《面积》教学设计

时间:2023-03-24 19:32:35 教学资源 投诉 投稿

《面积》教学设计

  作为一名教师,编写教学设计是必不可少的,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那要怎么写好教学设计呢?下面是小编收集整理的《面积》教学设计,欢迎阅读,希望大家能够喜欢。

《面积》教学设计

《面积》教学设计1

  教学目标

  探索活动从估测3个长方形的面积开始;然后通过观察、比较、归纳,发现长方形面积与长和宽的联系,从而建立长方形面积的计算公式。在这个过程中,学生经历了观察、操作、归纳、建立数学模型的过程。

  教学重难点

  1、理解长方形、正方形面积公式的推导过程,掌握长方形、正方形面积的计算方法。

  2、长方形面积计算公式的推导。

  教学过程

  一、组织教学

  复习:1、什么叫面积?常用的.面积单位有:。

  2、边长1cm的正方形面积是(),边长1dm正方形面积是(),边长1m正方形面积是(),

  二、新授

  1、探索长方形的面积计算公式。

  1)估一估

  估计下面图形的面积。

  2)摆一摆,填一填

  (1)用1cm的小正方形摆一摆。

  (2)把结果记录下来。

  长㎝

  宽㎝

  面积㎝

  图①

  图②

  图③

  长方形的面积=长×宽

  (3)提问:要求长方形的面积,必须知道什么条件?

  2、试一试

  用1㎝的正方形摆一摆,再算一算下面图形的面积。

  怎样计算正方形的面积呢?

  三、练一练

  1、计算下面草地、花坛的占地面积。(单位:m)

  2、估一估、量一量、算一算它们的面积。

  3、小红的床长20分米,宽14分米,要铺上与床同样长的席子,这块席子的面积是多少平方分米。

  4、求下图的周长与面积:

  四、小结

  教学后记:通过拼一拼、摆一摆、算一算,学生自主推出长(正)方形面积的计算公式,并能运用公式计算简单的长(正)方形的面积。

《面积》教学设计2

  教学目标:

  1、在观察、交流、操作等活动中,经历圆柱侧面展开图的过程。

  2、通过小组合作学习、自主探索,能够推导出圆柱侧面积的计算方法。

  3、能运用所学知识解决生活中的实际问题,体验生活中处处有数学,培养学生学习数学的兴趣。

  教学重点:圆柱侧面积的认识及计算

  教学难点:1、圆柱的侧面与其展开长方形的各部分之间的关系。

  2、推导圆柱侧面积的计算方法。

  教、学具准备:教师准备长方体、正方体、圆柱体等几种不同的实物模型;学生每人准备一个手工制作的空心圆柱。

  教学过程:

  一、 创设情境,复习导入

  师:同学们,咱们上一节课学习了一种新的立体图形,是什么呢?我找个同学配合我做的小游戏,某某同学请闭上双眼,从老师给你准备的物品当中摸出咱们上节课学习的物体(出示课前准备的几种不同的实物模型)

  生:摸出来了,圆柱。

  师:请你说一说你是怎么判断出这是圆柱的?(同时板书课题“圆柱”)

  生:根据圆柱的'特点判断。

  师:那么圆柱到底有那些特点呢?

  生:圆柱的上下两个面是圆形的,侧面是一个曲面。

  师:非常好,那么谁又能说出圆柱的各部分名称呢?(找学生到前面来指出)

  两位同学对上节课的内容掌握非常好,此处应该有掌声。

  二、 新课教授

  (1) 让学生谈谈自己的梦想,可能有同学将来愿意当设计师。

  (2) 师:现在大家看到老师这里有两个圆柱,一个很漂亮,另一个却很逊色,现在请咱们的设计师同学帮我给他设计一个漂亮的包装纸,你怎么设计?

  生:包装纸的大小其实就是圆柱体的侧面积。

  师:一语中的(板书“侧面积“将课题补充完整)

  生: 把原来的商标纸剪开再展开,然后测量它的大小就行。

  师:说说具体怎么剪开?

  生:沿高剪开。

  师:好,我们来亲自验证一下,你们猜展开之后会是什么形状呢?

  生1:正方形

  生2:长方形

  师:大家注意,我们见证奇迹的时刻到了(展开包装纸),什么形状呢?

  生:长方形。

  师:还会有其他情况吗?(让学生把自己准备的圆柱按照此方法剪开)

  有的学生会得到正方形,然后让学生小组讨论思考课本23页的两个问题,找出展开图与圆柱之间的关系。找学生回答,教师给予表扬。

  师:我们现在知道了他们之间的关系,那到底该如何计算圆柱的侧面积呢?(小组讨论,推导计算方法)

  生:圆柱的侧面积等于底面周长乘以高。(师板书)

  师:咱们同学们都会自己推导计算方法了,真了不起。

  三、 课堂练习

  师:现在请你们发扬一下小组合作精神,拿出各小组准备的实物体圆柱,测量数据,计算侧面积,看看哪个小组合作的最好,计算的既快又准确 ?

  四、 课堂总结

  回头看看我们今天的收获,你们记住了吗?我认为通过自己的智慧和劳动获得知识是人生最大的乐趣,你们同意吗?

  教学反思

  本课是在认识圆柱的基础上进行教学的,主要让学生通过自己动手操作去理解圆柱侧面积与长方形的关系,为下面的推导作好铺垫。

  在推导方法时,放手让学生操作,符合学生的认知规律,也体现了新课标的精神,从而使学生顺利的掌握了本节课的内容。本节课的不足之处在于:教师的引导不到位,有些学生还不敢大胆去尝试,还需要平时多加锻炼。

《面积》教学设计3

  我在上这节课的时候,首先让学生回顾平行四边形和三角形的面积公式是如何推导的。

  提出问题:梯形是不是也可以像它们一样可以转化成已学过的几何图形呢?在学生讨论后发现有几种方法。进而让学生思考讨论:转化成的平面图形的面积与原来梯形的面积有什么联系,底和高又有什么联系?在集体汇报时对它几种方法的处理上出也不一样,重点分析了学生发现的第一种方法,一是因为大多数学生采用的`都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。第二种方法与第一种方法是一样的道理,只不过迸出的特殊的平行四边形。第三、第四种方法,由于推导的过程较复杂,在课堂上让选择这种方法的同学也交流了,但没有展示其推导过程。教师用一句话,把这几种方法都肯定了,不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)*高/2。

  这节课存在的不足之处:

  首先,对学生的关注还不够。几次学生的板演都出现了问题,浪费了课堂的时间。如果能够在课前将所涉及到的例题都算一遍,找同学板演时就不会出现这样的问题了。

  第二,在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深刻。

  第三,由于时间关系,第三、四种方法没有展示公式推导过程,只是用语言描述了。从学生的反映可以看出,学生听不明白。如果能在课件中展示出来就更好了。

  反思教学,在推导公式的过程中,先汇报计算方法和结果,再展示思考方法,接着讨论这种方法的合理性,是否能用这种方法解决全部梯形的面积计算,进而得出梯形的面积公式。从教学效果看,大部分学生能运用初步形成的转化的思想将两个完全一样的梯形转化为已经尝过的平行四边形来推导梯形的面积计算公式。学生在汇报时还有一种方法是将梯形运用割补法将梯形转化为平行四边形,然后推导出梯形的面积计算公式。整体来看不如前几节课效果好。仔细分析原因如下:

  一是学生的准备不充分(部分学生没有准备梯形图形),导致参与面小,效果不理想。

  二是学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也欠数学教师长期要培养学生的一种数学学习的品质。

  三是学生的个性没得到张扬,受教学时间限制,有的学生没有完成推导梯形面积的过程。

《面积》教学设计4

  【教学内容】

  P13-14页例3、例4,完成“做一做”及练习二的部分习题。

  【教学目标】

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  【教学重点】

  掌握圆柱侧面积和表面积的计算方法。

  【教学难点】

  运用所学的知识解决简单的实际问题。

  【教学准备】

  多媒体课件

  【自学内容】

  学习提示:

  (1)长方体、正方体的表面积指的是什么?

  (2)圆柱的表面积指的是什么?

  (3)圆柱的底面积你会计算吗?侧面积呢?

  (4)你知道侧面的形状以及长、宽与圆柱的关系吗?

  【教学预设】

  一、自学反馈

  1、求下面各圆柱的侧面积

  (1)底面周长2.5分米,高0.6分米

  (2)底面直径8厘米,高12厘米

  2、求下面各圆柱的表面积

  (1)底面积是40平方厘米,侧面积是25平方厘米

  (2)底面半径是2分米,高是5分米

  二、关键点拨

  1、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2、侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题:

  ① 这两道题分别已知什么,求什么?

  ② 计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3、理解圆柱表面积的含义。

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的`表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4、教学例4

  (1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)

  ③表面积:1758.4+314=20xx.4≈20xx(平方厘米)

  5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  三、巩固练习

  1、做第14页“做一做”。(求表面积包括哪些部分?)

  2、练习七第6题。

  四、分享收获畅谈感想

  这节课,你有什么收获?

  五、板书:圆柱的侧面积=底面周长×高

  圆柱的表面积=圆柱的侧面积+底面积×2

  例4:①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想

  反思与体会

《面积》教学设计5

  教学内容:

  教材95—96页梯形的面积及例3;第96页“做一做”;第98页练习二十一第6,7,8题。

  教材分析:

  本课试在学生认识了梯形的特征,掌握了长方形,正方形,平行四边形和三角形面积的计算,并形成了一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,引导学生在主动参与探索的过程中,发现并掌握提醒的面积计算方法,让学生在学习的再创造过程中实现对新知识的意义的构建,解决新问题,获得新发展。

  教材中多角度地推导出了梯形面积公式,并展示了三种方法:一是两个一样的梯形拼成一个平行四边形;二试把一个梯形剪成两个三角形;三是把梯形剪成一个平行四边形和一个三角形。通过学习能够提升学生的合作意识,培养学生多角度思考问题的能力。

  教学目标:

  知识与能力:

  在探索活动中深刻体验和感悟梯形面积计算公式的推导过程,并能运用梯形的面积公式解决生活中的实际问题。

  过程与方法:

  通过动手操作,观察比较,发展学生的空间观念,并在动手操作的活动中,逐步培养学生归纳,推理和语言表达的能力。

  情感,态度与价值观:进一步培养空间观念,不断发展空间想象力,体验数学再创造的乐趣,并获得个性化的发展。

  教学重难点及突破:

  重点:理解并掌握梯形面积公式的推导过程,会计算梯形的面积。

  难点:理解梯形面积公式的推导过程。

  教学设想:

  本课教学由学生谈对梯形的认识和讲述平行四边形,三角形面积公式的推导方法引入,为后面的探究活动提供保障。在新课中,教师要向学生讲明探究梯形的面积的方法及合作的要求,可以通过多媒体展示出来,让学生完全按要求完成学习。接下来为学生的探究过程,学生利用自己准备好的梯形,通过分割法和组合法对图形进行重组,并用文字写出梯形面积的计算方法,然后在交流中找到最为简便的公式,并在教师的引导下写出字母公式。学生完成公式的推导之后要独立完成例3及“做一做”,在练习的同时提高学生对公式的理解和认识。除此之外,为了巩固学生所学知识,还要多收集一些习题,开拓学生的视野,提高学生的能力。

  教学准备:

  教师准备:

  多媒体课件,练习题

  学生准备:

  前置作业,梯形若干个,彩笔,练习本。

  教学设计:

  一,复习旧知

  师谈话:说一说你对梯形的了解。

  学生自由发言,教师进行评价。

  生1:梯形有上底,下底和高。

  生2:梯形有等腰梯形和直角梯形。

  ……

  师接着谈话:同学们,我们前面学习的平行四边形和三角形的面积公式是怎样推导出来的?

  学生举手,教师指名回答。学生发言预设:

  生1:平行四边形的面积试用割补法把它变成与它面积相等的长方形,由长方形面积推到出来的。

  生2:三角形的面积是把两个完全相同的三角形拼成一个平行四边形,因为三角形的面积是这个平行四边形面积的一半,所以用平行四边形面积除以2,得到的就是三角形的面积。

  ……

  师小结:同学们能不能用学过的这些方法设计一种推导方案,推导出梯形的面积计算公式呢?

  板书课题:梯形的面积。

  设计意图:通过师生交流揭示课题,提示学生可以把已学过的学习方法运用到新的学习情境中,为学生提供了创新的机会,变“要我学”为“我要学”,为下面的学习作好了铺垫。

  二,探索新知

  1,方法迁移,自主探究梯形的面积公式。

  师谈话:下面请同学们运用我们学习的平行四边形和三角形的面积公式的方法推导一下梯形的面积公式吧!要看清要求,在小组研究中要分好工。

  多媒体出示自学要求:

  (1)做一做:利用手中准备好的梯形纸片,或拼或剪,转化成一个以前我们学过的图形。

  (2)想一想:可以转化成什么图形?与梯形有哪些联系?

  (3)说一说:你发现了什么?试着推导梯形面积的计算公式。

  (4)瑶以小组为单位,进行合作学习。

  学生小组探究梯形面积的计算方法,教师参与学生的交流。

  学生汇报结果,教师评价并板书。学生汇报预设:

  生1:我们组把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形的面积与一个三角形面积之和,平行四边形的面积等于梯形的上底乘高,三角形的高就是梯形的高,三角形的底是梯形的下底减去上底,分别求出面积再相加,梯形的面积=上底×高+(下底—上底)×高÷2。

  生2:我们小组把梯形剪成两个三角形(如下图),小三角形的底试梯形的上底,大三角形是梯形的下底,高是一样的,所以梯形的面积=上底×高÷2+下底×高÷2

  生3:我们组用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积试梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底加下底之和,从而推出梯形面积=(上底+下底)×高÷2。

  师:大家通过探究推导出了梯形面积的计算公式,从不同的角度去想,推导出的公式也不相同,请同学们观察一下三个公式,哪一个最简便?

  生齐:第三种。

  师:通过我们多角度的实验,可以推导出梯形面积公式=(上底+下底)×高÷2(师板书)。如果上底用子母a表示,下底用字母b表示,高用字母h表示,那么梯形面积公式用字母公式可以表示为什么呢?

  学生举手,教师指名回答。

  S=(a+b)×h÷2

  设计意图:在这个环节中,教师防守让学生去实践,去探索,学生在研究梯形面积的过程中,不仅掌握了梯形的面积计算公式,更有力地促进了学生思维能力的发展和问题策略意识的形成。

  2,教学例3

  出示例3

  学生独立完成,教师对学生进行指导。

  学生完成后全班交流,教师进行方法指导。

  学生发言预设:从图中可知大坝的上底是36m,下底是120m,高是135m,利用梯形的面积计算公式S=(a+b)h÷2可求出大坝的面积是(36+120)×135÷2=10530(m2)

  3,完成教材96页“做一做”

  请你说一说“做一做”的习题所表达的意思。

  学生举手,教师指名回答。

  学生独立完成习题,教师对学困生进行指导。

  学生汇报,教师评价。

  设计意图:通过学生阐述解题过程,能够深化学生对公式的理解。

  三,巩固应用

  (一)预习答疑

  1,完成“旧知链接”习题

  学生回答对梯形的认识及研究平行四边形,三角形面积的方法。

  说明:通过复习这些知识点,让学生加深对平行四边形,三角形面积公式的推导过程的认识,为本课学生推导梯形面积公式奠定基础。

  2,完成“新知速递”习题。

  学生全班订正答案。

  教师对方法进行小结。

  (二)教材习题

  1,练习二十一第6题

  师提问:怎样计算梯形的面积?

  学生举手,教师指名回答。

  学生独立完成习题,教师对学困生进行指导。

  学生汇报,全班评议。

  2,练习二十一第7题

  师:怎样列方程解决问题?

  学生举手,教师指名回答。

  学生独立完成练习,并全班汇报订正,教师进行方法小结。

  (三)课堂作业

  1,想一想,填一填。

  两个完全相同的梯形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的(),因为平行四边形的面积等于(),所以梯形的面积等于()。

  2,计算下面梯形的`面积。(单位:cm)

  3,把一块平行四边形的铁片剪去一个角(如下图中的阴影部分,单位:cm),剩下部分的面积试多少平方厘米?

  4,求下图阴影部分的面积

  教学反思:

  新的数学课程标准指出:教师不能只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在于教师对教材的把握。梯形的面积一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的,学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识进行教学,整个教学设计充分运用猜想,探索,验证等学习方式,给每个学生提供思考,表现,创造的机会,使他们称为知识的发现者,创造者,能否培养学生自我探究和实践的能力。针对本课教学设计主要有以下几点思考:

  1,动手操作,培养探索能力。在推导梯形面积计算公式时,教学设计安排学生合作学习,防守让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生用过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形,再通过“拼,剪,割”的动手操作活动,看一看能转化成什么图形,然后引导学生思考讨论:转化的图形与原梯形有什么关系?通过学生自主探索的实践活动,让学生亲自参与面积公式的推导过程,真正做到“知其然,也知其所以然”,而且能让学生的思维能力,空间感受能力,动手操作能力都能得到锻炼和提高。

  2,重视学生解决问题的能力的培养。在学生验证自己的想法是否正确时,瑶鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识,在此基础上归纳出梯形面积的计算方法。这种方式的学习,既能够使学生理解,掌握梯形的面积公式,同时又能够培养学生获取知识的能力。

《面积》教学设计6

  教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:圆柱形物体、学具、多媒体课件

  教学重点:圆柱侧面积的计算方法推导。

  准备:课前布置学生用纸片试做一个圆柱体。

  教学过程:

  一、交流做圆柱体的情况。

  师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。

  生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。

  生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。

  生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。

  师:这说明什么呢?

  一生抢着说:“原来底面圆的周长等于长方形的长”。

  二、探索圆柱表面积的计算方法。

  (1)引入

  师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?

  生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)

  师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?

  生:把圆柱剪开,变成我们学过的.图形。

  师:下面分小组探索圆柱的表面积的计算方法。

  (2)小组汇报

  生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2

  生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。

  师:还有不同方法吗?

  生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。

  师:这样做的结果是一样的,有什么道理呢?

  (生陷入思考)

  师:从公式看2个底面圆跑到哪去了呢?

  一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。

  师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。

  师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?

  生1:半径或直径和高。

  生2:有周长和高也行。

  生3:我发现已知周长和高,用第二种方法计算比较快。

  师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。

  三、自学例3

  师:注意思考:(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?

  (2)什么叫“进一法”?什么情况下要运用进一法?

  生1:这个水桶只有一个底面,不能多算成2个。

  生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。

  师:在一些用料问题上,我们要根据实际情况来考虑。

  四、 计算练习(出了3道题)

  由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。

  反思:

  这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。

  一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。

  二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。

  三、我也体验到了怎么教数学。

  (1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。

  (2)立足发展学生的能力,设计课堂教学的策略。

  (3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。

  四、不足改进。

  在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。

《面积》教学设计7

  教学过程

  (一)复习导入,探求新知

  用课件展示复习内容:

  (1)我们学过的圆的周长是怎么计算的?面积呢?

  (2)长方形的面积呢?

  (3)圆柱有哪些特征?

  (二)设下悬念,导入课题

  由学过的长方体表面积的计算方法,设下悬念“要是这些面是曲面呢?表面积又要怎么求呢?”,激发学生的求知欲,带着问题进入本节课题。

  (三)动手操作,发现规律

  引导学生用一张纸做一个简单的圆柱模型,然后引导他们发现圆柱的特征,发现规律,例如:侧面的长=底面周长、侧面的'宽=圆柱的高,还有本节课重点s圆柱=s侧面积+2×s底面积=c×h+2×πr2=2πr×h+2×πr2。

  (四)例题解剖,引导学习

  1、一顶厨师帽,高是30cm,帽顶直径20cm,做这样一顶帽子至少需要多少面料?

  解:(1)帽子的侧面积:s侧面积=2×3.14×20×30=3768(cm2)

  (2)帽顶的面积:s底面积=3.14×20×20=1256(cm2)

  (3)需要用面料:s侧面积+s底面积=3768+1256=5024(cm2)

  答:

  (五)巩固练习,知识拓展

  做一做:

  1、一个圆柱底面半径是2dm,高是5dm,求它的表面积?

  解:(1)s侧面积=2×3.14×2×5=62.8(dm2)

  (2)s底面积=3.14×2×2=12.56(dm2)

  (3)s圆柱=s侧面积+2×s底面积=62.8+2×12.56=87.92(dm2)

  2、一个圆柱表面积是6π,底面半径是2,则圆柱的高是多少?

  解:设圆柱的高为h,由s圆柱=s侧面积+2×s底面积=2πr×h+2×πr×r知,6π=2π×1×h+2×π×1×1,解得h=2

  (六)反思小结,加强记忆

  让学生自主总结“本节课学习了什么?”

  1.这堂课的主要内容是什么?

  2.求圆柱表面积的公式是什么?

  3.如何运用公式求解实际问题。

  这堂课我们学习了圆柱的表面积计算的基本思路及方法。在估算圆柱表面积时发现了圆柱的表面积公式。在今天的学习中,我们还要逐步深入、领会、掌握“转化”这一数学思想方法。

  (七)设置问题,带出课堂

  16页第6题的第1小题,第7题和第14题。

  教学目标

  1、认识圆柱,掌握它的基本特征,认识圆柱的底面,侧面和高。

  2、通过制作圆柱模型,探索并掌握圆柱的侧面积和表面积的计算,并运用到实际问题中。

  3、通过探究、观察等活动,了解平面图形与立体图形之间的联系,发展学生的空间观察。

  教学的重、难点及教学关键

  (一)教学重点:探索圆柱侧面积和表面积的计算,并能运用到实际问题中。

  (二)教学难点:理解圆柱侧面展开图与圆柱的各部分之间的联系,并推导出圆柱侧面积和表面积的计算公式。

  (三)教学关键:利用教具,学具进行实验活动,引导学生观察、思考、经历计算公式的推导过程。

《面积》教学设计8

  教学目标:

  1、结合长方体和正方体的展开与折叠的情景,探究长方体和正方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算。

  2、在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能运用所学知识解决一些实际问题。

  3、通过亲身参与探索实践活动,去获得积极的成功的情感体验,并从中体验数学活动充满着探索与创造。

  教学重点:在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。

  教学难点:探索并理解长方体、正方体的表面积及其计算方法。教学过程:

  一、复习旧知、有效铺垫

  图形的世界中我们认识了很多好朋友,一起看大屏幕(出示长方形),认识吗?你知道长方形面积怎么计算吗?

  再来看(出示长方体),这是新认识的长方体,你还记得长方体的面、顶点、棱的特征吗?(重点板书:长方体6个面)(前—后,左—右,上—下)

  二、寻找联系、引入新知

  1、审题读取数据(出示相关数据)关于这个长方体,你能获取哪些信息?(引导学生读出长方体的长、宽、高,并发现相对的面,颜色相同。)

  同学们手中也有一个相同的长方体,你能像老师这样摆放,并标出上下左右前后六个面吗?(试一试,并指名指一指)

  2、动手填写数据

  上节课,我们学习了展开与折叠,谁能说一说将这样一个长方体纸盒展开后,将得到一个什么样的图形?(将得到一个六个面相连接的平面图形,即长方体展开图)

  在上节课的学习中,我们还知道由于剪的方法不同,得到的长方体的展开图也是不一样的。下面,老师就将这个长方体展开,得到的一个像这样的'展开图(出示展开图)。现在,请同学们仔细观察这个长方体以及它的展开图,你能分辨得出这个长方体的六个面分别对应于展开后图形中的哪个部分吗?

  同学们观看16页的展开图,请同学们一起来做个活动,先看要求:

  (1)判断长方体的六个面分别对应于展开图的哪个部分,将上下左右前后标在展开图的各个面上。

  (2)根据长方体各条棱的长度,将合适的数据填在展开图的方框中。明白了吗?动手试试看。

  指名试一试,这个同学完成的如何,和你标的一样吗?反馈:谁能来说说,你是怎么填的?

  三、情境引入、探索新知

  1、揭示长方体表面积概念同学们很善于观察,找出了长方体与其展开图之间的联系,那么你想不想通过自己的本领知道我们做这样一个纸盒需要多少纸板吗?

  适时引导学生思考,求至少需要多少面积的纸板其实就是求什么?(所有面的面积之和)长方体6个面的面积之和就是长方体的表面积。(补充板书)

  拿出手中的长方体,摸一摸它的6个面,体验一下它的表面之和。

  2、估计长方体纸盒表面积谁能先来估计一下这个长方体纸盒的表面积是多少?(引导学生说出估计的过程与方法,并适时的渗透一些估计的方法与技巧。)

  3、小组交流并计算结合这个长方体及它的展开图,想一想,你准备如何计算它的表面积?四人小组内介绍一下你的方法。用你喜欢的方法计算。

  4、全班交流与汇报学生板书汇报自己的方法,并让其他同学给予相应的评价。

  5、概括计算长方体表面积的方法

  方法一:6个面面积相加

  方法二:计算3个面的面积×2,依据相对的面的面积相等的特点。

  方法三:计算三对面的面积再相加,请同学们仔细观察这三种方法,谁能说一说,这三种方法之间有什么联系?有什么相同之处?请同学们开动脑筋,灵活的计算长方体的表面积。

  总结求表面积的方法:要想求长方体的表面积,需要知道什么?知道了长宽高,应该怎样计算呢?

  6、知识推广思考:求正方体表面积,需要知道什么?出示课本第18页试一试,引导学生完成。

  四、巩固练习

  1、基本练习17页1题,3题,独立完成,集体纠正。

  2、拓展练习(1)17页4题。

  (2)想一想,一个长方体的饮料盒,它的长、宽、高分别是6cm、3cm、10cm。如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少是多少?分析题意,独立完成,集体纠正。

  五.通过本节课学习你有什么收获?

《面积》教学设计9

  教学目标:

  1.通过观察、操作等活动,认识面积的含义。

  2.在具体操作体验中,探究比较面积大小的方法,体会统一面积单位的必要性。

  3.在不同的学习活动中,体会数学与生活的联系,锻炼数学思考能力,发展空间观念,激发进一步学习和探索的兴趣。

  教学重难点:

  理解面积的意义

  教具、学具的准备:

  课件、不同大小的图形卡片、小正方形、圆形、长方形。

  教学过程:

  一、导入

  (出示1条线)

  师:现在请同学们观察这一条线,我们通过测量可以知道它的长短。

  (出示很多条线)

  师:又有什么地方不一样呢?师:今天这节课我们就来研究一下有关面的知识。

  二、理解面积的意义

  (一)理解物体表面的大小叫做它的面积1.看一看、摸一摸(拿出一本书)师:这是一本书,一眼看去,你们先看到的是什么?

  师:谁愿意上来摸一摸它的封面? (拿出一个长方体盒子)

  师:那哪位小朋友愿意上来摸一摸它的面。其他小朋友认真观察。 (拿出一个球)

  师:老师这里还有一个皮球。谁能上来也摸一摸它的面? (同时拿出盒子和球)师:这两个物体的它们的面有什么不同?(平面、曲面)

  师:其实,我们刚才摸的都是物体的表面。(板书:表面)

  师:现在,请同学们从身边任意找出一件物体,摸一摸它的表面。

  2.比一比

  师:现在再请学生们闭上眼睛,然后左手摸一摸书面,右手摸一摸桌面,你发现有什么发现?(学生回答)师:物体的表面有大小,物体表面的大小就叫做它们的面积。 (板书:的大小就叫做它们的面积。)

  3.说一说

  师:那我们刚才说桌面比书面大,可以怎么说? (桌面的面积比书面的面积大)师:谁还能举例说一说谁的面积大谁的面积小?(二)理解封闭图形的大小叫做它的面积1.涂一涂

  师:刚才我们已经研究了物体表面的大小,接下来我们进行一个涂色比赛。先听清楚比赛的要求。

  师:每位同学桌面上都有一个信封,里面有一张画有图形的`纸。请你们给它们涂上颜色。时间为一分钟,看谁涂的快。如果你有什么疑问,不要急,等比赛结束后再举手提出。开始。

  2.比一比(图形有大有小)师:时间到,请涂好颜色的同学把你的作品举起来。

  师:为什么他们涂的快,而你们却还没有涂完呢?师:通过观察,我们发现图形有大小。

  3.辨一辨(图形有开口和封闭的)

  师:其他小朋友还有什么问题?(展示2张作品)师:这几个图形和其他图形有区别吗?不一样的地方在哪呢?师:封闭图形可以确定大小,不是封闭图形,很难确定它的面的大小。那你们有办法帮帮这几个图形吗,让它们也能确定大小? (板书:封闭图形)

  (三)小结面积概念

  师:你们能把这两方面概括起来说一说什么叫面积吗?

  三、比较面积大小的方法。

  (1)观察法

  师:通过刚才的学习,我们知道了什么是面积。(拿出一大一小两个图形)那你们看这两个图形,谁的面积大?师:我们通过观察能很客易知道它们的大小,这种比较的方法我们可以称之为观察法。

  (2)重叠法(拿出两个图形)师:这两个图形的面积谁大谁小呢?(学生回答)引导学生叠在一起比一比。(测量法、重叠法)

  (3)用图形做标准间接比较

  电脑出示两个颜色不同的正方形和长方形,你们能比较出它们的大小吗?师:老师倒是有个办法,你们看行不行?用一些较小的图形摆一摆,看哪个摆的多。

  师:我给大家准备了一些小图形,请同桌的两位小朋友摆一摆,然后比一比哪个图形的面积大。

  学生合作完成后,展示学生作业。

  师:你觉得用哪一种形状的图形来摆最合适?为什么?

  (4)比一比

  师:这几种图形通过摆一摆、数一数都可以比较出图形面积大小,不过用正方形的方法操作更简单方便,这种比较的方法我们叫做数方格的方法,现在我们用这个方法来比较一下这几个图形面积的大小。

  (5)猜一猜

  师:从刚才的例子中,我们发现了一些规律。现在请你们看屏影,这3个信封里藏着一个图形。格子我己经帮大家数好了,请你估计一下,哪个信封里的图形面积最大。 (学生回答)

  师:说明单数格子多少还不能确定哪个图形的面积大。那怎么办呢?师:说得好!要准确知道面积的大小,就要统一方格的大小。其实在国际上己经有规定一定标准的正方形大小做为面积单位了,那常用的面积单位有哪些,又是怎么规定的,这些知识将在下节课学习。

  师:这节课大家都学得很主动、很认真、太棒了!现在我想考考大家,请看题。

  四、练习

  1.判断图形是否有面积。

  2.比较图形面积的大小。

  五、全课总结

  请大家回想一下我们学到了一些什么知识?师:其实有关面积的知识还有很多,相信在以后的学习中,大家一定会学到更多的有关面积的知识。谢谢大家!

  六、板书设计:

  认识面积

  物体的表面或封闭图形的大小,就是它们的面积。

  教后反思:

  《认识面积》这一课的教学中,我为了帮助学生正确理解面积的含义,首先引导学生通过观察物体的表面,直观感知面的大小。利用身边的材料引领学生理解不同的面各有大小的基础上,顺势指出物体“面”的大小就是它的面积,并注意让学生边动手摸面的大小,边用语言准确表达,建立正确的面积概念,。接着通过学生的举例,进一步加深学生对面积的理解。在比较平面图形面积大小时,我充分让学生进行小组合作探究找出比较面积的方法,在学生交流不同的方法时,考虑到后面学习的需要,重视引导学生理解小纸片量的方法,初步感知比较面积的大小要用相同的单位去度量,既加深对面积含义的理解,又为后续学习做好了铺垫。

  在整个教学中我着重关注了以下两方面:

  1、加强数学与生活的联系。

  如果说生活是亲切自然、丰富多彩的,那么数学则是抽象严谨、精炼深刻的。数学教师要善于让生活和数学有机融合。本节课,我选取了大量生活中的物体,如课本封面、课桌面、文具盒盖面等,把间接的数学知识与直接的生活经验紧密结合起来,及时提炼、升华学生已有的生活经验,有效地帮助学生理解与掌握了面积的含义。

  2、让学生经历探究过程,体验感悟方法。

  对于小学生而言,概念教学可以适当地淡化它的定义,而要注重感知和体验,在丰富和坚实的基础上主动建构。本节课先通过大小区别明显的物体的面,给学生的感官以强烈的刺激,把学生的注意力吸引到面的大小上来,在学生积累了较为丰富的感性认识后引入面积概念,然后通过让学生说一说、摸一摸、比一比、画一画等学习活动,让学生进一步领悟概念的内涵。在此基础上,组织学生合作探索,在相互启发,相互碰撞中形成了多样化的面积大小比较的方法,较好地体现了策略多样化的理念,培养了学生思维的开放性。

《面积》教学设计10

  教学内容:

  小学数学第十二册教材P33~P34

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的'表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+78.5×2=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+28.26×2=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、 分组闯关练习

  1、多媒体出示题目。

  第一关(填空)

  沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

  第二关

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

  第三关(用你喜欢的方法完成下面各题)

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、 质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学反思

  1、 自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

《面积》教学设计11

  教学目标:

  1、使学生理解长方形、正方形的面积计算公式的推导过程。并能熟练掌握计算公式。

  2、让学生亲历观察、拼摆、验证、交流等活动,培养动手操作能力和合作探究的能力。

  3、进一步培养学生的合作意识和创新意识。

  教学重点:引导学生推导出长方形、正方形的面积计算公式。

  教学难点:推导长方形和正方形面积计算

  教学过程:

  一、悬念导入、激发情趣

  师:我们已经学会用数方格的方法计算一些图形的'面积,大家仔细想一想,学校操场的面积也能用数方格的方法吗?

  是不是所有的长方形面积都可以用长乘宽计算呢?

  生:!

  师:今天我们就一起来研究一下长方形和正方形面积计算的规律。

  板书课题。

  二、合作学习、探讨新知

  1、明确要求,跃跃欲试

  师:现在请大家拿出备好的正方形纸卡和统计表,看清学习要求,然后合作学习。老师想看看谁的表现最棒!谁的发现最多!

  2、动手实践,小组探讨

  生:积极思维积极动手,努力探讨新知,准备和其他小组评比。

  师:我看每个同学,胸有成竹,跃跃欲试。现在哪个小组先来汇报?

  3、分组汇报,交流成果

  生:我们小组拼的长方形长5宽3面积是15平方分米(都是长方形)

  生:我们小组拼的是正方形面积是3x3=9平方分米。(有长方形有正方形)

  师:还有别的发现吗?

  生:我们小组拼的两个长方形形状不同,面积相等。((面积相等的长方形)

  师:能在具体些吗?

  生:长6宽2长4宽3,面积都是12平方分米

  师:你的回答很了不起。谁还有不同意见?

  生:我们小组拼的一个长方形,一个正方形,但是它们的面积却相等

  (面积相等的长方形和正方形)

  师:你们小组的发现更有价值,继续努力!

  生:我们小组拼的图形有七八种,其中有3个图形面积相等!长8宽2、长16宽1、边长是4的正方形。(面积相等的2个长方形1个正方形)

  师:大家真是火眼金睛!只要我们多观察、勤动手一定会发现更多的

  奥妙!还有不同发现吗......

  4、分析比较,小结规律

  师:要求一个长方形和正方形的面积,需要知道哪些条件?(板)生:要求长方形的面积需要知道长和宽要求正方形的面积需要知道边长长方形面积=长x宽正方形面积=边长x边长

  5、激励评价,媒体验证

  师:刚才大家用自己的双手和大脑创造了智慧的财富,想不想看看多媒体是怎么验证我们的合作成果呢?

  生;想!

  师;怎么样?看了之后有何感受?

  生:好看!证明了我们的研究成果......

  三、分层优化,升华重点

  1、形成性练习(填空)

《面积》教学设计12

  一、教学目标:

  1、体会某些数据改写单位的必要性,能用万、亿为单位改写大数。

  2、体会较大数据的实际意义。

  3、通过学习培养学生的爱国主义思想感情。

  二、教学重点:

  能够熟练地改写多位数。

  三、教学难点:

  能够归纳多位数改写的方法。

  四、教具:

  小黑板、卡片、中国地图、课件

  五、教学过程:

  (一)导入新课

  1、这节课,我们学习新课《国土面积》,请看老师板书课题。

  2、教师出示中国地图,问:谁知道中国的国土面积是多少?生回答。

  老师这里还有我们国家新疆等地的面积数据,出示小黑板:

  新疆唯吾尔自治区土地面积约:1660000平方公里

  西藏自治区土地面积约:1220000平方公里

  黑龙江土地面积约:450000平方公里

  江苏省土地面积约:100000平方公里

  谁来读一读这些数?学生读数。说说读后你有什么感觉?觉得这些数怎么样?

  (二)探究新知

  1、师:我们在收集数据的时候发现,我们的国家的国土面积一些数据是这样显示的960万平方公里,板书。

  仔细观察这两个数是不是相等?读一读。那么这两个数有什么不同呢?后面的一个比前面的少了什么又多了什么?(少了四个0,多了一个万字)

  那么你认为应该怎样把整万的数改写成以万为单位的数呢?(生回答:把整万的数万位后面的四个零去掉,然后再加上一个“万”字。)

  2、下面同学们动笔,把小黑板上的四个数改写成用万作单位的数。

  3、指名汇报师板书,并让学生回答是怎么想的。

  4、完成书上的试一试,指名到黑板上写其他同学在书上写,然后讨论:如何把整万的数改写成用“万”作单位的数。教师注意追问为什么要去掉整万的数末尾的四个零?

  师板书:10000000000让学生想一想怎么把这个数改写成以亿为单位的数?指名到黑板前面写,其余自己在练习本上写。

  5、同学们,刚才我们学习了整万的数和整亿的数的改写,说一说,该如何改写?

  书中还告诉我们一个有关国土面积的.小知识,谁来读一读?

  学生读书,教师问:读了这个资料,你有什么感受?教师适当地对学生进行爱国主义教育。

  (三)拓展练习

  1、昨天老师让大家回去查资料,了解我国西部的12个省市自治区,谁查到了?说一说。

  2、我国西部地区有丰富的土地资源,是我国21世纪重点开发的区域,下面我们就一起来看一下全国西部地区土地情况表。

  学生看表读出表上的数据。

  动笔将这些数据改写成以万为单位的数。然后互相交流。

  3、老师还收集了这12个省市自治区的土地面积情况,大家想不想知道?

  师出示12个省市自治区的面积数据卡片,学生读出来,然后把它们改写成以万为单位的数。比较一下哪一个省份的面积最大?哪一个地区的面积最小?

  4、同学们收集生活中的大数了吗?,在小组中交流一下,把这些数改写成以万或者亿为单位的数。

  (四)总结:这节课你学会了什么?有什么收获?

《面积》教学设计13

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的'半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

  (2)半径为2厘米的圆的周长与面积相等。()

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

《面积》教学设计14

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2.培养学生观察能力、动手操作能力和类推迁移的能力.

  3.培养学生勤于思考,积极探索的学习精神.

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:

  理解三角形面积公式的推导过程.

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

  教学过程

  一、激发

  1.出示平行四边形

  1.5厘米

  2厘米

  提问:

  (1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底高)

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究三角形的面积(板书)

  二、指导探索

  (一)推导三角形面积计算公式.

  1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.

  2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  3.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

  4.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  5.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  6.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  7、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

  ③这个平行四边形的底等于三角形的底。(同时板书)

  ④这个平行四边形的'高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)

  板书:三角形面积=底高2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  (二)教学例1

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  三、质疑调节

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  四、反馈练习

  (一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.

  (二)计算下面每个三角形的面积.

  1.底是4.2米,高是2米;

  2.底是3分米,高是1.3分米;

  3.底是1.8米,高是.1.2米;

  (三) 判断

  1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

  ??2、等底等高的两个三角形,面积一定相等。 ( )?

  ? 3、两个三角形一定可以拼成一个平行四边形。 ( )?

  ? 4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

  五、作业:85页做一做和练习十六1题

《面积》教学设计15

  设计说明

  本节课是在学生学习了圆的面积的基础上进行教学的,主要教学圆环的面积及应用。在教学设计上重点关注以下几个方面:

  1.重视情境的引入,突出主题。

  捷克教育家夸美纽斯曾说:“一切知识都是从感官开始的。”它反映了教学过程中学生认识规律的一个重要方面:直观可以使抽象的知识具体化、形象化,有助于学生感性认识的形成,并促进理性认识的发展。认识圆环是圆的面积知识的综合运用,在上课伊始,引导学生欣赏生活中常见的圆环状的物体图片,使学生对圆环有感性的`认识,从直观上感知圆环的特征,为后面学习圆环的面积奠定了坚实的基础。

  2.重视操作感受。

  小学生学习数学是与具体实践活动分不开的,重视动手操作是发展学生思维,培养数学能力和实践能力最有效的途径。因此,本设计引导学生在动手操作中剪出圆环,使学生不但对圆环有鲜明的认识,而且能深刻地理解圆环面积与内、外圆面积之间的关系,进而使学生顺利推导出圆环的面积公式。

  课前准备

  教师准备PPT课件、圆规、光盘

  学生准备剪刀、直尺、圆规、每人一张硬纸板

  教学过程

  ⊙创设情境,认识圆环

  1.师:我们来欣赏一组美丽的图片。

  课件出示圆形花坛、圆形水池外的环形甬路,奥运五环标志,光盘……

  2.同学们,你们从图中发现了什么?(它们都是环形的)

  3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

  你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的乐趣?

  (学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

  4.导入新课:这节课我们一起来学习有关圆环的知识。(板书课题:圆环的面积)

  设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习圆环的面积奠定基础。

  ⊙探索交流,解决问题

  1.画一画,剪一剪,发现环形的特点。

  (1)画一画。

  让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

  (学生按照要求画圆)

【《面积》教学设计】相关文章:

《圆的面积》教学设计02-07

梯形的面积教学设计03-03

圆的面积教学设计04-04

《面积和面积单位》教学设计范文03-24

《认识面积》教学设计范文05-18

圆的面积教学设计范文05-19

梯形面积的计算教学设计03-23

《梯形的面积》的教学设计及反思04-13

关于《面积的认识》教学设计03-23