圆的认识教学设计

时间:2023-01-23 09:29:42 教学资源 投诉 投稿

圆的认识教学设计(精选15篇)

  作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编精心整理的圆的认识教学设计,仅供参考,欢迎大家阅读。

圆的认识教学设计(精选15篇)

圆的认识教学设计1

  教学目标

  1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

  2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

  教学重点和难点

  由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

  教学过程设计

  (一)复习准备

  在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

  (产生疑问,引起争议,激发起学生的学习兴趣。)

  这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

  (二)学习新课

  1.认识圆心、半径、直径。

  同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

  (老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

  老师刚才画圆时,中间的点怎么样?(中间的点不动。)

  我们把这个不动的点叫定点。(板书:定点)

  粉笔画出的线为什么能首尾相接呢?

  应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

  如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

  (出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

  你们会用圆规画圆吗?

  请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

  画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

  (先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

  定点,用数学语言说叫圆心。(板书:圆心)

  什么叫圆心?(指名回答)

  哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)

  谁说说什么叫半径?(指名回答)

  (老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

  像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

  谁再说说什么叫直径?(指名回答)

  我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

  (学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)

  (老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

  老师想看看同学们是不是真正掌握了这些概念。

  练一练

  (1)判断这几条线段中哪一条是半径?

  (2)判断哪条线段画的是直径?

  (3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)

  同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

  2.研究圆的特征。

  用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

  (学生分小组讨论。)

  (老师再在幻灯上演示一遍,提问讨论结果。)

  (板书) 无数条 相等

  刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)

  甲圆的半径和乙圆半径相等吗?

  甲圆直径是乙圆直径的2倍吗?

  那么圆在什么情况下才存在这些特征?(板书:同一圆里)

  练一练(正确画,错误画。)

  (1)在同一圆里,所有的`半径都相等,所有的直径都相等。 ( )

  (3)在同一圆里,半径是4厘米,直径一定是2厘米。 ( )

  (4)圆心在圆上。 ( )

  同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:

  同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

  请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

  刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

  (板书) 位置 大小

  圆心决定圆的位置,画圆时要先点圆心。

  (老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

  如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

  (指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

  (三)课堂总结

  今天你学会了哪些知识?

  你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

圆的认识教学设计2

  1. 例1。

  编写意图

  例1是让学生想办法在纸上画圆,直观感受圆的曲线特征,同时为后面探究圆的基本性质做好准备。教材共呈现了3名学生用不同的实物来描摹画圆的方法,这种方法简单,且学生以前有基础,但因受实物所限,画出的圆大小是固定的,不能随意变化,从而为后面教学用圆规画圆做了铺垫。

  教学建议

  教学时,教师应在课前备好相应的学具,如茶杯盖、圆柱等用来画圆的物品,以便于学生活动。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。

  2. 例2及“做一做”。

  编写意图

  例2教学圆的认识和画法。

  圆的认识主要是认识圆的各部分名称及特征。分三个层次编排:首先让学生将画好的圆反复对折,发现折痕相交于一点,引出圆心的概念。然后由圆心出发,定义半径和直径,并让学生探索出在同一个圆内,半径和直径都有无数条。最后通过测量比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的1/2。

  教材对用圆规画圆的编排是先让学生自主探索,然后小组交流,最后由教师归纳总结出画圆的基本方法。

  “做一做”的第1题主要是巩固学生对半径和直径的认识。第2题重点在于画出一个确定大小的圆;第3题让学生找出圆的圆心和直径,由于这两个圆都是画在纸上的,无法通过折叠的'方法来确定,所以较难。可以引导学生借助正方形的对称性来找圆心,只要连接正方形的对角线即可。第4题主要说明圆形物体具有易滚动这一特性,故车轮常做成圆形的,而车轴之所以装在圆心的位置,则是因为圆心到圆上任意一点的距离都相等,故只有把车轴装在圆心处,当车轮滚动时方可使行进的车辆保持平稳状态。

  教学建议

  教材注重学生动手操作来探究圆的基本特征,故教学时应放手让学生活动,通过折、画、量等方式来寻找规律。在学生活动中,教师可适时用问题引导探究的内容。如“同一个圆里,有多少条半径呢?”“半径和直径的长度有什么关系?”……最后,教师应在学生探究的基础上,对圆的有关概念和基本特征进行归纳和整理,以使学生形成系统、科学的认识。

  教学用圆规画圆时,应先让学生自己在纸上画一画,然后小组交流画法。在此基础上,教师可归纳总结出画圆的基本步骤和方法,主要应说明两点:一是圆的位置和大小分别是由圆心和半径决定的,故画圆时应先确定圆心,然后按照指定的长度为半径来画圆;二是圆的大小取决于半径的长短,与圆心的位置无关。然后再让学生按照要求画几个圆,逐步掌握用圆规画圆的方法。

  3. 例3及“做一做”。

  编写意图

  例3在前面所学的成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。

  教学建议

  教学时可分两个层次:一是让学生回顾以前学过的轴对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都有对称轴,这些图形都是轴对称图形;二是引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。

  “做一做”的第1题是总结性题目,在学过的轴对称图形中,等腰三角形和等腰梯形只有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴;第2题是根据对称轴画出轴对称图形的另一半,教学时应引导学生利用方格纸先描出对应点,再连线构成图形。

  4. 关于练习十四中一些习题的说明和教学建议。

  第2题,第3幅图是一个圆内切于一个正方形,则正方形的边长就是圆的直径,故r=5 cm;第4幅图以梯形的上底为直径作出的半圆内切于梯形的下底,则梯形的高即为半圆的半径,故d=7 cm。

  第3题,使学生知道两端都在圆上的线段,直径是最长的一条。

  第4题,这两种方法都是利用第3题的结论,通过移动尺子或用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。

  第6题,可先固定一点,然后以此为圆心,用长为5 m的绳子绕此点旋转一周即可画出。

  第8题,最本质的区别在于圆是曲线图形,而三角形和四边形是直线构成的图形。

圆的认识教学设计3

  教学目标:

  1.使学生认识圆,知道圆的各部分名称.

  2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.

  3.初步学会用圆规画圆,培养学生的作图能力.

  4.培养学生观察、分析、抽象、概括等思维能力.

  教学重点:理解和掌握圆的特征,学会用圆规画圆的方法.

  教学难点:理解圆上的概念,归纳圆的特征.

  教学过程 :

  一、创设探究情境,激发学习兴趣

  1、 观察电脑画面中哪些物体的面是我们学过的图形。(电脑出示生活画面。)学生观察并指 出图形。(课件出示平面图形)请学生说说圆与以上图形有什么不同?(正方形、长方形、三角形、平行四边形、梯形都是由线段围成的图形,圆是一种由曲线围成的图形。)你一定想进一步了解圆,今天我们就来研究圆。(板书课题)

  二、合作探究,发现问题

  1、认识圆

  (1) 你会用你带来的物品画圆吗?动手画圆, 看谁的方法多?学生四人一组动手操作。集体交流。

  (2) 请同学们拿出课前准备的圆形纸片,摸一摸圆的边缘,是直的还是弯的?(弯曲的)教师说明:圆是平面上的一种曲线图形.学生再把圆对折、打开,换个方向,再对折,再打开……这样反复折几次.教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)仔细观察一下,这些折痕总在圆的什么地方相交?(圆的.中心一点)教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母o 表示.教师板书:圆心。

  2、探索半径和直径

  (1) 请同学们打开圆形纸片,除了圆心外,你还看到了什么?什么是直径?什么是半径?请同学们自学课本56页,把你认为重要的概念划一划、读一读,并在圆形纸片上标出这个圆各部分名称。

  (2) 检查自学情况。通过自学你认识了哪些新的概念?它们各用什么字母表示?

  (3) 请同学们动脑想一想、动手画一画、量一量。(电脑出示问题)

  在同一个圆里有多少条半径?所有半径的长度都相等吗?

  在同一个圆里有多少条直径?所有直径的长度都相等吗?

  在同一个圆里直径的长度与半径的长度有什么关系?

  学生汇报研究结果。(在同一个圆里半径有无数条都相等,直径有无数条都相等。半径是直径的一半。)

  3、 画圆

  (1)学生尝试用圆规画圆,集体交流,总结方法。

  (2)学生练习用圆规画半径为3厘米的圆。

  (3)电脑出示同心圆,请学生观察圆的什么变了,什么没变?圆的大小是由谁决定的?

  (4)出示不同位置的等圆,请同学观察:圆心变了,圆的什么就改变了?圆的位置是由谁决定的?

  三、实际应用,解决问题

  a基本练习

  (1)判断:

  ①所有的半径都相等,所有的直径也都相等。 ()

  ②画半径为2厘米的圆时,圆规两脚间的距离就是2厘米。 ()

  ③直径的长度是半径的2倍。 ()

  (2)选择:

  ①在同一个圆内有( )条直径。

  a 、2 b、无数c、4 d、10

  ②( )确定圆的位置,( )确定圆的大小。

  a、圆心 b、半径c、直径

  b、提高练习找出圆心和直径(p58的3题)

  c、拓展练习讨论生活实际问题:为什么车轮要做成圆形的?能不能做成其他形状?为什么车轴要装在圆心上?

  四、课堂小结

  这节课你学习了哪些内容?你有什么收获?

圆的认识教学设计4

  教学目标:

  1、让学生在操作、体验中认识圆,知道圆各部分的名称,掌握圆的特征,能正确画圆,初步利用圆的知识解释一些日常生活现象。

  2、通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念,发展数学思考。

  3、通过学习,进一步体验图形与生活的联系,感受平面图形的学习价值,提高学生对数学的好奇心与求知欲,体验数学活动的意义和作用。

  教学重点:

  掌握圆的各部分名称,圆的基本特征,学会用圆规画圆。

  教学难点:

  归纳圆的特征。

  教学准备:

  老师准备、教具圆规,学生每人准备一张白纸、一把圆规、两个大小不一的圆片。

  教学过程:

  一、溯源生活,导入新课

  1.欣赏,走进圆的世界。

  师:老师给同学们带来了一些图片,我们一起来看看吧。

  师:这些图片中有什么相同之处?

  (都是圆形物体。)

  2.揭示课题。

  今天这节课我们就一起走进圆的世界去探寻圆的奥秘。板书课题:圆的认识

  3.师:生活中很多物体的面是圆形的,同学们能说说你们在哪儿看到过圆吗?

  让学生说一说。

  二、操作体验,感悟特征

  1、教学画圆

  师:说了这么多的圆,你想不想亲自动手画一个圆?(想)

  师:现在请同学们利用手中的工具画一个圆,会吗?在白纸上试着画一个。

  学生动手画圆。

  引导学生交流所画的圆,并说说是怎样画的。

  师:你能告诉老师用什么画的吗?有不是用圆规的画的吗?

  师:你能告诉我为什么你们都喜欢用圆规画呢?

  小结:用圆规画得圆很标准而且方便。

  师:现在请同学们用圆规在纸上画一个圆。

  师巡视,找出失败的作品。

  师:同学们,你们觉得这些圆画得怎么样?

  师:这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?

  (1是没有固定好有针的那个脚;2是两脚之间的距离变化了;3是可能不会旋转;4拿圆规方法不对。)

  师:其实同学们发现了没有,刚才你们说得问题就是在画圆的时候应该注意的地方。

  师示范画圆。边画边说步骤。

  第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)

  第二步:把有针尖的一只脚固定在一点上。(板书:定点)

  第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)

  强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。

  师:现在,掌握了这些要求,有没有信心比刚才画得更好?

  学生画圆。

  师:刚刚老师发现,同学们画的圆有的大有的小,你们知道为什么会这样吗?

  (画的时候圆规两脚之间的长度不一样。)

  师:现在老师想请同学们画同样大小的圆,你们有办法吗?谁来帮老师想个办法?

  师:好,现在我们就把圆规两脚间的距离统一定为4厘米。

  师:大家动手画一个。圆我们画好了,但是如果有人要你介绍这个圆,你怎么说呢?

  2.教学圆的各部分名称。

  (如果有学生说出半径、直径这类的词)师:刚才同学们用到了半径、直径,我们把它写下来好吗?(板书)那么什么是半径、直径呢?下面我们把课本翻到94页,例2下面的一段话会告诉你答案,自学例2下面的一段话。

  师:现在你会介绍了吗?什么叫半径呢?(引出下面的教学内容。)

  师:那什么是圆的圆心呢?(针尖固定的一点是圆心。)

  学生说,教师在黑板上标出。圆心通常用大写字母O表示。

  师:圆心有什么作用?它可以确定圆的什么?

  师:刚刚同学介绍说半径是连接圆心和圆上任意一点的线段。圆心我们已经知道了,那什么是圆上任意一点呢?你能找一找吗?你会画半径吗?

  指名学生上黑板上画半径。其余学生在自己画的圆上画好。

  师:半径通常用字母r表示。请同学们在自己的圆上标出。

  师:什么是直径?(通过圆心,两端都在圆上的线段。)

  师:老师这里在圆上画了一些线段,现在请同学们来帮忙判断是不是直径,可以吗?

  师:好,请同学们在自己的圆上画上直径,直径我们可以用字母d表示,请同学们标出。

  师:下面老师想考考大家,找出下面圆的直径和半径。(让学生说明是怎样想的。)

  3.探究圆的基本特征。

  师:我们已经认识了圆的圆心、半径、直径。大家想不想再深入地研究一下圆呢?单单圆心、半径、直径里面就蕴藏着很多知识,你想研究吗?

  师:接下来请同学们拿出信封里的圆片,同桌之间一个大圆,一个小圆。请同学们折一折,画一画,量一量,比一比,议一议。相信同学们肯定有精彩的发现。

  (1)圆有无数条半径和直径。

  师:你是怎么发现的?

  学生可能是通过画发现的,也可能是推想的。

  (2)在同一个圆里,半径的长度都相等,所有的直径长度都相等。

  预设:如果学生没有说是在同一个圆里,那教师就及时追问:你的圆的半径跟你同桌圆里的半径一样长吗?跟老师黑板上画的圆的半径一样长吗?那怎么说更好呢?

  师:你是怎样发现的,能说一说吗?

  学生说明。有些学生是折的,有些学生是量的。

  (3)同一个圆里直径是半径的2倍。

  师:你是怎么知道的?

  学生可能说是观察到的,也可能是量的。

  师:你会用含有字母的式子来表示它们之间的关系吗?

  d=2r r=d÷2

  师:如果老师告诉你圆的`半径或者直径,你能说出它的直径或者半径吗?

  师:好,那老师就来考考大家。

  (出示练习十七第1题。)

  (4)圆是轴对称图形,有无数条对称轴。

  师:你是怎么知道的?

  师:还有其他发现吗?

  师:刚才大家通过自己的努力又发现了圆这么多的特征,看来只要善于观察,善于探索,善于研究,就会有意想不到的收获。

  三、巩固练习,深化认识

  师:接下来,老师有几个问题想请同学们解答一下,你们愿意吗?

  出示判断题

  (1)直径长度是半径的'2倍。()

  (2)圆心决定圆的位置,半径决定圆的大小。( )

  (3)画一个直径4厘米的圆,圆规两脚的距离应该是4厘米。( )

  (4)在同一个圆内只可以画100条直径。 ( )

  四、走进历史,探索信息

  师:今天我们一起认识了圆。其实,早在两千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:&ldqu;圆,一中同长也。&rdqu;你怎么理解这句话?

  师:我国古代这一发现要比西方整整早一千多年。说到这里你有什么想法!

  师:其实在我们古代对圆的研究远不止这些,有兴趣的同学可以利用课余时间通过网络去了解。现在老师还为大家带来了一个古代的圆,你们认识吗?对了,这是我们古代的太极图,有句话说,太极生两仪,两仪就是我们图上的黑和白,表示阴和阳。谁来说说看这幅图是由什么构成的?

  师:原来它是用一个大圆和两个同样大的小圆组成,假如小圆的半径是3厘米,你又能知道哪些信息呢?

  师:同学们发现的信息还真不少,只要同学们肯动脑筋,善于联系,在以后的学习中肯定会有更多收获。

  五、全课总结

  师:在古代我们很早有了圆的发现和研究,在现代圆一直扮演着重要的角色,并一度成为美的使者和化身。接下来我们一起再来欣赏一下关于圆的一些图片。感觉怎么样?美吗?想说点什么吗?

  师:的确圆是非常漂亮的图案,以前有位思想家说过,圆是世界上最美丽的图形。可见这句话不是随便说的,那么其中到底蕴涵了什么深沉的意义呢?这个问题就留给同学们课后思考。相信随着你们学识的增长,会有更多更深的理解。

圆的认识教学设计5

  教学目标

  1.使学生认识圆,知道圆的各部分名称.

  2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.

  3.初步学会用圆规画圆,培养学生的作图能力.

  4.培养学生观察、分析、抽象、概括等思维能力.

  教学重点

  理解和掌握圆的特征,学会用圆规画圆的方法.

  教学难点

  理解圆上的概念,归纳圆的特征.

  教学过程

  一、复习旧知

  (一)教师提问:我们已经学过哪些平面几何图形?

  长方形、正方形、平行四边形、三角形和梯形

  (二)谈话引入:今天我们继续学习一个新的几何图形.

  二、教学新课

  (一)圆的形成过程

  1.教师叙述:体育课上,教师和明明做游戏,老师固定在操场中间不动,为了保持与老师之间的距离不变,明明拉紧一条绳子开始走动,形成这样一个图形,这是什么图形?

  2.教师提问

  (1)明明拉着绳子围着教师走动,他的位置发生了变化,但是有一点是没有变的,你知道吗?(明明和教师的距离没有变化)

  (2)老师的位置在哪里?(引出圆心)

  (二)联系实际

  生活中的圆形物体处处可见,你能举一些例子吗?

  (三)画圆

  1.介绍圆规的历史.

  2.教师介绍画圆步骤

  (1)把圆规的两脚分开,定好两脚间的距离;

  (2)把有针尖的一只脚定在一点上;这个点就是圆心,用字母O来表示.

  (3)把装有铅笔尖的一只脚旋转一周.

  3.教师强调

  (1)圆规两脚距离不能变;

  (2)重心放在针尖一脚上;

  (3)起点和终点要重合.

  4.学生练习

  (1)学生在教师的`带领下画圆

  (2)学生自己练习画圆

  (3)学生按要求画圆(两脚间距离为3厘米)

  (四)认识半径、直径和两者间的关系.

  1.认识半径:教师在圆内画一条线段,线段的一个端点在圆心,另一个端点在圆上.

  (1)教师说明:这样的线段叫圆的半径,用字母r表示

  (2)比赛:我给同学们10秒钟时间,请你们在自己的圆中画半径,看谁画的多?同时还要说明半径的长度.

  (3)学生反馈:你画了几条?长度呢?如果还有时间你还能画多少条?

  (4)教师小结并板书:所有的半径都相等.

  教师追问:你圆中的半径和老师黑板上画的圆的半径为什么不相等呢?

  (5)补充板书:在同圆或等圆中,所有的半径都相等.

  2.认识直径:教师示范画直径

  (1)观察:什么叫直径?直径有多少条?长度呢?

  (2)教师小结并板书:在同圆或等圆中,所有的直径都相等,直径用字母d表示.

  3.用彩色笔标出下面各圆的半径和直径.(出示图片:练习)

  4.半径与直径的关系

  教师提问:在同圆或等圆中,半径和直径有什么关系?

圆的认识教学设计6

  一、课题引入

  1、课件出示:圆 这样一个圆让你联想到生活中的什么物体?(月饼、月亮、硬币、钟面……)

  2、老师也收集了一组,瞧(出示图片)连大自然对圆也是情有独钟!(欣赏)

  3、有什么感受?难怪20xx多年前,伟大的古希腊数学家毕达哥拉斯在研究完大量的平面图形后,发出这样的感慨:在一切平面图形中,圆最美。

  4、圆看起来很美,究竟是什么内在原因使得圆看起来那么美?现在就来研究圆的奥秘。

  二、在画圆中,解读“圆”的概念

  1、师:你能试着在纸上画一个圆吗?

  预设:利用圆形物体描圆;利用工具画圆(有小孔的木条、绳子、圆规)

  如果有学生用物体描圆,师则引导假如我们身边没有这些圆形物体,你准备怎么办?学生一下子想不出来,则课件出示:有小孔的`木条、绳子。

  2、学生说说利用工具怎样画圆,可以请学生演示。

  3、其实,很多同学知道还有专门的工具:圆规,请同学们用圆规在纸上画圆。大胆地猜一猜,这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?

  4、师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆。这是什么道理?

  (预设:都绕了360度;都有一个中心点;两者画圆的原理是一样的。运动时与中心点的距离是一样的。)

  5、看到们画的这么好老师也想画一个圆,师作图,(教师画完半个圆后,停下。)想象一下,照这样画下去,会画出一会儿凹、一会儿凸的平面图形吗?

  预设:因为圆规两脚间的距离没有变;就是从这儿(手指圆上的点)到这儿(手指圆心)的距离没有变。只要距离不变,就不会画出一会儿凹、一会儿凸的平面图形了。

  6、自学圆的各部分名称及关系

  生看书自学 反馈 给黑板上(或自己画的圆画出一条半径、直径,再标上字母)

  7、学生画制定的圆:分别画r=2cm, d=2cm的圆

  三、在运用中体验圆与半径、圆心的关系

  让大家在一张正方形纸上画一个最大的圆,怎么画?

  学生思考后动手操作、反馈

  预设:学生有不成功的作品,则让大家一起分析;有成功的作品让他说方法。引导学生理解在正方形画最大圆的关键:①如何找到圆心(圆的位置)②如何确定半径(圆的大小)

  师:(借助PPT动态演示找正方形中心点的过程)这就是圆心。接着确定半径,有了圆心和半径,就可以画出一个最大的圆。(让学生修正自己的作品)

  四、拓展与延伸

  师:其实,今天我们对圆的认识还是很初步,关于圆你还想学习知道些什么?(生说)

  师:圆与正方形有什么不同?为什么汽车的车轮要用圆的,不用方的呢?这些问题,同学们课后去思考。

圆的认识教学设计7

  【教学背景】

  随着现代教育技术的发展,在小学数学课堂中,学生已经不能满足于传统的“一支粉笔一块黑板”的模式,他们想要的是更精彩更联系生活的知识。多媒体课件就可以实现这个愿望,它能使数学问题由抽象变具体,由复杂变简单。每次用多媒体课件给学生上课,学生总是兴致勃勃,教学效率也有所提高。现在的学生对电脑已经很熟悉了,有时让学生亲自用课件练习,学生也总能全神贯注地领会教学意图,同时,组织学生自己在互联网上搜索相关知识,既提高了学生的学习兴趣,又在新颖的数学活动中掌握了新知,达到教学预期效果。

  【教材简解】

  圆是小学数学“空间与图形”领域里最后教学的一个平面图形,也是教学的唯一的曲线图形,是学生对平面图形认知结构的一次重要拓展。此前,学生已经学过了正方形、长方形、平行四边形等诸多直线图形。《圆的认识》教材编排思路是从情境入手,让学生感受到圆与生活的密切联系,再引导学生画圆,初步感受圆的特征,掌握圆规画圆的方法,引导学生认识圆的相关概念,掌握圆的基本特征。教学这部分内容,既能丰富学生空间与图形的学习经验,也是为学习圆的周长和面积打下基础。

  【目标预设】

  1. 知识与技能目标:

  在观察、画图、操作等活动中感受并发现圆的有关特征;知道什么是圆的圆心、半径、直径;能借助工具画圆,能用圆规画指定大小的圆,能用圆的知识解释一些日常生活现象。

  2. 过程与方法目标:

  通过观察、画图、比较、猜想、上网搜索等活动,进一步积累认识图形的学习经验,增强空间观念,发展数学思考。

  3. 情感与态度目标:

  进一步体验图形与生活的密切联系,感受平面图形的美和学习价值,提高数学学习的兴趣和信心,培养应用数学的意识。

  【教学过程】

  一、铺垫孕伏

  1.复习旧知

  谈话:我们已经学过了许多的平面图形,仔细想一想、搜一搜有哪些常见的平面图形?

  2.揭示课题

  演示:一个小球,小球的一端还系着一段绳子,老师用手拽住绳的一端,将小球甩起来。

  提问:小球的运动轨迹是一个什么图形?(学生回答:圆,然后利用搜索引擎搜索“圆形”

  引入:对,这就是一个圆!圆也是一个平面图形。这节课我们就一起来认识圆。(板书课题:圆的认识)

  二、探究新知

  (一)教学例1

  1.课件出示例1中的四幅图

  提问:这些都是生活中常见的物体,这些物体上有圆吗?(学生上计算机点出圆)

  2.课件出示篮球图片

  提问:你认为它也是一个圆吗?(学生思考并回答)

  指出:球是立体图形,而圆是平面图形,所以球不是一个圆,但球的切面是圆形。圆是平面上的曲线图形。

  (二)教学例2

  1.介绍圆规构造(同时出示圆规实物与课件)

  在画圆时,我们通常会借助一个专门的工具,那就是圆规。圆规有两只脚,一只脚是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。

  2.边讲解边演示圆规画圆的方法

  第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)

  第二步:把有针尖的一只脚固定在一点上。(板书:定点)

  第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)

  强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。

  3.尝试画圆

  讲述:现在请你把圆规两脚间的距离分别定为2㎝和4cm,按照老师演示的方法自己试着画两个圆。

  4.介绍圆心、半径和直径

  讲授:刚才我们用圆规画圆时,针尖固定的一点是圆心,通常用字母o表示。(学生标出圆心)

  讲授:连接圆心和圆上任意一点的线段是半径。通常用字母r表示。(学生标出半径)

  提问:那你有没有发现圆规两脚间距离和半径有什么关系?(学生比较后发现,圆规两脚间距就等于半径)

  讲授:通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。(学生标出直径)

  强调:让我们再直观地来看看圆心、半径和直径。

  5.巩固练习:练一练第1题。(教材p97)

  三、深化感知(教学例3)

  1. 认识半径特征

  (1)比一比:

  讲述:给大家10秒时间,看谁在自己的圆中画的半径最多!

  追问:还能继续画吗?能画得完吗?说明了什么?(学生思考并回答:半径有无数条,同时课件出示“无数条”半径)

  (2)量一量:

  提问:用直尺量一量这些半径,你有什么发现?(板书:半径都相等)

  (3)议一议:

  追问:你们手上圆的半径和老师黑板上圆的半径长度相等吗?什么情况下半径的长度才相等? (板书:在同圆或等圆中)

  2.认识直径特征

  (1)猜一猜:

  提问:在同一个圆里有多少条直径?这些直径都相等吗?(学生迅速反应:一个圆有无数条直径,它们都相等。同时课件出示“无数”条直径)

  (2)谈一谈:通过前面的活动,我们对同一圆内半径和直径的特征有哪些认识?

  3.半径和直径的关系

  (1)讲述:我们已分别找到了半径和直径各自的特征,那么半径和直径之间还有关系?(同桌互相讨论后全班交流)

  指出:在同圆或等圆中,直径的长度是半径的`2倍,半径的长度是直径的一半。

  讲述:你能用字母表示这种关系吗?(课件演示并板书:d=2r,r=d/2)

  (2)练习应用:(练习十七第1题)

  4.认识圆的对称轴

  提问:圆是轴对称图形吗?它的对称轴有几条?在哪里?(学生小组讨论后交流意见)

  强调:对称轴是直线,应严密地表述:直径所在的直线是圆的对称轴。

  四、生活思考

  提问:你能用数学的角度解释一下为什么车轮要做成圆的?车轴应装在哪里?

  五、全课总结

  同学们,今天我们学习有关圆的知识,你对圆形有了什么新的认识?还有什么疑问吗?和大家一起来分享!

  六、板书设计:

  圆的认识

  在同圆或等圆中,半径都相等,定长

  直径都相等。定点

  d=2rr=d/2旋转

  【教学反思】

  《数学课程标准》在高年级段的教学建议中指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,使学生通过观察、操作、猜测、交流、反思等活动,进一步发展思维能力,激发学生的学习兴趣。在《圆的认识》教学过程中,我注意从以下几方面来着力体现这一理念:

  1、自主探索,凸显主体作用

  在教学的各个环节始终将学生自主探索的理念贯穿其中,例如:让学生自主尝试画圆的方法;让学生小组合作,观察、探究圆的半径和直径的特点等,在各个活动中力求使学生崭露出他们的个性和创新意识。

  2、联系生活,注重学以致用

  “生活即学问”,在教学时时刻注意数学的生活性。例如:让学生举例说说生活中哪些地方有圆形;讨论生活中的车轮为什么是圆形的等环节,都注意了密切联系生活实际。

  3、以生为本,引导构建新知

  在对圆的概念的要求上,并没有强加给学生圆的科学概念,而是让学生通过观察、操作等活动进行学习,在头脑中自然形成圆的概念,这样学生才学得有趣,学得扎实,同时,结合学生的已有体验,组织学生在互联网条件下搜索相关知识,自主构建新知,既达到了教学目标,又提高了学生的自主利用互联网学习的能力。

圆的认识教学设计8

  一、教学目标:

  1、让学生在活动中认识圆,知道圆的各部分名称,掌握圆的特征,理解和掌握在同一个圆里半径与直径的关系;

  2、学会用工具画圆;

  3、培养学生的观察能力,动手能力以及抽象概括能力。使学生初步学会应用所学知识解决简单的实际问题;

  二、教学重难点:

  理解和掌握圆的特征

  三、教学准备:

  纸、剪刀、圆规、课件

  四、教学过程:

  (一)、创设情景,激发兴趣

  1、(大屏幕展示高年级同学课间投篮比赛情境图)

  2、师质疑:你们认为安排这样的队形公平吗?大家有什么好的建议?

  3、生自由回答,师相机点拨。

  4、师:今天我们就来学习有关圆的知识。(板书:圆的认识)

  (二)、恰当引导,自主学习

  1、师:你们认为圆和我们以前学过的平面图形有什么区别?

  2、(师板书:圆是一种由曲线围成的封闭图形)

  3、生齐读三遍。理解意思。

  (三)、师生交流,感受新知

  1、找身边的圆。

  2、师:(出示教具圆规)这是什么?它表面上有圆吗?(生边看边答。)

  3、在你的纸上画一圆。

  4、师抽生在黑板上画圆。

  (1)没成功:他为什么没画成功?(1是没有固定好有针的那个脚;2是没固定好圆规两脚间的距离;3是可能不太好旋转;4是黑板比较滑,不太好固定)

  5、师示范画圆。

  师:刚才同学们总结得很好,看来,用一只手固定住圆规的针尖很关键。看老师画。

  师:圆规固定不动的这个脚,也就是这个点,对画圆至关重要!谁能给它起个名字?圆心一般用字母O表示。点出你所画圆的圆心,标上字母O。一个端点在圆心【板书:圆心】,另一个端点在圆上【板书:圆的曲线上、圆边上、圆的边缘上、圆的弯线上】

  师:我们把……统称为圆上【板书:圆上】

  师:只能画这一条吗? 生:还能再画!

  师:再画一条。还能再画吗?再画一条。还能画吗?到底能画多少条?

  师:所画出来的表示圆规两脚间距离的这几条线段,一个端点都在哪?另一个端点呢?

  生:一个端点都在圆心,另一个端点都在圆上。

  师:我们给这样的线段起个名字吧!

  师:【板书:半径(r)】半径一般用字母r表示,在你的圆上标上r。谁能用自己的话说一说什么叫半径。(一个端点在圆心,另一个端点在圆上的线段就叫半径。)

  师:在同一个圆里,半径有多少条?长度怎样?

  生:在一个圆里,半径有无数条,长度都相等。

  师:既然半径有无数条,那么在围成圆的这条曲线上,像这样的端点能找出多少个?

  生:能找出很多(无数)个。

  师:(在三个点的旁边紧密地多点几个点)这行吗?

  师:正是这无数个点紧紧地手拉手,靠在一起,连接成一条完美的曲线,围成了圆。

  师:请同学们拿出剪刀,剪下你所画的圆。

  师:这是一个平展的圆,上面只有圆心和半径,请大家像老师这样把它对折,用食指触摸折叠的`地方,打开。多了什么?

  生:一条折痕。【痕迹、印子、折痕】

  师:我们把对折产生的这条线段、这条痕迹统称为折痕。

  师:朝不同的方向再对折一次,用手触摸折痕,打开,请同学们照这样再做几次。生:折圆

  师:原本平展的圆上,多了很多很多的折痕,在这些折痕里藏着许多许多关于圆的奥秘,同学们想发现吧?请同学们在4人小组里围绕折痕,展开讨论,充分发表自己的见解,然后由组长记下“我们的发现”。汇报发现的时候,由组长上来发言,组员可以补充。但每一组只能用一句话汇报一个自己认为最精彩的发现,别的组发表过的观点,其他组便不再重复,开始讨论。

  1、(小组合作,讨论问题)

  2、各小组汇报讨论结果。

  3、课堂小结:下面我们来整理一下我们的思路。今天,我们认识了圆。【板书:圆的认识】一开始,我们学习了画圆,你觉得画圆要注意什么? (定点、定长)圆是由无数个特定的点手拉手围成的优美曲线。半径和直径有助于我们进一步认识圆。半径的两个端点分别在哪?直径呢?在同一个圆里,半径有多少条,长度怎样?直径呢?直径和半径有什么关系?

  师:同学们在回过头去,你现在知道为什么投篮比赛要站成圆形了吗?谁来说说为什么?

  (四)、巩固练习,问题解决

  1、判断直径 、半径

  2、[媒体]填一填:

  3、[媒体]再请你辩一辩:下面各句话对吗?

  4、画圆

  请你画一个半径为4厘米的圆

  画的圆半径为4厘米的同学,说说你是怎么画的?简单地说你是怎么确定半径为4厘米的?

  师:下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?

  问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)

  问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)

  问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)

  师:我已经发现,很多同学都笑了,这说明他心里有底了。每个同学选择一个自己最感兴趣的课题来研究。

  (五)、课堂小结,课外延伸

  发挥想象,灵巧操作

  <1>、给你两枚钉子和一条一定长度的绳子,你有办法画出圆来吗?

  〈2〉、任意画出一个圆,再标出圆心、半径、直径。(字母表示

  师:学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!

圆的认识教学设计9

  教学内容:

  义务教育课程标准实验教科书六年制小学五年级下册P93-94例1-例3及P94练一练、练习十七第1、2题

  教学目标:

  1、让学生在观察、操作等活动中感受并发现圆的有关特征,知道圆的各部分名称,发现同一圆内半径、直径的特征及关系,学会用圆规画圆。

  2、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

  3、进一步提高学生与他人合作交流的能力,激发学生学习的热情,培养自主意识,增强学好数学的信心

  4、使学生初步学会用数学知识解释、解决生活中的实际问题,进一步体现数学的应用价值。

  教学重点:

  1、学会用圆规画圆。

  2、在观察、操作等活动中感受并发现圆的有关特征。

  教学难点:

  引导学生归纳圆的特征。

  教具准备:

  自制多媒体课件、圆规、直尺。

  学具准备:

  1个圆形物体、圆规、白纸、直尺、图钉、线、2个大小不同的圆形纸片。

  教学过程:

  一、创设情景,初步感知圆的特征

  1、找一找(多媒体出示平面图形)

  师:同学们,这些平面图形大家还认识吗?在这些平面图形中,有一个图形与众不同,你能把它找出来吗?为什么?(学生说出弯曲的后多媒体演示)

  2、看一看

  师:古希腊有一位数学家曾经说过,在一切平面图形中,圆是最美的。下面请你欣赏。(多媒体出示教材97页的你知道吗图片:自然现象、工艺品和建筑物、运动现象、生活用品)

  2、 说一说

  美不美啊?圆在我们的生活中随处可见,请你说说哪些地方还能看到圆。(学生举例)今天这一节课我们一起来进一步的认识圆(板书课题)

  二、实践操作,探索圆的特征

  1、画圆:同学们,圆这样美,想不想把它画下来?

  师:请你借助老师提供的工具画一个圆。(小组合作)

  反馈:你是怎样画的?(学生回答后多媒体随即动画演示)。

  (1)借助圆形实物画:你是这样画的吗?还有不同的画法吗?

  (2)借助图钉和线段画:你是怎样画的?

  (3)借助圆规画:你是怎样画的?

  师:同学们,刚才我们用不同的方法画了圆,但是通常我们会借助圆规来画圆。请拿出圆规。师简单介绍:圆规有2只脚,一只脚是针尖,另一只脚是用来画圆的笔,两脚可以随意叉开。那怎样用圆规画圆呢?谁能说一说?(然后老师边示范边讲解)

  (4)请你用圆规画一个圆

  2、体验:在画圆的过程中,你觉得圆是怎样的一个平面图形?

  3、认识圆心、半径、直径

  (1)结合圆规画的圆(屏幕),师介绍圆心、半径、直径的概念。并分别用字母表示。

  半径有什么特点?直径呢?

  (2)学生在自己的圆上画一条半径和直径,并分别用字母表示圆心、半径、直径。

  看一看、比一比:圆规两脚间的距离和半径的长度(同样长)

  (3)画一个半径是2厘米的圆(圆规两脚间的距离是多少)

  师:刚才我们认识了圆心、半径、直径。下面我们一起来研究圆的特征。

  4、探索圆的特征

  (1)小组合作探索

  出示例3:在圆形小纸片上画一画、量一量、比一比、折一折,思考下列问题。

  在同一个圆里可以画多少条半径,多少条直径?

  在同一个圆里,半径的长度都相等吗?直径呢?

  同一个圆的半径和直径有什么关系?

  圆是轴对称图形吗?它有几条对称轴?

  (2)交流

  (3)电脑演示,加深理解。 (多媒体将学生验证的圆的特征运用了旋转、重合等手段,进行动态演示)这些都是圆的特征。多媒体出示::所有的直径都相等,所有的.半径都相等,d=2r,R=d/2)

  通过验证,你们发现的这些圆的特征正确吗?

  质疑:那老师的圆的半径和你的圆的半径相等吗?(强调:在同一个圆内)

  (4)学生概括,总结特征。谁能把圆的特征用自己的语言来归纳概括一下。

  三、巩固练习(多媒体出示)

  1、练一练第1题(指名说一说,说出理由)

  多媒体出示

  2、练习十七第1题:多媒体出示,学生口答

  3、判断题(指名说一说,说出理由)

  (1)圆的直径是半径的2倍

  (2)圆有无数条半径

  (3)通过圆心的线段是直径

  (4)画直径4厘米的圆,圆规两脚间的距离是4厘米

  (5)半径2厘米的圆比直径3厘米的圆小。

  4、练习十七第2题

  四、实际应用

  1、体育老师要画一个半径是3米的圆,怎么办?(商量商量,帮老师出出点子)学生交流后看动画演示,说明和圆规画圆的道理是一样的。(固定点就是圆心,绳子长就是半径)

  2、师:同学们,圆不仅给我们的生活带来美,还给我们的生活带来方便,所以生活中的很多东西都设计成了圆形,比如:车轮为什么要设计成圆形,车轴应装在哪里?(学生讨论)

  (多媒体播放车轮是圆形的行进动画)

  附板书:

  圆的认识

  画圆:两脚叉开、针尖固定、旋转成圆

  (圆形图)

  在同一个圆里,半径的长度都相等,直径的长度都相等。直径的长度等于半径的2倍。

圆的认识教学设计10

  教学内容:

  人教版数学第十一册第四单元。

  教材分析:

  学生在认识了长方形、正方形、平行四边形等平面图形,并直观认识了圆的基础上进行学习的。它是研究曲线图形的开始,也是后继学习圆的周长、面积的基础。

  教学理念:

  今天的学习主要不是记忆大量的知识,而是掌握学习的方法,即学会学习。

  学情分析:

  学生在低年级虽然也认识了圆,但只是直观的,对于掌握圆的特征还是有难度的。由认识直线图形到认识曲线图形,是认识发展的一次飞跃。学习目标:

  1、在具体的情境中总结出多种画圆的方法,能用圆规画出指定的圆。

  2、让学生通过画一画、折一折、观察圆的特征,能指出圆各部分的名称。

  3、通过操作和交流,能说出半径和直径的含义。

  4、通过动手操作能阐明在同一个圆内直径与半径的关系。

  教学重点及解决措施:

  在动手操作中掌握圆的特征,自主学习圆规画圆的方法。

  教学难点及解决措施:

  通过观察、操作、猜测、讨论、交流、归纳、分析和整理来理解圆上的概念,归纳圆的特征。

  教具准备:

  1、圆规、直尺、三角板、剪刀。

  2、实物若干。

  3、课件。

  教学过程:

  一、创设情境,感知概念。

  1、师:同学们,老师手里拿的是什么?关于圆,同学们一定不会感到陌生,请你想想,在哪里见到过圆?

  2、师:圆在生活中随处可见,让我们一起来欣赏大自然中圆的影子吧。(播放自然界中图的美景)

  3、师:圆把我们的世界点缀得如此美妙而神奇。今天这节课让我们一起走进圆的世界,去探寻其中的奥秘,好吗? (板书课题:圆)

  [设计意图:让学生在感受身边各种圆形组合起来的图案带来美的享受的同时顺利揭示课题,探究圆的认识。]

  二、探究感悟,理解概念。

  1、师:每个小组的信封里都有许多学过的平面图形,闭上眼睛,你能从中很快挑出圆吗?把你的想法和组员交流。

  2、活动后汇报:(出示如下图)圆和我们学过的图形有何区别?

  3、师:(结合学生回答)圆是一条曲线围成的封闭图形。

  4、师:请学生闭上眼摸着圆的边想象圆的形状。

  [设计意图:摸圆活动认识圆,通过学生的想象与验证、动手操作,亲身体验到圆是由曲线围成的图形。]

  三、交流反馈,形成概念。

  1、自学画圆

  我们先研究圆的画法:

  1)老师:刚才大家已经认识了圆,那么,想不想把它画出来呢?

  2)学生分四人小组尝试画圆,看谁的方法多。(用手画、沿圆形物体画一圈、用圆规画。分别展示自己画的圆)

  3)用哪一种方法画圆既正确又方便呢?说说怎样用圆规画圆(介绍圆规的各部分)。师生共同板演。提问:用圆规画圆应注意哪些问题?

  4)师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

  5)学生练习用圆规画圆:以30秒比赛的形式进行。

  (至此,实现了学习目标1)

  2、探讨圆心。(小组合作)

  (出示自学提示一)圆有哪些特征呢?请同学们拿出你的学具圆,上下对折,打开;出现一条折痕,左右对折,打开;又出现一条折痕,换个方向对折打开;再换个方向对折打开 ?? 反复折几次,你发现这几条折痕怎么样?

  师指出:这一点是圆的中心,给它起名字叫圆心。

  什么叫圆心?学生回答后出示概念。

  圆心是个什么?(点)圆心一般用字母0表示。

  3、探讨半径(小组合作)

  (出示自学提示二)在你的圆上任意找一点,连接圆心和这一点得到一条线段,你还能画出这样的线段吗?再画几条,用尺子量一量这些线段,你发现了什么?(长度都相等)

  师小结:像这样的线段我们把它叫做半径。

  什么叫半径?学生回答后出示概念及关键词。半径一般用字母r表示。

  4、探讨直径(小组合作)

  (出示自学提示三)拿出你的学具圆,用尺子沿着一条折痕画出一条线段,再画几条,用尺子量一量这些线段,你发现了什么?(长度都相等)

  师小结:像这样的线段我们把它叫做直径。

  什么叫做直径?学生回答后出示概念及关键词。直径一般用字母d表示。(至此,实现了学习目标2、3)

  5、小组合作交流:我们知道了圆的半径和直径,那么它们之间又有什么关系呢?请同学们自己动手量一量、画一画、折一折、比一比,然后把你的发现和你的同桌进行交流。

  板书:d=2r,r= 1/2 d (在同圆或等圆)

  (至此,实现了学习目标4)

  [设计意图:本环节通过让学生小组合作操作和观察,从而顺理成章地引出圆心、半径和直径。 “学贵有疑”,因此在设计时,以一个个问题为导火线,学生在量一量、画一画、折一折、比一比等一系列活动中,经历了知识探究的过程,并通过小组讨论交流、相互补充,提高了学生分析推理能力;最后让学生自己归纳概括出圆半径和直径的特征,便是水到渠成了。]

  6、(小组合作)讨论:圆的半径和圆心与圆有什么关系呢?(半径决定圆的大小,圆心决定圆的位置)

  四、应用概念,解决问题:(课件出示)

  1)我能找:课本57页第1题。(检测学习目标2)

  用彩色笔描出下面圆的半径和直径。(图略)

  (2)我能画:课本57页第2题。(检测学习目标1)

  用圆规画一个半径是2厘米的圆,并用字母o、r、d标出它的圆心、半径和直径。

  (3)我能填:(在同一个圆内)(检测学习目标4)

  半径 3厘米 1.5分米 a米

  直径 10分米 b米

  (4)我能说:对的打“√”,错的打“×”。(检测学习目标2、3)

  ①连接圆心和圆上的直线叫半径。()

  ②两端都在圆上的线段叫直径。()

  ③圆里有无数条半径和直径。()

  ④所有的半径都相等,所有的直径都相等。 ()

  2、拓展练习:

  用圆创造出美丽的图案!

  [设计意图:练习的设计难易适中、有梯度,体现了层次性,灵活性、启发性和生活性。一是让学生在练习中巩固新知,另一方面让学生体验到数学学习的价值,提高学生学习数学的积极性,让学生学有所获,学有所思。]

  五、反思过程,总结提高。

  1、同学们,通过这节课的学习,你有什么收获和大家分享?

  2、你觉得自己的表现如何?有遗撼的地方吗?

  我们生活的每一个角落,圆都在演绎着重要的角色,并成为美的使者和化身,正因为有了圆,我们的世界变得如此美妙而神奇。让我们再次走进生活中圆的世界,感受圆的魅力所在吧。(播放课件)

  [设计意图:通过让学生总结既可以达到对新知识的回顾,又可以让学生对自己进行一次反思、评价,并通过老师的总结,升华对知识的认识和对人生的感悟。]

  板书设计:圆的认识

  圆心(o)——定位置

  半径(r)——定大小——无数条——相等

  直径(d)——无数条——相等

  d=2rr=d÷2 (同圆或等圆中)

  教学反思:

  这节课是小学六年级的一节概念新授课,是在学生学过了线段图形的认识后对一种新的由曲线围成的平面图形的认识。作为曲线围成的平面几何图形,它既是一节起始课,同时也是后继学习内容——圆周长、面积、圆柱、圆锥的基础。反思本节课的教学,我认为有以下几点达到了预期的目的:

  一、从生活实际引入,激发了学生的探索欲望。

  兴趣是最好的老师,为了激发学生的积极性和好奇心,课的开始,我让学生欣赏了一组图片,使他们了解在自然现象,建筑物,工艺品中都能找到圆的足迹。并在图片中,感受到圆是一切平面图形中最美的图形。让学生在感受身边各种圆形组合起来的图案带来美的享受的同时顺利揭示课题,探究圆的认识。接着通过摸圆游戏活动认识圆,通过学生的想象与验证、动手操作,亲身体验到圆是由曲线围成的图形。

  二、恰当地处理教材,把握了重点,突破了难点。

  探讨圆的.特征是本节课的重难点。为了突破这一难点,我设计了几个环节循序渐进:

  1、学生掌握了画圆的方法后,紧接着让学生结合我出示的自学提纲自学圆的各部分名称有哪些?然后通过在圆中找圆心,半板和直径让他们准确理解数学概念,

  2、有了上一环节的铺垫,让学生猜想圆的特征,然后通过画一画、量一量、折一折的方法验证半径的特征:在同一个圆内,有无数条半径,所有的半径长度都相等。这一环节较好的突出了学生动手、动脑、主动参与知识的形成过程的教学理念,学生的分析、归纳能力也得到了进一步培养。

  3、放手让学生自己探究直径的特征,有了探讨半径特征的经验,直径的特征便“水到渠成”了。

  4、最后,利用折一折、画一画、指一指、比一比、量一量等动手实践活动,让学生进一步探讨同一个圆内半径和直径的关系以及圆的其他特征,学生用眼观察,动脑思考,动口参与,收到了较好的教学效果。

  本环节通过让学生操作和观察,从而顺理成章地引出圆心、半径和直径。 “学贵有疑”,因此在设计时,以一个个问题为导火线,学生在量一量、画一画、折一折、比一比等一系列活动中,经历了知识探究的过程,并通过小组讨论交流、相互补充,提高了学生分析推理能力。

  三、教学中以引导学生自主探究做为主线,真正体现了学生是学习的主人。

  在引导学生理解圆的意义的基础上,将课本中圆的特征这一部分内容留给学生自主探究,努力突出学生的主体地位,而我则真正成为课堂上的组织者、引导者和合作者,在对于圆心——半径——直径——半径与直径的关系这一系列知识的学习上都体现出学生自主探究学习。这样既培养了学生的看书自学能力,又提高了学生的动手操作能力。

  四、最后作业的分层布置,充分考虑了学生的共性和差异性,使不同层次的学生,均能得到发展和提高。

  值得思考和改进的地方:关于在同一个圆里直径、半径的特征以及两者间关系的教学。这应是本课的重点,要通过多种形式的数学活动,使学生清晰的理解掌握概念、帮助其提升思维水平。如:在同一个圆中有多少条半径,多少条直径,它们的长度都相等吗?在同一个圆中半径和直径的关系。学生在圆形纸片上通过画、量、折、比等操作活动中;怎样证明直径和半径的关系的讨论过程中。这里的教学还不够细致,有待改进。

圆的认识教学设计11

  课前与同学谈话省略

  师:今天上课我们学什么?大声地说“学什么”

  生齐:圆的认识

  师:从哪里看到的?只给我看,

  生指屏幕

  师:屏幕上有,还有呢?

  师:说,哪有?

  师:没错,圆片,还有吗?

  生:圆规

  师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

  生齐:想

  师出示一个信封,摸出一个圆片,师:是圆吗?

  生:是

  师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

  生齐:有

  师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

  师:好,现在看谁的反应最快?

  师从信封里摸出一个长方形

  生:长方形

  师:男孩的反应快,状态也不错。

  师从信封里摸出一个正方形

  生:正方形

  师:还有一个图形

  师从信封里摸出一个三角形

  生:三角形

  师:猜猜还有吗?

  师从信封里摸出一个平行四边形

  生:平行四边形

  师从信封里摸出一个梯形

  生:梯形

  师:行了行了,小朋友们,都别你们猜到了。

  教师课件演示各种图形,

  师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

  生齐:没有

  师:为什么?

  生:因为圆是由曲线围成。

  师:而其他图形呢?

  生:都是由直线,哎!线段围成。

  师:同意吗?

  师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

  生:角

  师:圆有角吗?

  生:没有。

  师:所以圆特别的?

  生:光滑

  师:说的真好

  师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

  生齐:曲线

  师:给它一个名称。

  生:曲线图形

  师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

  生齐:不难。

  师:谁让你们聪明呢?还有难的。

  师出师一个不规则图形

  师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

  生齐:不会

  师:为什么?

  师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

  生齐:丰满

  师:嘿!瞧,还有一个

  师出示一个椭圆,

  师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

  生:不会,

  师:为什么?

  师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

  生:瘦瘦的

  师:瘦瘦的。圆呢?

  教师出示圆形教具,转动。

  师:怎么样?

  生:一样

  师:怎么看到的一样?

  师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

  行,就你吧,近水楼台

  师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

  生:看不见了

  师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

  生:不是

  师:可以吗?

  生齐:可以

  师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

  生:不能

  师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

  生齐:ok!

  师:好,伸出你最拿手的一只手,右边,准备好了吗?

  生:准备好了

  生1:不是.

  师:对不对?

  生:对.

  生1:不是.

  师:对不对?

  生:对.

  生1:更不是.

  师:瞧,这更字用的多好.

  生1:更不是.

  师:小家伙厉害.

  生1:不是.

  生:对.

  生1:是.

  生:对.

  师:掌声鼓励一下.

  圆是曲线图形

  可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

  画圆

  张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

  生2:我认为是圆的半径变了.

  师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

  生:不能.

  师:除了这个地方改变以外,还有那些地方不能动?

  生3:圆心改变了.

  师:在画圆的过程中,针不能改变.

  画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

  生:能.

  师:先别动笔,边画边考虑.

  圆和什么有关系?

  生:圆心和半径.

  师:我知道你们说的半径是什么意思?

  谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

  生4(到黑板前画出远的半径)

  师:对不对?

  生:对.

  师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

  生:圆心.

  师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

  生:O.

  师:请在你刚才画的圆上,标出圆心,写出字母O.

  继续看这条线段,圆心的另一端在哪里?

  生;圆上.

  师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

  生:不是.

  师:那有多少个?

  生:无数个.

  师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

  生;不知道.

  师:不知道不怕,怕的是他人说这三个字:为什么?

  我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

  生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

  师:因为平滑,所以有无数条.

  生6:因为圆心到圆上的距离全部相等

  生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

  师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

  生:随便

  师:请问,在圆上有多少个这样随便的点?

  生:无数.

  师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

  生:为什么?

  师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

  生:相等.

  师:同意的请举手,我的三个字又来了.

  生:为什么.

  师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

  生:圆规.

  师:还有尺寸,尺寸让你们用来干什么的?

  生:量.

  师:现在就动手量一量.

  虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

  生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

  师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

  生:半径有无数条,长度都相等,都一样.

  师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

  生:得出来了.

  师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

  生:错.

  师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

  生:也有无数条,直径都相等.

  师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

  除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

  生9:因为我们知道所有的半径都相等.

  师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

  生:有.直径是半径的二倍.

  师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

  生:半径和直径都相等.

  师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

  生:四条.

  师:正五边形,有几条?

  生:五条.

  师:正六边形?

  生:六条.

  师:正八边形?

  生:八条.

  师:圆形?

  生:无数条.

  师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的'时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

  现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

  生:不一样.

  师:半径几厘米的圆比较大?

  生:5厘米.

  半径几厘米的圆比较小?

  生:3厘米.

  师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

  生:半径.

  师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

  生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

  师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

  生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

  师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

  生:不是.

  师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

  生12:用一个碗扣在白纸上,描一下.

  师:有可能,但不是.

  生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

  师:人造圆规.

  生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

  师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

  生15:少了宽度.

  师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

  生:不是.

  师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

  生:5厘米.

  师:4厘米呢?

  生:4厘米.

  师:假如半径是3厘米,那么直径呢?

  生:6厘米.

  师:是不是我把圆扯开6厘米,就可以画圆了/

  生;不是.要扯开3厘米.

  师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

  生:没有.

  师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

  生:近似一个圆,

  师:想一想,刚才我们旋转的是什么呀?

  生:中心.

  师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

  生:圆.

  师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

  课前与同学谈话省略

  师:今天上课我们学什么?大声地说“学什么”

  生齐:圆的认识

  师:从哪里看到的?只给我看,

  生指屏幕

  师:屏幕上有,还有呢?

  师:说,哪有?

  师:没错,圆片,还有吗?

  生:圆规

  师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

  生齐:想

  师出示一个信封,摸出一个圆片,师:是圆吗?

  生:是

  师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

  生齐:有

  师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

  师:好,现在看谁的反应最快?

  师从信封里摸出一个长方形

  生:长方形

  师:男孩的反应快,状态也不错。

  师从信封里摸出一个正方形

  生:正方形

  师:还有一个图形

  师从信封里摸出一个三角形

  生:三角形

  师:猜猜还有吗?

  师从信封里摸出一个平行四边形

  生:平行四边形

  师从信封里摸出一个梯形

  生:梯形

  师:行了行了,小朋友们,都别你们猜到了。

  教师课件演示各种图形,

  师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

  生齐:没有

  师:为什么?

  生:因为圆是由曲线围成。

  师:而其他图形呢?

  生:都是由直线,哎!线段围成。

  师:同意吗?

  师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

  生:角

  师:圆有角吗?

  生:没有。

  师:所以圆特别的?

  生:光滑

  师:说的真好

  师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

  生齐:曲线

  师:给它一个名称。

  生:曲线图形

  师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

  生齐:不难。

  师:谁让你们聪明呢?还有难的。

  师出师一个不规则图形

  师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

  生齐:不会

  师:为什么?

  师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

  生齐:丰满

  师:嘿!瞧,还有一个

  师出示一个椭圆,

  师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

  生:不会,

  师:为什么?

  师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

  生:瘦瘦的

  师:瘦瘦的。圆呢?

  教师出示圆形教具,转动。

  师:怎么样?

  生:一样

  师:怎么看到的一样?

  师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

  行,就你吧,近水楼台

  师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

  生:看不见了

  师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

  生:不是

  师:可以吗?

  生齐:可以

  师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

  生:不能

  师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

  生齐:ok!

  师:好,伸出你最拿手的一只手,右边,准备好了吗?

  生:准备好了

  生1:不是.

  师:对不对?

  生:对.

  生1:不是.

  师:对不对?

  生:对.

  生1:更不是.

  师:瞧,这更字用的多好.

  生1:更不是.

  师:小家伙厉害.

  生1:不是.

  生:对.

  生1:是.

  生:对.

  师:掌声鼓励一下.

  圆是曲线图形

  可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

  画圆

  张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

  生2:我认为是圆的半径变了.

  师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

  生:不能.

  师:除了这个地方改变以外,还有那些地方不能动?

  生3:圆心改变了.

  师:在画圆的过程中,针不能改变.

  画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

  生:能.

  师:先别动笔,边画边考虑.

  圆和什么有关系?

  生:圆心和半径.

  师:我知道你们说的半径是什么意思?

  谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

  生4(到黑板前画出远的半径)

  师:对不对?

  生:对.

  师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

  生:圆心.

  师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

  生:O.

  师:请在你刚才画的圆上,标出圆心,写出字母O.

  继续看这条线段,圆心的另一端在哪里?

  生;圆上.

  师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

  生:不是.

  师:那有多少个?

  生:无数个.

  师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

  生;不知道.

  师:不知道不怕,怕的是他人说这三个字:为什么?

  我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

  生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

  师:因为平滑,所以有无数条.

  生6:因为圆心到圆上的距离全部相等

  生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

  师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

  生:随便

  师:请问,在圆上有多少个这样随便的点?

  生:无数.

  师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

  生:为什么?

  师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

  生:相等.

  师:同意的请举手,我的三个字又来了.

  生:为什么.

  师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

  生:圆规.

  师:还有尺寸,尺寸让你们用来干什么的?

  生:量.

  师:现在就动手量一量.

  虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

  生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

  师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

  生:半径有无数条,长度都相等,都一样.

  师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

  生:得出来了.

  师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

  生:错.

  师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

  生:也有无数条,直径都相等.

  师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

  除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

  生9:因为我们知道所有的半径都相等.

  师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

  生:有.直径是半径的二倍.

  师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

  生:半径和直径都相等.

  师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

  生:四条.

  师:正五边形,有几条?

  生:五条.

  师:正六边形?

  生:六条.

  师:正八边形?

  生:八条.

  师:圆形?

  生:无数条.

  师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

  现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

  生:不一样.

  师:半径几厘米的圆比较大?

  生:5厘米.

  半径几厘米的圆比较小?

  生:3厘米.

  师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

  生:半径.

  师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

  生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

  师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

  生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

  师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

  生:不是.

  师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

  生12:用一个碗扣在白纸上,描一下.

  师:有可能,但不是.

  生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

  师:人造圆规.

  生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

  师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,

  正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

  生15:少了宽度.

  师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

  生:不是.

  师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

  生:5厘米.

  师:4厘米呢?

  生:4厘米.

  师:假如半径是3厘米,那么直径呢?

  生:6厘米.

  师:是不是我把圆扯开6厘米,就可以画圆了/

  生;不是.要扯开3厘米.

  师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

  生:没有.

  师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

  生:近似一个圆,

  师:想一想,刚才我们旋转的是什么呀?

  生:中心.

  师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

  生:圆.

  师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

圆的认识教学设计12

  教学内容:《圆的认识》人教版 六年级上册

  教学目标:

  1、使学生认识圆的各部分名称,掌握圆的特征及画圆的方法。

  2、在活动中培养学生观察、动手操作、与他人合作交流等方面的能力。

  3、使学生感受生活中圆的存在及作用,感受平面图形的学习价值,提高学生数学学习的兴趣和学好数学的信心。

  教学重难点:掌握圆的特征及画圆的方法。

  教学过程:

  一、创设情境,导入新课

  (1)喜羊羊和灰太狼一起参加动物王国里举办的汽车设计大赛,喜羊羊设计一个圆形车轮的汽车,灰太狼设计一个方形车轮的汽车。它们行驶起来会是什么感觉呢?

  (2)对于圆,我们一定不会感到陌生吧?生活中你们在哪见过它们呢?

  (3)(课件出示)欣赏有关圆的美丽的图片,如向日葵、光环等。

  【设计意图】

  数学来源于生活,又应用于生活。创设学生熟悉的生活情境,使学生产生积极的心理需求,感受数学与生活的密切联系,体验到生活中处处有数学与数学的运用。

  二、自主探索,交流互动

  1、感悟画圆法

  师:好了,欣赏了那么多美丽的圆,大家想画这些圆吗?你们有什么办法把圆画出来呢?

  ……

  2、尝试用圆规画圆

  师:利用实物画圆这个方法大家都会了,我们就不研究了。你们想挑战用圆规画圆吗?

  (生在纸上画圆,师巡视,仔细观察学生画圆时出现的问题)

  师:老师发现大部分同学画的圆很漂亮,但有小部分同学画的圆不是很好喔!你猜猜,他们可能在什么地方出现了问题?大家愿不愿意帮帮他们呢?

  ……

  师:其实大家所说到的就是用圆规画圆的步骤和应注意的地方。谁说说?师根据生说相机归纳与板书,并示范画圆。

  (1)确定圆规两脚间的距离

  (2)把针尖固定在一个点上

  (3)把另一只脚旋转一周

  3、画定长为2厘米的圆

  师:同学们学会画圆了吧?想再画一个吗?不过这次老师有一个小小的要求喔,就是要使咱班同学画的圆一样大,怎么办?(圆规两脚间的距离定的一样长)

  【设计意图】

  把静态的图片变为动态的操作,从学生的真实点出发,以练习作为贯穿用圆规画圆的教学过程的始终,并以观察、讨论、谈话等教学方法加以辅助,让学生在亲身经历知识的过程中掌握画圆的方法及注意点。

  4、剪一剪、折一折

  (1)认识圆心。师:把这些折痕都相交于圆中心的一点,我们把它叫做什么?用字母怎样表示?

  小结:我们把圆中心的这一点叫做圆心,用字母“O”表示。请同学们用彩笔在圆上标出圆心。

  (2)认识直径。师:我们任取一条折痕,观察它有什么特点?

  小结:通过圆心,两端都在圆上,是一条线段。(揭示概念像这样通过圆心并两端都在圆上的线段就是圆的'直径)用字母d表示,并在圆上标出。

  (4)认识半径。师:画面中的线段有什么特点?

  小结:一端在圆心上,另一端在圆上任意一点。揭示概念(连接圆心与圆上任意一点的线段叫做半径)用字母“r”表示。

  (5)半径与直径的关系。师:我们认识了圆心、直径与半径,想想它们的特征及其关系?

  a在剪成的圆里你能画多少条半径?它们的关系有什么关系?

  b在剪成的圆里你能画多少条直径?

  c直径与半径有什么关系?

  小组讨论交流

  小结、板书

  【设计意图】

  在这里先让学生掌握画圆的方法,再让他们认识圆的各部分名称及其特征,既优化了教材的编排,又符合学生的认知结构,达到了教学目标的要求。

  三、自练反馈,巩固练习

  (1)填一填:

  ①同一圆里有( )条直径,有( )条半径。

  ②在同一圆里,直径与半径的比是( )。

  ③把一个圆规的两脚张开2厘米,画一个圆,它的直径是( )。

  (2)判一判,对的打“√”错的打“×”。

  ①两端都在圆上的线段叫圆的直径。 ( )

  ②圆心到圆上任意一点的距离都相等。 ( )

  ③直径是半径的2倍。 ( )

  (3)三题中选一题做:

  ①请你当裁判员:我们班举行迎“元旦”套圈比赛,参赛的同学应站成什么形状合理、又省时?请根据你的创意画出相应的示意图。

  ②请你当设计师:绿岛公园计划在圆形人工湖里建一个观影亭,请你拟定一个选择建设位置的方案并简要说明理由。

  ③体育老师想在操场上画一个10厘米的圆圈做游戏,可圆规太小,你能帮她想一个办法吗?

  【设计意图】

  《课标》提倡:学生的数学学习内容应是现实的、有意义的、富有挑战性的,强调数学知识的来源与应用。这一环节将枯燥的练习,融入到当设计师、裁判员中来,促使学生以饱满的热情参与学习,又在活动中巩固所学的知识,在交流中开阔思维,培养学生的创新意识及实践能力。而且练习的设计富有层次性,体现了实践性、应用性、开放性。

  四、回顾总结

  师:在这节课里,我们学到了什么?我们生活中有些东西为什么要做成圆形的呢?感兴趣的话课后我们可以用今天所学的知识解释一下。

圆的认识教学设计13

  教学理念:

  吴正宪专家曾说:“新课程理念下的数学学习,应当是学生在教师充满智慧的启迪引领下,积极主动地学习,课堂的真正精彩是学生的精彩,而不是教师的精彩。教师要做操作工,要创造出孩子既好吃又有营养的数学知识。”所以,本节课我立足学生是学习的主人,突出学生的主体地位,时刻围绕着以发展学生为中心展开教学。尽可能多的为学生提供展示自己的机会,让学生尝试成功的愉悦。感受到圆与人们的生活息息相关,彰显美学价值。

  教学内容:人教版义务教育课程标准实验教科书六年级上册第四单元55—57页

  教学目标:

  1、使学生认识圆,掌握圆的特征,了解圆各部分的名称,理解和掌握在同一圆内(相等圆)直径与半径的关系,会画圆。

  2、培养学生的观察、分析、比较、概括和实践能力。

  3、培养学生学习的独立性、创新性和空间观念,增强学生的合作意识。

  教学重点:探究、归纳圆的特征,正确画圆。

  教学难点:理解同圆或(等圆)中半径、直径的关系。

  教学准备:课件、大小不等的彩色圆形、圆规、直尺、剪刀。

  教学流程:

  第一环节:导学发现

  (一) 课前预习

  布置预习提纲:

  1. 自学课本55页—56页的内容。

  2.自学圆心、半径、直径的概念并会用字母表示。

  3.准备画圆工具及圆形。

  导言:

  师:通过预习,大家已经知道了我们今天要学习有关圆的知识,圆形同学们并不陌生,在我们生活中圆演绎着重要的角色,还藏着很多奥妙呢,你们想知道吗?

  (生:想)这节课我们就共同去认识圆,了解圆。→(师板书:圆的认识)

  (二)出示学习目标

  1.认识圆,知道圆各部分的.名称。

  2.掌握圆的特征。

  3.会用圆规画圆 。

  第二环节:探究形成

  (一) 复旧引新,观察比较

  师:请同学们回想一下,我们都学过哪些平面图形?

  生:正方形、长方形、三角形、平行四边形、梯形(生边说师逐一帖在黑板上)。

  师:请大家观察今天我们要研究的圆形(贴黑板、手指图)和这些平面图形有什么不同?

  不同点:

  生1:这些图形都有棱角,而圆形没有棱角。

  生2:这些图形都是由直线段围成的,而圆是由曲线围成的。

  (二)联系实际,初步感知。(说圆)

  师:生活中你都见过哪些圆形的物体?

  生:硬币、钟表面、车轮、脸盆、月饼、桌面、太阳……

  师:课件出示55页主题图,引导学生感知圆在生活中的应用及给人们带来的美感。(初步感知车轮都是圆形的)

  师:看来圆在我们生活中很常见,应用也很广泛,那你想不想现场画出一个圆呢?

  生:想。

  (三) 自主操作,尝试体验。(画圆)

  (尝试画圆→生说步骤→师示范画圆→生再次画圆)

  1、师:现在就请同学们用圆规试着在本上随意画出几个圆,边画边体会思考,你是按怎样的步骤画圆的?

  2、生:分别说出自己画圆的方法和步骤。

  3、师在黑板上示范画圆,生观察、感悟。

  4、生再次画圆,体验成功。

  (四)认识圆 (认识各部分名称,展示预习成果)

  师:同学们,圆内还有一些有价值的点和线段,相信通过预习你们已经找到了,现在就请大家展示一下吧。

  (1) 先在小组内互相交流、展示

  (2) 再在全班交流,师点拨、指导(学生进一步认识圆心、半径、直径并会用字母表示)

  (五)指导操作、探究结论

  1、师:请同学们在本的左侧确定一个点,画出一个圆,在本的右侧确定一个点,再画出一个圆,边画边体会思考,圆心决定圆的什么?

  生:圆心决定圆的位置(结论)

  2、师:请生先画出半径为1厘米的圆,再画出半径为3厘米的圆,最后画出半径为5厘米的圆,思考,半径决定圆的什么?

  生:半径决定圆的大小(结论)

  (六)探究圆的特征

  1.画一画:学生通过在圆里画半径、直径,寻找半径直径的特点(无数条、都相等)

  2.量一量:

  (1)师出示要求:测量同圆、等圆、不等圆。

  (2)同桌合作,一人测量半径和直径的长度,一人记录。师巡视指导。

  (3)学生探究、交流,(得出结论:在同圆或(等圆)中直径等于半径的2倍,半径等于直径的1∕2 )。

  第三环节:拓展应用

  (一)巩固内化

  1.我会填

  2.我来判

  (二)思维拓展

  车轮为什么做成圆形?车轴应安在哪?

  (三)感受圆文化,拓展延伸

  创作作品并展示:(学生用圆拼组成各种图形或美丽的图案并展示作品,感悟生活、体验生活美)

  (四)全课回顾

  这节课我们学了哪些内容?你觉得自己掌握的情况如何?让你觉得最成功的是什么?

圆的认识教学设计14

  学习内容分析

  圆是一种常见的平面图形,在我们的日常生活中有着广泛的应用。它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法,而且从空间观念上来说,也进入了新的领域。因此,通过对圆的认识,不仅能提高解决问题的能力,而且也为学习圆的周长、面积、圆柱和圆锥的学习打下良好的基础。

  学习者分析

  六年级学生有着丰富的生活体验和知识积累,但空间观念比较薄弱,动手操作能力较低,学生学习水平差距较大,小组合作意识不强。以前学习的长方形、正方形等是直线平面图形,而圆则是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。 教学目标

  知识与技能:

  (1)认识圆,知道圆的各部分名称。

  (2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。

  (3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。

  过程与方法:

  (1)经历动手操作的活动过程,培养学生作图能力。

  (2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

  (3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。

  情感、态度与价值观:

  通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。

  教学重点:圆的基本特征及半径与直径的相互关系。

  解决措施:通过让学生折一折、画一画、量一量、猜一猜、比一比等活动让学生理解圆的基本特征及半径与直径的相互关系。 教学难点:如何让学生理解用圆规画圆的原理。

  解决措施:通过展示学生用圆规画出来的圆,引导学生进行小组讨论,然后师生共同验证,让学生充分理解利用圆规画圆的原理。 教学设计思路

  一、导入新课

  事先画好一个圆

  1、指着图形问:同学们,这是什么图形?生活中哪些物体的表面是圆形?

  生:硬币、光盘、圆桌、车轮??

  师:同学们,这样说下去,你们觉得能说完吗?生:说不完! 师:是的,正所谓“圆无处不在”

  2、欣赏圆。师:今天老师也给同学们带来了一些,请欣赏美丽的圆。 师:同学们,这里的圆美吗?生:很美

  师:的确,圆是一个很完美的平面图形,它能够把我们的生活变得多姿多彩。下面,请同学们谈一谈,你对圆有哪些了解,它有什么用。你还想了解圆的哪些知识?那好,就让我们一起走进圆的世界吧。板书:圆的认识

  二、突出主题,探究新知

  (一)认识圆的各部分名称及特征

  1、合作学习,并利用手中圆形卡片,通过折一折、比一比、量一量的方法探索、讨论如下问题

  (1)什么叫直径?什么叫半径?满足直径、半径的条件分别有哪些?

  (2)在同一个圆内可以画出多少条半径?多少条直径?它们都相等吗?

  (3)在同一个圆里,半径与直径长度之间有什么关系?

  2、师生对对碰:说半径对直径,说直径对半径

  3、判断直径和半径并说理由

  (二)尝试画圆

  师:刚才我们学习了圆的这么多知识,你们想不想画一个漂亮的圆?利用圆形物体画圆,圆规画圆。

  1、 介绍用圆规画圆并认识圆规

  2、根据要求学习用圆规画圆

  (1)解释画圆的原理。

  (2)归纳方法:(1)定半径 (2)定圆心(3)旋转一周

  (3)巩固画圆。画同心圆,不同位置的圆

  三、应用特征,解决问题

  1、学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为10米的圆吗?

  2、数学史料再现

  师:其实,早在两千多年前,我国伟大的思想家墨子,在一部著作中曾这样的描述 “圆、一中同长也”,你能用今天学的知识解释这句话吗?

  师:这个发现比西方国家整整早了1000多年,听了这个消息同学们觉非常的自豪和骄傲。那么我们就带着骄傲和自豪的心情读一读这句话。

  四、谈收获并质疑

  五、创新思维训练游戏。

  教师:一个圆很美,大小不同的圆在一起组成美丽的图案会更美更美。请大家设计由圆(或圆和其它平面图形)组成的图案,并写出创意,带到学校与同学交流。

  依据的理论

  新课程标准指出:“教师应激发学生的学习积极性,为学生搭建自主探索,合作交流的平台,给学生提供充分从事数学活动的机会,帮助他们真正理解和掌握基本的数学知识与技能、数学思想和方法这是广大教师共同追求的目标。”基于这样的认识,本节课的教学设计主要突出体现以下两个特点:

  1、有机整合教学资源,体现教学设计的实效性。在组织教学过程中,主要通过自学,小组交流等学习方式,促进学生有效地学习圆的基本特征及用圆规画圆的方法。

  2、能在不断的设问中,引起学生思维的碰撞,激发学生的学习兴趣。 教学反思

  这节课上完之后,我觉得学生能在一个轻松快乐的情境中学习数学知识,在教师的引导下主动合作探究学习,基本完成了课前预设的教学目标。

  本节课成功之处:

  一、能在不断的设问中,引起学生思维的碰撞,激发学生的学习兴趣。

  设问是一种启发式教学方法,是组织课堂教学的重要环节,它不仅能启发学生思维,活跃课堂气氛,而且有利于激发学生的学习兴趣,培养学生的语言表达能力和思维能力。

  课的一开始,我准备了一个圆,问:这是什么图形?生活中哪些物体的表面是圆形?有生活中的圆为切入点导入,体验数学源于生活。在探究半径和直径的特征及它们的`关系时,我让学生自主动手画一画,量一量,在同一个圆里,有多少条半径?多少条直径?它们的长度怎样?猜一猜半径与直径的长度有什么关系?在学生汇报后,教师问:你手中的圆直径的长度是我的半径的两倍,对吗?从而让学生理解我们在讲直径与半径的长度关系前必须要讲“在同一个圆内”。在学生学习了圆的各部分名称及特征后,教师设问:用这个物体画一个圆是这样的,假如画一个半径是2厘米的圆,这些物体能做到吗?引出画圆工具圆规。在学生画好后,由学生总结画圆方法,水到渠成。 通过这样的不断设问,在学生在思维碰撞中学习,激发学生浓厚的学习兴趣,这们有效的降低学生的学习难度,起到画龙点睛的作用。

  二、把质疑引导的教法和合作探索的学法为主。

  在引导学生理解圆的意义的基础上,我将课本中圆的特征这一部分内容留给学生自学探究,努力突出学生的主体地位,而我则真正成为课堂上的组织者、引导者和合作者,在对于圆心——半径——直径——半径与直径的关系这一系列知识的学习上都体现出学生自主探

  究学习。这样既培养了学生的看书自学能力,又促进了学生的团结协作精神。而在学生探究之前,出示探究要求,就打破了过去教师对学生学法的限定,解放了学生的思想,学生可以根据自己的需要与特点自行决定。

  在突破难点这一个部分上,我采用的是小组合作探究,让学生在合作学习中同完成任务,达到共同提高目的。在学生画好后,展示同学们的作品,让学生理解利用圆规画圆是利用从圆心到圆上任意一点的距离都相等,也就是在同一个圆里,所有的半径都相等这一原理画圆的。

  在上完这节课后,我发现了自己存在着一些不足之处:

  1、教师的教学经验与教学机智不够,对于课堂上动态生成的信息处理不灵活,给人的感觉是离不开教案。

  2、教师没有示范画圆。

  3、自己感觉并没有能利用学生在课堂上生成的资源进行授课,对于如何让学生理解用圆规画圆的原理,教师还是放不开,自己讲得地方太多,学生动手探索的时间和空间少了。

  总之,我们教师在实际的课堂教学中,要多创造宽松的教学环境,要充分提供让学生自主学习的空间,让学生真正经历主动探索的学习过程,让学生自已亲身去感受数学,从而获得学习数学的乐趣和成功的体验,我将不断地朝着这个目标努力。

圆的认识教学设计15

  教学目标:

  (1)掌握圆的特征以及圆的各部分名称;初步学会用圆规画圆。

  (2)初步体会通过观察事物获得猜想,通过验证得出结论这样一种研究问题的方法。

  教具:

  圆规、直尺、小球、圆形纸片、磁铁、双面胶。

  学具:

  圆形物体、白纸、水彩笔、直尺、圆形纸片。

  教学过程:

  一、初步感受。

  (1)自然界中的圆

  同学们,我们已经初步学习了圆。今天我们进一步认识圆。(板书:圆的认识)你知道吗?自然现象中也有很多圆,你们看这是光环,这是水纹,这是向日葵。这些都很美。

  (2)生活中的圆。

  在日常生活中你见过哪些圆形的物体呢?你能举几个例子吗?

  (圆形的钟面。)

  (圆形的光盘。)

  (圆形的瓶盖、圆形的茶叶桶盖等)

  注意纠正学生的语言(篮球不是圆,它是球,不过它的切面是圆形的。) 车轮是圆的。这是车轴,这是钢丝。(电脑演示)

  小结:似乎圆在生活中随处可见。有的物体做成圆的是为了美观,而有的做成圆的,就有一定的道理,象这种自行车的车轮就一定要做成圆的,这是为什么呢?其中有什么道理呢?下面我们就用自行车车轮为对象来研究、探索圆的特征。

  二、探索圆的特征。

  1、画车轮简图。

  (1)抽象

  为了便于研究,我们把车轮进行简化。(电脑演示抽象化处理)

  (2)画图。

  这是一个车轮简图,你能很快地画一个车轮简图吗

  拿出一张长方形纸用桌面上的一些工具或物体(圆形物体、圆规、水彩笔和尺),很快地画一个车轮的简图。(展示4-6个。)

  你是怎么画车轮上的圆的`呢?

  (依靠圆形物体画圆)

  (直接用手画圆)

  (用圆规画圆)

  (3)介绍圆规画圆。

  圆规是我们常用的画圆工具,用它来画圆,比较正确和方便。那我们先来认识圆规,它有两只脚,一只脚有针尖,另一脚可装铅笔尖。怎样用圆规规范地画圆呢?

  (1)先把圆规的两脚分开,定好两脚间的长度。

  (2)把有针尖的一只脚固定在一点上。

  (3)把另一只脚旋转一周,就画出了一个圆。

  如果圆规的两脚之间的距离大一点,那画出来的圆就(大),那这样画出来的圆就(小)。

  你会了吗?请你拿出另外一张纸,用圆规画一个大小合适的圆。

  2、原型启发,进行猜想。

  (1)观察、比较。

  同学们画出了大小不同,颜色各异的车轮简图,请你仔细观察,这些图形有些什么共同点?你能根据这些共同点,猜想一下:圆可能会有哪些特征呢?

  请把你的猜想和同桌交流一下。

  (2)交流、汇报。

  你有哪些猜想呢?

  (圆形物体可以滚动,没有角)

  (圆都有一个中心)

  (圆的中心到圆的边缘的距离相等)

  (3)小结:

  刚才我们猜想圆可能有这样一些特征,但这只是猜想,到底对不对呢?我们还要通过进一步思考和验证啊。

  3、验证

  (1)下面我们来验证一下。

  先来验证第一个猜想。

  你感觉圆会有中心吗?

  会有有几个中心呢?

  会有两个中心吗?

  圆的中心在哪儿呢?

  你能准确地找到这个圆形纸片的中心吗?

  请大家拿出事先剪好的圆片。自己想办法来找一找。

  找到了吗?你是怎样找到的呢?

  (用尺量的。)

  (用圆规找的。)

  (用对折的方法找的。)的确,把这个圆反复对折几次,获得了一些折痕,这些折痕的交点就是圆的中心。

  圆中心的这一点就是我们用圆规画圆时针尖的位置,也叫做圆心,用小写字母o表示。(圆的中心改成圆心)。

  (3)下面我们来验证第二个猜想。(圆的中心到曲线上的距离相等) 因为圆的中心叫圆心,所以这个猜想也可以说成圆心到曲线上的距离相等。

  这里的曲线上我们给它个名称叫圆上。(改成圆上)

  圆心到圆上的距离相等。

  这点在圆上吗?(在圆上);这点在(圆上),这点在圆上吗?(在圆外);这点在圆上吗?(在圆内);这点在(圆上),这点在(圆上),圆上到底有多少个点?(无数个)。

  那我们要验证这个猜想,不就是要验证圆心到圆上任意一点的距离都相等吗?(板书加任意一点)

  真的都相等吗?

  你能验证吗?(请同学拿出刚才的圆片,自己想办法来验证一下。) 巡视(你是用量的办法,那你多量几条,增强点信心,把每条的长度记下来。)

  学生介绍验证的方法。

  量的方法;

  折的方法。

  你折了几次?

  折了4次,现在有八条线段等相等了,那我再折一次呢?(16条)再折一次呢?(32条)我再折一次,再折一次,再折一次,折无数次呢?(无数条从圆心到圆上任意一点的线段都相等了)这样,我们就能确定这个猜想是对的了。

  (4)小结:刚才我们通过试验验证了猜想是正确的,这样我们通过对车轮这个具体事物的仔细观察,获得一些猜想,再通过验证,从而证实圆确实有这些特征(板书:验证),得出了结论,这是一种重要的研究方法,同学们要仔细地体会掌握。

  4、进一步体会圆的本质。

  下面我们来做个游戏,进一步感受一下圆的特征。

  (1)线上的小球转动。

  我这儿有一个小球,系在一根线上,如果我捏住线的一端进行转动,假设手的位置不动,小球划出的图形是什么?

  我们用电脑模拟。

  (2)橡皮筋上的小球转动。

  我这儿还有一个同样的小球,系在一根橡皮筋上,同样来转动,看看这时小球划出的图形是什么?

  我们用电脑模拟一下;

  小球划出的是什么图形?

  (电脑演示)是圆吗?

  为什么第一小球划出的是圆,第二个小球划出的就不是圆呢?

  (因为第一个小球在转动时,手和小球的距离是始终保持不变的,所以划出的是圆。而第二个小球在转动时,手和小球的距离是在变化的,所以小球划出就的不是圆。)

  小结:通过这个小球游戏,我们进一步感受了,在一个圆中,圆心到圆上任意一点的距离都相等,如果距离在变化,那小球划出的就不是一个圆。

  5、认识半径、直径。

  刚才我们认识了圆的特征,那数学家又是用哪些概念来描述圆的呢?请同学拿出教材,自学书本p116页到117页。看书的时候,你可以把重要的概念划一划、圈一圈、书后的问题可以试着想一想,答一答,有不懂的还可以问一问。

  有哪些概念啊?

  什么是半径?半径的两个端点在什么地方啊?那你在圆片上画一条半径,用小写字母r表示。

  有几条半径呢?为什么?这无数条都相等吗?

  什么直径?那你在圆片上画一条半径,用小写字母d表示。

  有几条半径呢?为什么?这无数条都相等吗?

  直径和半径之间有什么样的关系呢?

  判断直径(电脑演示)

  5.判断题:

  (1)从圆心到圆上任意一点的距离都相等。

  (2)所有半径都相等,所有的直径也相等。

  (3)半径3厘米的圆比直径5厘米的圆要小。

  (4)直径的两个端点在圆上,那么两个端点在圆上的线段就是一条直径。

  三、解释与运用。

  大家学得很好,你能用今天学到的知识来解释:自行车车轮为什么做成圆的吗?

  为了更好地解释这一现象,我们来做一个对比实验。

  现在有两种自行车,一种车轮做成圆的,另一种车轮做成椭圆的,来看他们的运动情况。

  请大家想象一下,你坐在这两种不同的车上,会有什么不同的感觉?为什么?

  (因为第一种车上,车轴到地面的距离不变)

  (在第二种车上,车轴到地面的距离在变化。)

  为什么在圆形车轮中,车轴到地面的距离始终不变化?

  (因为在同一个圆里,所有的半径都相等。)

  看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

  请你能运用今天学到的知识用圆规画一个直径4厘米的圆,并标上圆心,直径和半径。

【圆的认识教学设计】相关文章:

《圆的认识》教学设计03-29

《认识圆》教学设计03-18

圆的认识教学设计12-31

圆的认识教学设计04-11

圆的认识优秀教学设计05-29

圆的认识的教学设计(精选7篇)07-28

《圆的认识》教学设计(精选7篇)06-25

圆的认识教学设计(15篇)01-19

圆的认识教学设计精选15篇01-19