了一些尝试。
一、创设情境,激发求知欲望。
我从学生身边发掘素材,组织活动,让学生从活动中发现数学问题,从而引入学习内容和学习目标。这就激发了学生学习数学的兴趣,激起了自主参与的积极性和主动性,为自主探究新知较好的创设了现实背景。
二、深入探究,理解涵义
在演示的基础上,我又不失时机地组织学生合作学习,讨论、分析,因而取得满意的效果:学生自己弄清了成反比例的两种量之间的数量关系,初步认识了反比例的涵义,体验了探索新知、发现规律的乐趣。
三、比较猜想,归纳规律
我考虑到例题比较相近,因此要注意学习方式必须加以改变。因此我采取把自主权交给学生方式,营造了民主、宽松、和谐的课堂氛围,因而对例题的学习探索取得了比较好的效果。然后通过例题与例题进行比较,归纳出成反比例的两种量的几个特点,再以此和正比例的意义作比较,猜想出反比例的意义。最后经过验证,得出反比例的意义和关系式。既达成了本课的知识目标,又培养了推理的能力。
【《反比例意义》教学反思】相关文章:
反比例意义教学反思01-04
反比例意义教学反思(15篇)02-17
《反比例意义》教学反思精选15篇03-01
反比例意义教学反思15篇02-13
《反比例意义》教学反思15篇02-14
《反比例意义》教学反思(15篇)02-14
《反比例意义》教学反思合集15篇03-01
《反比例意义》教学反思(集合15篇)02-14
反比例的意义教案04-01