圆的周长教学设计

时间:2023-04-20 12:25:04 艳盈 教学资源 投诉 投稿

圆的周长教学设计(通用21篇)

  作为一位无私奉献的人民教师,可能需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。那么问题来了,教学设计应该怎么写?下面是小编收集整理的圆的周长教学设计,欢迎阅读与收藏。

圆的周长教学设计(通用21篇)

  圆的周长教学设计 1

  各位领导、评委大家上午好!我今天说课的题目是《圆的周长》

  一、教材分析

  1、教学内容

  这节课是人教版小学六年级数学第四单元《圆的周长》

  2、教材所处的地位

  这节课是建立在求长方形、正方形的周长知识为学习基础的、是前面学习“认识圆的”进一步深化。为今后进一步学习圆的有关知识奠定基础,是相当重要的学习内容。

  3、教学目标

  (1)知识目标:让学生了解圆周率的定义。

  (2)能力目标:让学生动手操作,利用绳测法、滚动法认识圆的周长并掌握圆周长的计算公式。

  (3)德育目标:通过对学习向学生渗透爱国主义教育。

  4、重点难点

  重点:掌握圆周长的计算公式

  难点:圆周长公式的推导

  二、学情分析

  这节课的授课对象是小学高年级的学生,作为小学高年级的学生,他们已经有了一些生活实践的经验积累了一些教学知识。基本具备了分析问题、归纳问题、概括问题的能力。因此让他们在自主快乐的情境中学习。是他们感受到学习不是枯燥乏味的',而是一件快乐有趣的事情,从而乐意去学。

  三、说教法学法

  现代教育是以人为本的教育,小学数学新课标规定应着重培养学生的探索意识、探索能力、探索思维,拓展探索思维的空间。改变以前机械说教,沉闷程式化的教学设计。

  把课堂还给学生,充分发挥学生的主动性。因此,我采用的是洋思教学模式,即“先学后教、当堂训练”,在我的课堂上,学生结合自学指导,认真阅读教材,通过自主探究、合作交流、讨论来掌握新知。既培养了学生的探索意识,又让学生在课堂互动的快乐氛围接受新知。

  四、说教学过程

  我是按以下四个层次设计教学过程的:

  1、复习旧知识、导入新课

  (1)让学生找出图中直径和半径,并说出什么是圆的直径和圆的半径?直径和半径的长度有什么关系?

  (2)什么是长方形的周长?什么是正方形的周长?

  通过对就知识的复习为新授内容做了准备和铺垫。

  2、出示自学指导、指导学生认真阅读教材,掌握本节课的知识。

  自学提示:

  (1)课本63页向我们介绍了两种测量圆周长的方法,一种是滚动测量法,另一种是绳测法,拿出个小组准备的直径是10cm、15cm、20cm的圆。完成下列表格:

  周长直径周长/直径(保留两位小数)

  (2)探究圆的定义?直径不同的圆,周长与直径的比值一样吗?这个比值叫做什么?用哪一个字母表示?读作什么?在通常计算时∏值取多少?圆周率是哪个国家的数学家谁最早提出的?

  (3)根据被除数=除数X商,如果用字母C表示周长,d表示圆的直径,圆周长的计算公式怎样表示?

  3、当堂训练、检查自学效果

  1.求下面各圆的周长

  2.一个喷水池直径是5m,他的周长是多少米?

  4、订正学生做题过程中出现的错误(后教)

  学生在求圆的周长时,不能正确的应用公式,这时我会告诉学生,已知半径求圆的周长用C=2∏r,已知直径求圆的周长,用C=∏d。

  五、本课小结

  闭上眼睛想一想,通过本课的学习你有哪些收获?学生在回忆梳理的过程中再现了本课的知识点。

  六、课堂作业、当堂批改(不少于10分钟)

  1、用C表示圆的周长,d表示圆的直径,r表示圆的半径,圆的周长计算公式可写作()或()。

  2、求下面各圆的周长

  3、完成下列表格

  半径rcm直径dcmCcm

  4

  1.2

  12.56

  4、已知圆的直径是20m求圆的面积?

  附板书设计:

  圆的周长

  1、圆的周长的定义

  2、圆周率的定义即表示方法

  3、圆周长的计算公式C=∏d或C=2∏r

  圆的周长教学设计 2

  一、教学目标

  (一)知识与技能

  理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。

  (二)过程与方法

  经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。

  (三)情感态度和价值观

  通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  二、教学重难点

  教学重点:理解和掌握圆的周长的计算方法。

  教学难点:圆周率的探究。

  三、教学准备

  多媒体课件。

  四、教学过程

  (一)创设情境,引发思考

  1.情境导入,揭示课题。

  教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)

  学生:给它加一个箍。

  教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?

  教师:求铁皮的长度,就是求圆的什么?

  学生:求铁皮的长度,也就是求圆的周长。

  教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)

  学生:圆一周的长度叫圆的周长。

  教师:圆的周长与我们之前学习过的图形的周长有什么区别?

  学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。

  2.合理猜想,确定方向。

  教师:圆的周长与圆的什么有关?

  学生:直径、半径。

  教师:圆的周长是直径的几倍?

  学生:……

  教师:怎么验证你的猜测呢?

  学生:量一量,算一算。

  【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。

  (二)设计方案,展开探究

  1.探讨设计方案。

  (1)如何化曲为直?

  教师:圆是曲线图形,尺子是直的,怎么办?

  学生:滚一滚,绕一绕……

  (2)如何减少误差?

  教师:测量结果可能不准确,有什么办法尽量准确一点呢?

  学生1:多量几次,选出现次数量多的'数据。

  学生2:用计算器计算,提高正确率。

  教师:除不尽怎么办?

  学生1:用分数表示。

  学生2:取近似数。

  教师:一般保留两位小数,比较方便。

  【设计意图】圆与学生以前学习的图形有本质的区别——它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。

  2.操作获取数据。

  小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。

  物品名称

  周长

  直径

  周长与直径的比值

  (三)交流讨论,提升认识

  1.交流质疑。

  (1)小组汇报,教师直接将结果输入电脑。

  【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。

  (2)质疑不同数据。

  教师:为什么测量计算的结果不相同?

  学生1:测量有误差,绳子绕的松紧程度不同。

  学生2:尺子不够精确,不到一毫米只能估计。

  教师:是不是尺子再精确一点,测量结果就准确无误?

  教师:有没有其他的方法?

  教师:有没有唯一的得数?

  【设计意图】讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。

  2.概括小结。

  (1)圆周率的意义及读写。(课件出示内容。)

  任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.1415926535……但在实际应用中常常只取它的近似值,例如≈3.14。

  (2)概括周长计算公式。

  如果用C表示圆的周长,就有C=d或C=2r。

  (四)联系实际,解决问题

  1.例题教学。

  (1)出示教材第64页例1。

  一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?

  (2)学生尝试解答。

  (3)规范书写。

  C=2r

  2×3.14×33=207.24(cm)≈2(m)

  1000÷2=500(圈)

  答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。

  2.巩固练习。

  (1)求下面各圆的周长。

  ①2×3.14×3=18.84(cm);

  ②3.14×6=18.84(cm);

  ③2×3.14×5=31.4(cm)。

  (2)解决问题。

  ①一个圆形喷水池的半径是5 m,它的周长是多少米?

  2×3.14×5=31.4(米)

  答:它的周长是31.4米。

  ②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)

  3.77÷3.14≈1.2(米)

  答:这个圆柱的直径大约是1.2米。

  【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。

  (五)课堂小结,拓展延伸

  1.这节课你有什么收获?说一说圆的周长与直径的关系。

  2.介绍中国古代对圆周率的研究及伟大成就。

  【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。

  圆的周长教学设计 3

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。

  教学具准备:

  多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

  教学过程:

  一、创设情境,提出问题

  1、创设情境。

  这节课,老师要和同学一起探讨一个有趣的数学问题。

  媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

  2、迁移类推。

  引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

  (1)要求唐老鸭所跑的路程实际就是求什么?

  (2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

  (3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

  3、提出问题。

  看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

  梳理筛选形成学习目标:

  ①什么叫做圆的周长?

  ②怎样测量圆的周长?

  ③圆的.周长与什么有关系,有什么关系?

  ④圆的周长怎样计算?

  ⑤圆的周长计算有什么用处?

  设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。

  二、自主参与,探究新知。

  1、实际感知圆的周长。

  让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

  2、明确圆周长的意义。

  引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

  (1)圆的周长是一条什么线?

  (2)这条曲线的长就是什么的长?

  (3)什么叫做圆的周长?

  学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)

  设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。

  圆的周长教学设计 4

  设计理念:

  本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  教学内容:

  《义务教育课程标准实验教科书 数学》人教版六年级上册第89-91页《圆的周长》

  学情与教材分析

  本节课是在学生学习长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识:它们的周长就是围成它一周的长度,这为学生认识、概括、归纳圆的周长提供知识技能基础。在教法上,以“铺垫孕状——新知探究——新知运用”为主线,又在各个环节中设置由浅入深,由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。

  教学目的

  1、理解圆的周长和圆周率的意义,推导圆的周长公式,并能正确计算圆的周长。

  2、通过动手实践,自计探索与合作交流等活动发现和理解圆的周长的计算方法。

  3、在探究中体验成功,增强信心。

  4、结合圆周率的教学,激发学生的爱国热情。

  教学准备

  老师:课件、直尺、纸剪的圆、系有小球的绳子两具啤酒瓶、绳子。

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  教学过程:

  一、创设情境,导入新课

  1、课件播放:机器人轿车和跑车在两个赛道上比赛,轿车沿着正方形路线跑,跑车沿着圆形路线跑。

  2、想一想

  (1)要求轿车所跑的'路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量了它的什么就可以?能说出你的依据吗?

  (2)要求跑车所跑的路程,实际就是求圆的什么呢?板书课题:圆的周长。

  3、从图上可以看出,圆的周长是一条什么线?谁来说说什么圆的周长?

  【设计意图:利用课件演示,引导学生逐步认识圆的周长,归纳圆的周长的意义,突出正方形周长与它的边长的关系,加深学生对圆的周长的理解,为后继教学“圆的周长与直径的关系”作学习策略上的铺垫。】

  二、引导探索,展开新课。

  1、感知、测量:用手摸圆的一周<纸剪的圆>

  (1)师演示用直尺测量圆的周长,你觉得怎样?能不能想出一个好办法来测量圆的的周长呢?

  (2)利用学具操作,用不同方法测量圆的周长。

  (3)想一想:用这些方法测量圆的周长有什么共同特点?

  [设计意图:本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系。”]

  2、合作研究:圆的周长与直径有什么关系?

  (1)猜一猜:(老师拿出一个一端系有小球的绳子,手执另一端并不停地转动形成一个“圆”),你们还能利用刚才的方法测量出这个圆的周长吗?圆的周长可能与它们有关?

  (2)比一比:同桌合作,用绕圆一周的彩带跟学具的圆的直径比一比,看它们有什么关系?

  (3)算一算:小组合作,量出圆的周长和直径,算出圆的周长和直径的比值。

  【学情预设:由于测量有些误差,其结果有所不同,可让学生通过争辩来统一认识】

  (4)、议一议:计算结果有不同,你发现了什么?

  (5)、得出结论:通过以上活动,你发现圆的周长和直径之间有什么关系?

  【设计意图:本设计从学生实际出发,通过量一量、想一想、猜一猜、比一比、算一算、议一议等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的关非纯粹的知识本身,更主要的是态度、思想方法,是一种探究的品质】

  3、认识圆周率

  (1)揭示圆周率的概念

  这个3倍多一些的数,是个固定不变的数,称之为圆周率。圆周率一般用字母∏表示。

  指导读写

  (2)指导阅读第90页方框中的文字,了解让中国人引以为自豪的历史,介绍近代大于圆周率的研究成果。

  4、推导圆的周长的计算方式

  (1)问:已知一个圆的直径,该怎样计算它的周长?板书:C=∏d,学生任意挑选一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?

  (2)问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:C=2∏r

  (3)问:转动木条形成的圆的周长你会求吗?

  (4)小结:要求圆的周长,一般需要知道它的直径或半径。

  【设计意图:本设计通过学习自主的“探究—发现”,进一步理解周长与直径的关系,理解圆周率的意义。通过问题的层层深入,圆的周长公式就推导而出。】

  三、初步运用,巩固新知

  1、辨析、判断

  (1)圆的周长是它直径的3倍多一些 ( )

  (2)圆的周长是它直径的3.14倍 ( )

  (3)圆的周长是它直径的∏倍 ( )

  2、教学例1

  (1)在生读题后,问:求这张圆桌的周长是多少米?实际上是求什么?

  (2)学生尝试,反馈评价。

  3、完成第91页中间的“做一做”。

  【设计意图;通过判断题的判断,加深了学生对圆的周长和直径间关系深刻认识,并有一个正确的认识。对桌面周长的计算,培养了学生对知识运用的能力,了解了数学与生活的联系业务,让学生获得不同程度的成功体验】

  四、全课总结

  1、请学生说说收获。

  2、回放两车比赛的课件;算一算,哪辆车跑的路程长?

  3、生活中的数学

  师演示;把两个啤酒瓶捆扎在一起。啤酒瓶的直径是T厘米,如果只扎一圈,至少要多少厘米绳子?(接头处不算)

  圆的周长教学设计 5

  一,指导思想和理论依据:

  新课程标准:有效的数学学习活动不能简单依靠模仿和记忆,亲身实践,独立探索和合作是学生学习数学的重要途径。数学学习活动应该是一个活泼,积极和丰富的人格过程。

  根据这个概念,在本课设计中,我强调两点,一是让学生主动体验猜测动手操作,练习和演示过程的数学结论;第二是让学生,也是学生的自主空间,自我探索,合作和交流的学习方法在整个教室。

  二,教材与学习分析:

  教科书是在掌握了矩形和正方形圆周的学生的基础上学习的,以及对圆的初步理解。它是学生初步学习曲线图形的基本方法的开始,是学习圆形区域和未来学习圆柱形,锥形等知识的基础。学习分析:虽然学生有计算线图长度的基础,但第一次接触曲线图形,更抽象的概念不容易理解,推导出圆周的计算方法,理解pi的意义有一些困难。

  三,教学目标,关键和难点:

  1,知识和技能:

  学习学生理解圆的周长,掌握圆的圆周的计算,理解pi的含义,并正确应用公式来解决简单的实际问题。

  2,工艺和方法:

  (1)通过组织学生观察和实验活动,指导学生体验猜测归纳,一般学习过程,理解pi。

  (2)体验圆周圆周的发现,探索过程,培养学生分析,抽象,概括和发现法律的能力。

  3,情绪和态度:

  (1)通过学生的动手操作,找到,激发学习兴趣,让学生体验到探索问题的乐趣;

  (2)结合引进pi,使学生受爱国科学精神的教育。

  (3)在解决问题的过程中,增强意识的应用。

  教学重点:

  学生使用实验的手段,通过测量,计算,猜测圆的周长和直径之间的关系,验证过程的理解和掌握圆的计算方法。

  理解pi。

  教学准备:

  ⒈圆形对象实物,课件。

  ⒉每个学生准备三种不同尺寸的光盘,一条线,一条尺。

  四,教学方法:

  1,独立探索法。通过实践学生的.实践,找到长途的测量学生,培养学生动手操作的能力,激活学生思维。

  2,合作交流法。合作沟通是学生学习数学的主要方式。通过学生的团结合作,自我探索,讨论交流,培养学生团结合作精神,激发学生对学习兴趣。

  五,主要教学环节和设计:

  通过以下链接教授本课:

  一,创造形势,初步认识

  二,合作交流,探索新知识

  三,实际应用,解决问题四,谈论收获,课外推广

  六,教学过程:

  第一个链接:创建情境,初步感觉的分裂:

  哪些学生会骑自行车?当骑车时,车轮向前滚动一周,他们旅行多长时间?如何计算?(课件用于显示滚动向前滚动视频的滚轮。)要求圆形周长的距离有多长。

  老师:了解如何计算今天的圆周长。

  这部分的设计目的:从熟悉自行车的学生开始,让学生感觉到车轮滚动周是圆周的圆周,刺激学生学习新的兴趣。

  第二环节:合作交流,探究新知识

  (A)通过以下活动直观地感知圆的周长,帮助学生了解圆的周长。

  1,请指出老师在圆形物体的手中。准备一些硬币,杯子,让学生在圆圈上滑动触摸等方式来理解和了解圆周的圆周。

  2,分析矩形,正方形和圆周的圆是否不同?

  3,指的是手指,他们自己手在圆片的圆周上的描述。

  设计意图:让学生双手触摸,圆周的初始感知是一周的周长。而且还增强了知觉知识的周边,并使图像理解周围的意义。

  (B)探讨计算方法的周长

  圆周计算公式中扣除这个内容,我安排了三个链接:

  1,揭示矛盾,导致探索新知识的愿望。要求学生考虑我们的手,有什么办法来衡量他们的周长吗?

  预设几种情况:

  (1)滚动用绳子包起圆圈并拉直;

  (2)折叠圆纸几次,然后测量计算;

  总结:以上几方法律是改变歌曲是直的。

  课件展示地球图片。

  如果你想计算地球赤道周的长度,用绕组法,滚动法显然不能测量怎么办?我们需要探索圆周的一般方法。

  设计意图:这个过程允许学生理解绕组,滚动方式有限,触发其计算公式的探索计算的热情和必要性,以便进一步研究问题床面的计算周长。这种矛盾,更多的是刺激学生的好奇心。

  2,实验操作,探究圆周的计算方法在本文的内容中,为了探究pi,理解pi是本课的难点,所以我设计学生进行子组合作,通过猜测总结结论要做。

  (1)猜想,目的是让学生了解圆周和直径之间的关系,着重解决圆周和什么相关问题。

  老师:圆的圆周是否与它相关?

  圆的圆周与其直径有关。圆直径长,圆周大;直径短,周长长。

  (2)实验验证,目的是让学生找到圆周和直径之间的固定倍数关系,着重解决圆周和直线什么样的物理关系问题。

  老师:我们知道方形周长是4倍,那么圆的圆周是直径的几倍?我们可以找到一般的方法来找到一个圆周像一个正方形的圆周吗?

  请分组学生做一个小实验,请使用工具的手,用你最喜欢的方式验证圆周长和直径的多重关系,记录在窗体中。请按照我们小组使用什么方法,过程如何?的顺序报告实验。

  面板报告:

  健康:我们测量的第一个圆的直径是10厘米,圆周是31厘米,圆周是直径的3.1倍。第二圆直径为2cm,圆周为6.5cm,圆周为直径的3.25倍。第三圆直径为5.5cm,圆周为16.5cm,圆周为直径的3倍。

  老师:通过计算你发现什么?

  健康:每个圆的圆周是其直径的三倍。

  问题:它不是所有的圆周和它的直径有这种关系吗?

  最后,老师和学生一起总结:圆的任何圆周总是其直径的长度的三倍。

  老师:由于测量错误,导致结果不一样,是正常的。您的研究结果非常接近数学家的结果。谁知道我们称之为这个3倍多?

  健康:

  老师:你对pi有什么认识?

  这是数学家数量的三倍以上,仔细计算后是一个固定数,我们称之为pi的倍数。读为π。发现pi的最杰出贡献者是祖崇志。 Pi是一个无限小的数字,在当今科学技术的飞速发展,计算机已经计算到十亿后的小数点。小学阶段约为3.14。黑板:π≈3.14(课件生成相关信息)

  设计意图:通过学生在小组操作,沟通,观察等活动中,见证了知识的发现,了解目的。一些学生早就知道,pi的知识是在交换教师和学生,反映学生为主体获得的。祖崇志的事迹是爱国主义教育的一个很好的例子。使学生感受到中国深厚的文化,发展学生的情感态度价值观目标。

  (3)得出结论:你知道计算方法的周长吗?

  健康:知道。黑板公式:c =πd,c =2πr

  设计意图:推导公式的圆周,解决圆周的问题,圆周的计算只是一个问题。

  第三环节:实际应用,解决问题

  这部分是使用我们探讨的结果,也就是使用圆周长公式来解决生活中的实际问题。

  1,解决课堂上提出的问题:车轮向前滚一周,行程多长?这样就结束了回声。

  2,设计三者有一定的实践梯度:

  ①d = 5米,c =?

  ②r= 5cm c =

  ③c = 6.28 m d =

  3,区分对错,下面的语句对吧?

  ①π= 3.14()

  ②大圆的圆周小于小圆的圆周。 ()

  ③圆的圆周是其半径的2π。 ()

  意图:关于pi的设计判断是帮助学生巩固新概念,加深对pi的理解。

  第四个链接:谈论收获,课外推广操作:

  赤道象地球带,长约40,000公里。你知道地球的半径是多少?

  设计意图:在课程结束时,我设置了在室外的延伸的赤道的回声前面。这个设置,课堂教学延伸到课外,提高学生的学习能力。

  你有什么?(引导学生学习内容,学习方法,情感体验等)。

  七,黑板设计:

  圆周

  圆是圆的圆周÷直径= pi C÷d =π3.14×20 = 62.8(英寸)

  C =πdA:车轮向前滚动一周,行驶62.8英寸。

  圆的周长教学设计 6

  一、设计思路

  本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。

  二、教学过程与设计意图

  教学目标:

  1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。

  2、结合教学内容进行爱国主义教育,激发学生民族自豪感。

  3、培养学生大胆猜想、勤于思考、勇于探索的优良品质。

  教学重点:

  掌握理解圆的周长公式推导过程

  教学过程:

  A、创设情境·激疑——提出问题

  (出示摩托车里程表)

  (1)师:这里为什么能反映摩托车行的路程呢?

  (学生思考后师出示有计数器的跳绳作提示)

  (2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。

  (3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。

  (4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。

  (5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?

  设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。

  B、师生共同提出假设

  (1)请学生回忆正方形周长和边长的关系(边长×4)。

  (2)师:能不能求圆周长时也找到这样的倍数关系呢?

  (3)师:测量的圆的什么比较方便呢?生答:半径、直径

  (4)师:请学生先画几条长短不一的线段作直径画圆

  (5)师:观察自己画的圆你发现了什么?

  学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系

  (6)师:你估计周长是直径的几倍?

  学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右

  (7)师:你有办法验证吗?学生讨论

  演示:用绳绕的方法验证(3倍多一点)

  设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。

  C、探索问题解决的方法·发现——构建新知

  (1)师:你还有别的办法研究圆的周长和直径的关系吗?

  (可以用绳绕滚动的办法分别测量一些圆的周长)

  (2)学生在小小组内动手操作、测量进行验证

  直径(厘米)周长(厘米)周长是直径的几倍

  26.23倍多一点

  39.13倍多一点

  412.93倍多一点

  (3)小结

  a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)

  b、结合圆周率进行爱国主义教育

  师生共同推导计算圆的周长公式:(C=лd或C=2лr)

  D、运用新知识解决数学问题

  (1)学生尝试例题求圆的周长

  (2)基本练习(略)

  设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。

  E、评价体验

  (1)师:这节课研究了什么?

  生1:周长和直径的关系

  生2:圆的周长=直径×圆周率,即C=лd或C=2лd

  (2)师:(出示一棵古树图片)你能测量它的直径吗?

  生答:砍下来量一量

  师问:这个方法简单,你们同意吗?学生思考后回答:

  生1:用绳子绕一圈,这就是周长然后用周长除以л就得到直径

  生2:在古树中间钻个小孔,量一量

  生3:用四个木头搭成一个正方形,边长就是直径

  (3)师:你能根据今天所学的知识计算你家到学校大约有多远吗?(用计数器的跳绳作提示)学生讨论后回答:

  生1:量一量车轮的直径算出周长,再数数车轮转动了几圈,算一算就行了。(师提醒:那不是最安全)

  生2:用根长绳让它跟着轮子转

  生3:装一个象跳绳一样的计数器,再算一算。

  师:对!摩托车的里程表就是根据这个原理,它就像一个乘法运算机器,车轮的周长是固定的,转数是变动的,从你家到学校的距离之所以能显示在里程表上,就是车轮周长乘以转动的圈数得到的。

  设计意图:通过学生动手、动脑、动口,自主地探究知识,发现已知直径(半径)求圆周长的方法,并通过一定的基本训练后学生已经形成了一定技能,如何再让这些数学知识回到生活,让学生感到所学的数学知识有用呢?我设计了测量一棵古树的直径和计算你家到学校大约有多远这样两个问题,为学生提供广阔的讨论空间,因为这些问题就在学生的身边,会让学生感到“有想头”、“有意思”,学生也愿意反复讨论这些问题。这样可以点燃学生的创新意识、创造性思维的火花。

  三、实践反思

  1、联系学生生活实际,有利于激发学生学习的兴趣。

  华罗庚指出,对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。本节课一开始出示摩托车的里程表,有计数的跳绳,是学生非常熟悉的,贴近学生生活的实际,体会到“圆的周长”和我们的生活是息息相关,大大调动了学生学习的积极性,并为后面学生解决一些实际问题,培养学生的创新意识埋下伏笔。

  2、让学生带着问题去学习,有利于学生主动探索知识

  美国数学家哈尔莫斯(P.Rhalmos)有句名言:问题是数学的心脏。我国著名教育家顾明远也说过“不会提问的学生不是好学生”,“学问就是要学会问”。但是怎样才能让学生感到有问题呢?教师必须启发学生主动想象,去挖掘去追溯问题的源泉,去建立各种联系和关系,使学生意识到问题的存在。我在本节课先创设一个问题情境,使学生感悟到:必须先要知道圆的周长,而直接测量圆的周长很麻烦,有没有更简单的办法?促使学生去寻找解决问题的'办法,通过“猜想——验证”“探索——发现”圆周长的计算方法后,又提出测量一棵古树的直径你有什么好主意?如果测量你家到学校的距离你有什么办法?这是两个和学生生活紧密结合的问题,学生有感而发的方法有很多,学生的回答应该说是非常精彩的,这既让学生灵活运用了圆周长公式(可以测量周长再计算直径)并呼应了课堂的导入,又激发了学生的学习兴趣,激活了学生的思维,培养了学生的创新意识。其效果真可谓“鱼与熊掌”兼得。

  3、提高应用意识,努力体现课堂教学的开放性。

  生活问题数学化,数学知识生活化,把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,我在本节课的最后部分安排了两个生活问题,并都是“以你……”的语气陈述,努力使学生能身临其境,当解决问题的主人,提高学生的应用意识,由于我们身边的问题答案往往不是唯一的,如计算你家到学校大约有多远?许多同学都想到先数自行车车轮转了多少圈,用周长乘以圈数,对于怎样数车轮有的同学提出直接数,还的同学甚至想到了用一根长绳让它跟着轮子转,看看它转了多少圈(这些都是学生直接的生活经验),也有一些同学提出了在自行车上装一个计数器的办法,不但培养了学生开放型的思维方式,还激发了学生去动动手的愿望。

  4、要讨论和研究的问题

  (1)在用绳绕的方法验证周长是直径的三倍多一点,有没有必要再让学生去实践,通过计算再验证周长和直径的关系?

  (2)如果在发现知识过程中人有一小部分同学得出了方法,教师是想设法再让其他学生继续探究、发现,还是让这些同学代替老师把答案告诉大家呢?

  圆的周长教学设计 7

  教材版本:

  《义务教育课程标准实验教科书 数学》

  教学内容:

  六年级上册第四单元第57页

  教材分析:

  圆的周长是学生在学习直线图形的周长、面积基础上第一次学习曲线图形的周长。教材关于“圆的周长”这一内容,安排在六年级上册第四单元。教材创设了一个“天坛”的简单情景,帮助学生认识圆的周长,并用“绕线”“滚动”等常用方法测量圆的周长,然后安排了探究活动:“圆的周长与什么有关?有什么关系?”通过研究发现圆的周长与直径的关系,从而推导出圆的周长计算公式。

  学情分析:

  学生是学习的主体,是知识建构的主动者。高年级学生能运用已有的知识经验通过顺迁移探索发现新的知识,并运用新知解决实际问题。他们在小组合作的学习环境下,利用自主探索的学习方式,学习的积极性较高,他们善于探索,敢于质疑,敢于创新,敢于发表自己的主张和看法。学生在第一学段已经直观的认识了圆,建立了周长的概念,并会求直线段围成的图形的周长,对圆的周长有丰富的感性经验。在此基础上,通过本节课的学习让学生经历圆周率的产生与形成过程,探究发现圆的周长计算公式,并能利用公式解答实际问题。

  教学目标:

  1、使学生经历圆周率的探究过程,推导出圆周长的计算公式,并能正确地计算圆的周长。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、初步学会通过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学要点分析:

  教学重点:学生已经建立了周长的概念,对圆的周长也积累了丰富的感性经验。因此,关于什么是圆的周长,学生比较容易理解。圆作为一种曲线围成的图形与学生头脑中熟悉的直线段围成的图形差别比较大,因此探究圆的周长计算公式是本节课的教学重点。

  教学难点:在探究圆的周长计算公式时,最有价值的、最具有思维含量的地方是让学生经历圆周率的产生过程,因此本节课充分放手让学生经历圆周率的探究过程,是本节课的教学难点。

  教学过程:

  一、开门见山,揭示课题

  师:大家请看,这是什么图形?(课件出示课本57页天坛情景图)

  生:圆形。

  师:我们已经认识了圆,今天这节课我们一起来学习圆的周长。(板书课题:圆的周长)

  (评析:学生已储备了较丰富的圆形物体的表象,对周长的概念也较容易理解;再者,本节课学生探究的时间较长,四十分钟的课堂学生要经历前人历尽艰辛推导圆周长计算公式的历程;为保证把过程性目标落实到位,在课的起始阶段,开门见山,迅速集中学生的注意力,把他们的思维带进特定的学习情境中。)

  二、探索交流,解决问题

  1、圆的周长含义

  师:请大家想一想,什么是圆的周长?谁能指着圆说一说。

  生:圆一周的长就是圆的周长。

  师:(指圆)我们把围成圆的曲线的长叫做圆的周长。

  2、自主探究求圆的周长的方法

  师:怎样求圆的周长呢?下面我们借助学具圆片来研究。

  大家请看,这是一个圆形纸片,你有办法知道它的周长吗?请小组同学商量好方法后,合作求出每个圆片的周长,并把结果记录在表格中。

  (小组活动,教师巡视。)

  师:哪个小组先来介绍你们的方法?

  生1:我们是用绳子绕圆片一周,然后量出绳子的长度,就得到了圆片的周长。

  师:还有那个小组也用到了这个方法?

  (全体学生都举手)

  师:噢,都用到了,看来是个不错的方法。还有不同的方法吗?

  生2:我们先在圆片上作个记号,然后把圆片沿着直尺滚动一周,就量出了圆片的周长。

  师:这个办法怎么样?

  生:很好。

  师:同学们都是用测量的方法得到了圆片的周长,归纳起来大家用了两种测量方法,一起来看:

  多媒体演示,师生共同描述:可以先在圆片上作个记号,然后把圆片沿直尺滚动一周,就得到了这个圆片的周长。

  还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,也就是圆片的周长。

  师:这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?

  生:直线。

  师:是直直的线段。在数学学习中,我们经常会用到转化的方法。(板书:转化)

  (评析:根据学生的学习经验和已有的知识,引导学生自主探究方法,合作测量圆的周长,既强化了学生对圆的周长意义的理解,又为后面探索圆周率打下基础。在测量交流的过程中,体会了“化曲为直”的数学思想,经历了用数学思想方法解决数学问题的过程,学生思维能力、动手操作能力和合作意识得到培养。)

  师:同学们已经会用测量的方法求圆片的周长,真棒!大家请看,(课件出示)这是北京天坛公园的回音壁(图),它有一道圆形围墙;这是被称为“天津之眼”的摩天轮(图),它的框架也是圆形的,你能用刚才的方法测量出这些圆的周长吗?

  生:不能。

  师:为什么呢?

  生1:我们没有那么长的绳子,更不可能用滚动的方法。

  生2:就算我们有足够长的绳子,可是量起来太困难。

  师:看来用测量的方法也能解决,可是太麻烦,那有没有简便的方法呢?

  生:计算。

  (评析:创设情境,感悟“围”“滚”测量圆的周长的局限性,切实体会计算圆的周长的必要性,使下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。)

  3.探究圆的周长计算公式

  (1)探究发现圆周率的取值范围

  师:怎样计算圆的周长呢?

  师:大家回想一下,以前我们学过长方形、正方形的周长计算,计算长方形的周长需要知道它的长和宽,计算正方形的周长需要知道它的边长,那么大家想一想,计算圆的周长需要知道什么呢?也就是说圆的周长和谁有关呢?

  生:直径和半径。

  师:能说说你的理由吗?

  生:因为圆的直径和半径决定圆的大小。

  师:我们知道圆的直径和半径越长圆越大,那圆的周长就越长,圆的直径和半径越短圆越小,那圆的周长就越短。看来圆的周长和直径或半径的关系确实很密切,那大家来观察,你认为圆的周长与直径会有怎样的关系呢?

  (大多数学生茫然,教师加以引导)

  师:我们知道长方形的周长是它长、宽之和的2倍,正方形的周长是边长的4倍,那么圆的周长和直径是怎样的关系呢?

  生:倍数关系。

  师:请大家观察,你认为圆的周长是直径的几倍?

  生:圆的周长是直径的2倍多。

  师:能说说你是怎样想的?

  师指图继续让生说。

  生:直径把圆平均分成了2份,半个圆周的长比直径长,圆的周长是直径的2倍多。

  师:通过刚才的交流,我们达成共识,圆的周长一定比直径的2倍多,(板书:2倍多)那会比几倍少呢?或者接近几倍呢?

  (评析:借助已有的知识获取新知,是最高的教学技巧所在。当老师提出“怎样计算圆的`周长?”这一问题时,学生感到茫然。老师引导学生回忆长、正方形的周长计算,让学生类比猜想并形成了假设:计算圆的周长需要知道什么?周长和直径有什么关系?沟通了知识间的联系,促成了迁移。)

  生猜并说理由。

  师:看来同学们找不到合理的依据,为了研究方便,老师给每小组提供一个圆形图片,小组同学一起来想一想、画一画、比一比,共同研究这个问题,好吗?

  (老师为每组发一张画有一条直径的圆的图片,各小组进行充分的操作研究,老师参与小组活动。)

  师:我发现每个小组都有自己的想法了,哪个小组先来说一说?

  生1:(拿着自己研究的成果介绍)我们小组又画了一条直径,把圆等分成了四份,发现圆的周长应该是直径的四倍左右。

  生2:我们小组在圆的外面画一个正方形,我们发现正方形的边长和圆的直径相等,正方形的周长是直径的4倍,圆的周长比正方形的周长短,所以圆的周长比直径的4倍少。

  师:同学们真聪明,知道用以前学过的图形帮助研究新问题。圆的周长比直径的2倍多,4倍少,那你想不想知道更接近几倍呢?

  生:想。

  师:大家看,刚才这小组把圆等分成四份,发现圆的周长是直径的4倍左右,我们借助这种思路,再继续等分下去看能发现什么?大家看(多媒体演示:把圆等分六份)现在把圆等分成了几份?

  生:六份

  师:圆周角平均分成了6份,那这一个角是多少度呢?

  生:60度。

  师:这一个三角形是什么三角形?(课件闪烁一个三角形)

  生:等边三角形。

  师:那么这一条边就等于圆的半径,这一段弧和这一条边比,谁长?(课件闪烁一段弧和对应的一条边)

  生:弧长。

  师:也就说这一段弧比圆半径长,那圆的周长比圆半径的几倍多?

  生:6倍多。

  师:比圆直径的几倍多?

  生:3倍多。

  师:圆的周长比直径的3倍多一些,到底是几倍呢?有什么办法知道?

  生:我们可以量出圆的周长和直径,用周长除以直径,算一算。

  (评析:使学生经历知识的产生与形成的过程非常重要,以上外切正方形、分割圆等方法正是阿基米德、刘徽等数学家研究圆周率时所使用的,学生萌生并运用这些方法进行研究,正是我们所追求的“大数学观”。在提出问题—形成假设—猜想推理—形成结论的过程中,学生对知识的理解更加透彻,情感、态度、价值观的培养更加有效。借助课件演示,使学生感受到了极限思想。)

  (2)计算圆周率的近似值

  师:刚才每个小组已经测量出几个圆片的周长,下面请各小组再拿出表格,找到每个圆的直径,填在第三栏,并用计算器算出周长除以直径的商,把结果记录在表格第四栏中,除不尽的得数保留两位小数。

  (小组活动,教师巡视。)

  (各小组完成后,老师把各组的表格依次放在展台上。)

  师:我们测量的圆的直径都不一样,周长也不一样,请同学们来观察这些周长除以直径的商,你又有什么发现?

  生:都比3大。

  生:圆的周长除以直径的商都是3点几。

  生:都在3.2左右。(板书:3.2倍左右)

  师:也就是说圆的周长总是直径的3倍多一些,这也证明我们刚才推理的结果是正确的,其实,在古今中外,有许多数学家研究过这个问题,他们经过大量的实验,已经证明圆的周长除以直径的商是一个固定的无限不循环小数,它是3.1415926……,我们把它叫做圆周率,(板书:圆周率)用一个希腊字母π来表示。(板书:π)。

  师:一起读。(板书pài)

  师:我们看,刚才同学们计算的圆的周长除以直径的商为什么都不是固定的数呢?

  生:测量不准确,有误差。

  师:很会分析问题。我们计算的商都不一样,是因为测量有误差造成的。只要测量方法正确,测量过程仔细,是可以减小误差的。

  (3)介绍圆周率的历史

  师:有关圆周率的历史,你想了解一下吗?

  (多媒体演示,教师介绍。)

  师:在我国,有关圆周率的最早记载是20xx多年前的周髀算经,当时的解决方案是测量,人们发现圆的周长总是直径的3倍多。和我们刚才测量计算的结果是一样的。

  魏晋时期伟大的数学家刘徽首先采用“割圆术”得出了较精确的圆周率的值。我们刚才把圆周等分成了2份,发现圆的周长是直径的2倍多,等分成4份,发现周长是直径的4倍左右,等分成6份,发现周长比直径的3倍多一些,刘徽一直把圆等分成192份,得到了圆周率的近似值3.14。

  继刘徽之后,我国南北朝时期有一位伟大的数学家和天文学家,他继续研究圆周率,并做出了杰出的贡献,你知道他是谁吗?

  生:祖冲之。

  师:对,祖冲之。他计算出π的值在3.1415926和3.1415927之间,是世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。你有什么感想?

  生:祖冲之很伟大。

  师:是啊,我们确实该为我们的祖先能有这样的伟大成就感到骄傲和自豪。

  师:虽然如此,人们对圆周率的研究远没有结束。随着数学技术的发展,现在人们已经用计算机将圆周率计算到小数点后12411亿位。

  师:有关圆周率的历史资料还有很多,有兴趣的同学课下继续搜集、查阅。

  (评析:让学生了解自古以来人类对圆周率的研究历程,领略与计算圆周率有关的方法,从而了解数学的悠久历史和人类对数学知识的不断探索过程,感受数学的魅力,激发研究数学的兴趣。同时,结合刘徽、祖冲之研究圆周率取得的伟大成就,激发学生的民族自豪感。)

  (4)推导圆周长的计算公式

  师:现在我们知道了圆的周长总是直径的π倍。π是一个固定的数,知道了直径,怎样计算圆的周长。

  生:圆的周长等于圆周率乘直径。

  师:如果用字母C表示,那么C=?

  (板书:C=πd)

  师:知道了圆的直径,你会计算圆的周长,知道了圆的半径,怎样计算圆的周长?

  (板书:C=2πr)

  师:要计算圆的周长,只要知道什么就可以了?

  生:直径或半径。

  师:由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:3.14)

  (评析:通过前面的探究,学生明确了圆的周长与直径的关系,进而引导学生推导圆的周长计算公式,水到渠成,深化了学生的思维。)

  三、实践应用,内化提高

  师:现在老师告诉你天坛回音壁的圆形围墙的直径是65米,这个摩天轮的圆形框架的半径是55米,现在你能求出它们的周长吗?

  (学生独立尝试,教师巡视。)

  师:谁来介绍你的计算方法?

  生读题,集体订正。

  (评析:利用探究得出的公式解决前面提出的实际问题,使学生体会到计算公式的简洁、实用,培养了学生解决问题的能力。)

  四、回顾整理,反思提升

  师:今天这节课你有什么收获?

  生1:我学会了计算圆的周长。

  生2:我了解了圆周率的历史。

  师:这些都是大家知识上的收获,我们在获取这些知识时,通过观察圆的图形,做辅助线、等分圆等方法,首先确定了圆周率的取值范围,又通过测量计算找到了圆周率的近似值,我们还自己推导出了圆周长的计算公式,同学们真是太棒了。

  (评析:数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后,不仅引导学生回顾了本节课学到的知识,还与学生一起回顾了解决问题的策略、方法,并对学生所做出的成绩给予情感上的激励。)

  创新特色:

  1、把基本活动经验和基本数学思想方法纳入本节课的重要教学目标。

  数学教学不仅要重视“双基”,即基础知识和基本技能,而且要重视获得适应社会生活和进一步发展所必须的数学基本思想和基本活动经验。圆的周长这节课的设计充分体现了这一理念。本节课设计了三次探究活动。第一次探究,在“怎样求圆形纸片的周长?”这一问题的引领下,让学生利用手中的学具自主探究方法,学生根据已有的知识经验,联想到“用线围”和“在直尺上滚”的测量方法。然后教师用问题“这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?”启发学生体会“化曲为直”的数学思想。第二次探究,学生已观察得出圆的周长是它直径的2倍多之后,启动问题“那会比几倍少或接近几倍呢?”学生独立思考却找不到合理的依据,感到困惑的时候,老师为每小组提供一个圆的图片,让各小组发挥集体的智慧,共同研究。第三次探究,学生已经通过观察、讨论等方法发现了圆的周长比直径的3倍多,4倍少,老师再问“那究竟是几倍呢?用什么方法才能知道?”启发学生想到计算的方法,然后请各小组在前面测量的基础上,算出圆的周长除以直径的商并观察有什么发现,得到圆周率的近似值,同时也验证了前面的推理。在三次探究活动中,学生利用已有的知识经验,基于对知识探求的欲望,主动进行操作、猜想、验证、思考与交流,经历了知识的产生与形成的过程,积累了解决数学问题的经验,获得了解决数学问题的方法。

  2、促进知识的迁移

  “为迁移而教”。迁移的前提是知识间存在着联系,我们要善于研究知识间的联系,促进知识的迁移,使原有的知识同化新知识。圆的周长与长、正方形的周长计算存在着联系,计算都需要一定的条件,周长与条件之间都存在倍数关系。本节课在设计时,采取了并列结合的学习方式,步步深入,使学生借助已有的知识经验,探求新的知识。

  3、把数学教学看作一个整体。

  本节课增加了学生猜想计算圆的周长需要什么条件,及探究圆的周长与直径倍数的取值范围,探究占用了较多的时间。四十分钟的课堂,要做到面面俱到是很困难的,让学生经历探究圆周率的过程,推导出圆的周长计算公式,这对学生来说是个了不起的收获。本节课把“使学生经历圆周率的探究过程,推导出圆周长的计算公式,”作为主要目标,因此压缩了练习的时间,把练习放在下一节,让练习课成为新授课的延伸。

  3、充实、完善了教学目标。

  把数学看作大数学,本节课的教学,学生不是在别人提示下通过测量计算得到的圆周率,而是引导学生借助已有的知识经验,调动学生的智慧,使学生经历前人研究圆周率的过程、所运用的方法,培养了学生的研究意识、探究能力以及数学学习的情感,而这一切,比单纯获得一个公式更为重要。因此本节课的教学目标中我们增加了“使学生经历圆周率的产生与形成过程”这一重要内容。

  圆的周长教学设计 8

  教学内容:

  圆的周长

  内容分析 :

  通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。

  学生起点 :

  对圆和周长的概念已有初步的认识

  教学目标:

  1、理解圆周长的概念,理解圆周率的意义。

  2、使学生掌握圆周长的计算公式及公式的推导过程。

  3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。

  4、结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。

  教学重点 :

  圆周长公式的推导。

  教学准备 :

  直尺; 两个有厚度、标明直径、不同规格的圆片;棉线。

  教学流程:

  一、复习引入

  1、学生说圆的认识;

  (你对圆的知识有哪些了解)

  2、揭示课题:

  今天我们要一起来学习圆的周长。(板书:圆的周长)

  二、新授

  1.认识圆的周长;

  (1)师拿出圆片让学生指出圆的周长;

  (哪一部分是圆的周长)

  (2)描出两个规格不同的圆的周长;感受圆的周长;

  (请你描出练习纸上两个圆的周长。)

  (哪一个周长长?)

  (3)揭示圆周长的概念;

  (用自己的话说说什么是圆的周长)

  师小结:围成圆的曲线的'长叫做圆的周长;

  围成圆的一周的长叫做圆的周长。(幻灯出示)

  2、理解、运用圆周长的测量方法。

  师问:圆的周长长短不一,该怎么测量?

  生边演示测量圆片周长,边介绍绳测法。

  要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。

  学生汇报测量结果,师记录。

  圆片测量记录单:

  3.探究圆的周长与直径的关系。

  (1)猜测跟圆周长相关的量;

  (猜测一下,圆的周长长短跟什么量有关?)

  计算记录单中周长与直径的比值,得数保留两位小数;

  学生反馈比值;

  周长(厘米)

  直径(厘米)

  周长与直径的比值(得数保留两位)

  (2)认识圆周率

  ①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。

  (板书:圆周率 π )

  ②幻灯片展示圆周率的由来,学生自主阅读;

  总结圆周长的计算公式。

  ①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?

  提示:从测量记录单中找取。

  ②如果周长用C表示,字母式是怎样的?

  ③周长跟半径又是怎样的关系呢?字母式呢?

  (板书:圆周长=圆周率×直径 C=πd 或

  圆周长=2×圆周率×半径 C=2πr

  三、巩固练习

  基本练习

  一个圆的直径是10米,它的周长是多少? 一个圆的半径是10米,它的周长是多少? 判断。

  只要知道圆的直径或半径就可以计算圆的周长。( ) 大圆的圆周率大,小圆的圆周率小。 ( ) 圆周率的值就是3.14. ( ) 4圆的周长是直径的 倍。 ( ) 能力拼比:

  两个小朋友同时同速从A点到B点,谁先到达?

  B

  A

  四、总结:

  学习了这堂课你有哪些收获?

  圆的周长教学设计 9

  教学目标:

  1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

  2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

  3.初步学会通过现象看本质的辨证思想方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  教学重点

  正确计算圆的周长。

  教学难点

  理解圆周率的意义,推导圆周长的计算公式。

  教具准

  多媒体课件三套、系绳的小球。

  学具准备:

  塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。

  教学过程:

  一、以旧引新,导入新课

  1.复习长方形、正方形的周长。

  我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?

  2.揭示圆的周长。

  (1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。

  (2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?

  二、动手操作,引导探索

  1.测量圆周长的方法。

  (1)提问:你知道了什么是圆的周长,还想知道什么?

  我们先研究怎样测量圆的周长,请同学们分组讨论一下。

  把你们讨论的结果向大家汇报一下?学生边回答边演示。

  (2)教师甩动绳子系的小球,形成一个圆。

  提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?

  2.认识圆周率。

  (1)探讨圆的周长与直径的关系。

  ①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。

  请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?

  课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)

  提问:你们是怎么看出来的圆周长跟直径有关系?

  ②学生测量圆周长,并计算周长和直径的比值。

  圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。

  生测量、计算、填表。在黑板上出示一组结果。

  请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

  ③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)

  这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)

  (2)揭示圆周率的概念。

  通过以上的观察你发现了什么?

  任何圆的周长总是直径的3倍多一些。

  那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)

  (3)了解让中国人引以为自豪的圆周率的历史。

  关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?

  很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的`小数点后面上亿位。π=3.141592653……

  3.推导圆周长的计算公式。

  根据刚才的探索,你能总结出圆周长的计算公式吗?

  学生推导圆周长计算公式:c=πd;c=2πr。

  要求圆的周长,你必须知道什么?(直径或半径)

  4.运用公式计算。

  (1)求下面各圆的周长,只列式不计算。

  课件演示:由第一个圆逐渐变大,分别出示第二个、第三个,提问:怎样求这个圆的周长?(生答需测量出这个圆的直径或半径,师给出直径0.8分米,学生计算它的周长。)

  (2)出示例1。

  ①在学生读题后提问:求这张圆桌面的周长是多少米,实际上就是求什么?计算这道题应注意什么?

  ②学生尝试练习,反馈评价。

  ③提问:如果告诉你的不是这张圆桌面的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成第112页“做一做”。

  (4)看书质疑。

  三、运用新知,解决问题

  1.下面的说法对吗?并说明理由。

  (1)圆的周长是它直径的π倍。()

  (2)大圆的圆周率大于小圆的圆周率。()

  (3)π=3.14()

  2.测量一圆形实物直径,计算它的周长。

  3.有一奶牛场准备用粗铁丝围成一个半径是12米的圆形牛栏(如图),请同学们帮忙算一算,至少需要买多少铁丝才能把牛栏围3圈?(接头处忽略不计。)

  四、总结全课,储存新知。

  这节课你自己运用了哪些学习方法,学到了哪些知识?

  五、思考题。

  课件演示:大圆的周长和两个小圆的周长之和同样长吗?

  圆的周长教学设计 10

  教学内容:

  小学数学实验教材十一册第107~108页“圆的周长”

  教学目标:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2、培养学生的观察、比较、分析、综合及动手操作能力;

  3、领会事物之间是联系和发展的辨证唯物主义观念以及通过现象看本质的辨证思维方法;

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:

  推导并总结出圆周长的计算公式。

  教学难点:

  深入理解圆周率的意义。

  教学准备:

  电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,以及直尺、绸带,测量结果记录表,计算器,投影资料等

  教学过程:

  一、创设情境,引起猜想:

  (一)激发兴趣

  播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1、回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2、认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  [评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿

  (三)讨论正方形周长与其边长的关系

  1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  2、怎样才能知道这个正方形的周长?说说你是怎么想的?

  3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  [评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

  (四)讨论圆周长的测量方法

  1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  2、反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (4)初步明确运用各种方法进行测量时应该注意的问题。

  3、小结各种测量方法:(板书)转化

  曲直

  4、创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  5、明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

  [评析]教师引导学生结合具体实物想到采用不同的方法进行测量,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的.前提下,有效地培养了学生思维的创造性。

  (五)合理猜想,强化主体:

  1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩

  2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

  向大家说一说你是怎么想的。

  3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  4、小结并继续设疑:

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  [评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。

  二、实际动手,发现规律:

  (一)分组合作测算

  1、明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

  提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

  测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。

  (二)发现规律,初步认识圆周率

  1、看了几组同学的测算结果,你有什么发现?

  2、虽然倍数不大一样,但周长大多是直径的几倍?

  3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)

  板书:圆的周长总是直径的三倍多一些。

  (三)介绍祖冲之,认识圆周率

  1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

  3、这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4、理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  5、解答开始的问题

  现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

  (四)总结圆周长的计算公式

  1、如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长=直径×圆周率

  C=πd

  2、如果知道圆的半径,又该怎样计算圆的周长呢

  板书:C=2πr

  追问:那也就是说,圆的周长总是半径的多少倍

  [评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

  三、引导质疑,深入领会(略)

  四、巩固练习,形成能力

  1、判断并说明理由:π=3.14()

  2、选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

  a、大圆的圆周率大于小圆的圆周率;

  b、大圆的圆周率小于小圆的圆周率;

  c、大圆的圆周率等于小圆的圆周率。

  3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  五、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  [评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

  六、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆绕8字跑,谁跑的路程近

  [总评]

  纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。

  圆的周长教学设计 11

  【教学目标】

  1、让学生知道什么是圆的周长。

  2、理解并掌握圆周率的意义和近似值。

  3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  4、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  5、培养学生的观察、比较、分析、综合及动手操作能力。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备图片。

  【教学过程】

  一、问题导入

  同学们喜欢运动么?小明也是一个爱运动的孩子,他每天都会去公园绕花坛骑行几圈。同学们想知道小明骑行一圈有多远么?我们先来看一下花坛是什么形状的?(学生回答:圆形)对,是圆形。我们要想知道小明骑行一圈有多远,就必须知道圆的周长,这节课我们就来研究圆的周长。

  二、探究新知

  看到今天的学习内容,同学们都有哪些疑问呢?(学生回答:什么是圆的周长?如何测量圆的周长?圆的'周长和什么有关?)

  同学们提的问题可真棒,这些都是研究圆的周长要解决的问题,我们先来探讨一下什么是圆的周长。

  请看大屏幕,这里有一个圆,那位同学能上台指一指它的周长呢?(学生指)同学们同意他的看法么?哪位同学能用自己的话定义一下圆的周长?(学生答,老师及时补充纠正,得出圆的周长的定义)。----围成圆的曲线的长叫圆的周长。请同学们把圆的周长的概念默记两遍吧。

  请同学们拿出你手边的圆,同桌互相指一指它的周长吧。

  三、合作探究

  老师看到同学们做的都很棒。既然我们已经知道什么是圆的周长,那么该如何测量圆的周长呢?请同学们四人一小组,利用手边的学具,想办法测一测圆的周长吧!

  好,时间到。老师发现这组同学的方法很好,请你们到前面展示一下吧。(学生展示)你的表达能力可真强呀,请回。(结合课件展示绕线法)请看大屏幕,用一根长线紧贴圆绕一周后,剪去多余部分,把线拉直,线的长就是圆的周长。我们把这种方法叫绕线法,可以化曲为直。

  老师还发现这组同学的方法也很好,请你们也到前面展示一下吧。(学生展示)你的表达的真清楚呀,请回。(结合课件展示绕线法)请看大屏幕,先在圆上确定一点,然后在直尺上滚动一周,圆滚动一周的长就是圆的周长,我们把这种方法叫滚动法。

  四、找出关联

  同学们可真聪明,自己就能想办法测量圆的周长。是不是所有的圆都能用这两种方法测量呢?(学生回答:不能)请看这是什么?(学生回答:摩天轮)对,是摩天轮,摩天轮的周长能用绕线法和滚动法测量么?对,不能,因为摩天轮太大了。那么我们就需要研究出一个求圆周长的一般方法了。

  我们都知道正方形的周长和边长有关,那么请同学们大胆猜一猜,圆的周长和什么有关?(学生回答:直径、半径)同学们猜的有没有道理呢?我们一起来看一下。看来半径越大,圆的周长也就越大。再看这张图,看来直径越大,圆的周长也越来越大。同学们猜得都有道理,下面我们就来找出周长和直径之间的关系吧,同学们有信心么?

  五、合作解疑

  请看大屏幕,(读要求),老师给同学们五分钟时间,请同学们四人一小组,自己动手测量,填一填这张表吧。

  好,时间到,老师看到同学们计算的非常认真,合作的也很默契,下面老师请四位同学来帮我填一填这张表吧。(学生填)

  好,四位同学填了四组数据,请同学们观察这四组数据中周长和直径的比值,你发现了什么?哦,你发现了周长总是直径的3倍多一些,你的观察可真是敏锐呀,凡是算出周长是直径3倍多的同学请举手。这么多呀,看来圆的周长和直径的比值是有规律的。由于我们在测量时存在误差,我们算出的比值也不完全相同。但实际上,圆的周长和直径的比值是一个固定不变的数,这个数叫圆周率,通常用字母∏表示。也就是说周长总是直径的∏倍。

  请同学们跟老师读一读这个字母吧。同学们能用等式表示周长、直径和∏之间的关系么?(学生回答,老师板书)。

  六、知识渗透

  说的真好,那么∏究竟是一个什么样的数呢?这个问题我国古代数学家早就做了研究呢,我们一起看一看吧。(课件展示)我们前人刻苦研究的精神真是值得我们学习呀。看来∏是一个无限不循环小数,但我们在计算时通常保留两位小数,也就是∏≈3.14。

  七、公式推导

  既然“周长÷直径=∏”,那么周长等于什么?(学生回答,老师板书)如果用字母C表示圆的周长,用字母d表示直径,圆的周长该如何用公式表示?(学生答,板书:C=∏d)看来我们知道直径,就可以用公式C=∏d来求圆的周长。如果我们知道半径,能求圆的周长吗?应该用哪个公式来求?(学生答,板书:C=2∏r)回答的真好,你前面的知识学的真扎实。看来我们知道了半径也能求圆的周长。

  请同学们一起读一读这两个公式吧。现在我们只要知道什么就可以求圆的周长了?(学生回答)对,老是重复。下面我们一起来算一算小明绕花坛一周有多远吧。

  八、解决问题

  1、请看第一问,请同学们想一想该如何解答。请问你用的那个公式?很好请坐。

  2、请看第二问,请同学们思考后告诉老师解答方法。(学生回答)

  这位同学思考问题可真细心呀,同学们在计算时也要养成细心的习惯,先看清楚单位是否统一。

  3、我们再来看摩天轮,请同学们思考后在练习本上解答。这位同学算的最快了,你来说答案吧。你用的那个公式?同学们都算对了么?

  圆的周长教学设计 12

  教学目的:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、领会事物之间是联系和发展的辩证唯物主义观念以及通过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:

  1、理解圆周率的意义。

  2、推导并总结出圆的周长的计算公式并能够正确计算。

  教学难点:

  深入理解圆周率的意义。

  教学过程:

  一、复习准备:

  (一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?

  (二)创设情境:龟兔赛跑。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  二、新授教学。

  (一)定义。

  1、小乌龟跑的路程就是正方形的什么?小白兔呢?

  2、什么是圆的周长?请你摸一摸你手中圆的周长。

  3、今天我们就来研究圆的周长。

  (二)推导圆的周长公式。

  1、学生讨论。

  (1)正方形的周长和谁有关系?有什么关系?

  (2)你认为圆的周长和谁有关系?

  2、猜测。

  看图后讨论:圆的周长大约是直径的几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的`2-3倍,那到底是多少倍呢?你有什么好办法吗?

  3、实践操作。

  (1)目的:用不完全归纳法得出圆的周长约是直径的几倍。

  (2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。

  (3)填写表格。

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  (4)汇报小结

  看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?

  (三)认识圆周率、介绍祖冲之。

  1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。

  2、介绍祖冲之。

  (四)总结圆的周长公式。

  1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  教师板书:C=d

  2、圆的周长还可以怎样求?

  教师板书:C=2r

  3、圆的周长分别是直径与半径的几倍?

  (五)课堂反馈。

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  三、巩固练习。

  (一)判断。

  1、=3.14()

  2、计算圆的周长必须知道圆的直径。()

  3、只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1、较大的圆的圆周率()较小的圆的圆周率。

  a大于b小于c等于

  2、半圆的周长()圆周长。

  a大于b小于c等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。

  四、课堂小结:

  通过这堂课的学习,你有什么收获?你还有什么问题吗?

  五、课后作业。

  (一)求下面各圆的周长。

  1、d=2米

  2、d=1.5厘米3.d=4分米

  (二)求下面各圆的周长.

  1、r=6分米

  2、r=1.5厘米

  3、r=3米

  六、板书设计。

  圆的周长

  C=dC=2r

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  圆的周长教学设计 13

  教学目的

  1、理解圆周率的意义。

  2、理解周长的概念,并掌握圆周长的计算公式和推导过程。

  3、能运用公式求圆的周长或直径、半径。

  重点

  圆的周长计算公式的推导,能利用公式正确的计算。

  难点

  深入理解圆周率的意义及圆周长计算公式的推导。

  教具:

  两个大小不同的圆、直尺一把、绳子一根、计算器和表格

  一、复习导入(4分钟)

  (一)出示菜板和圆桌图

  师:

  1、这两个都是什么平面图形

  2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)

  3、还有什么不同?(圆的大小不同,圆的半径不同)

  4、也可以说是圆的直径不同。

  (二)出示图与对话框

  师:

  1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)

  2、问:铁皮的长度实际上就是圆的什么?

  预设:

  1、圆一周额长度(这个长度就是圆的周长)或

  2、圆的周长。

  二、新课教授

  (一)活动一:摸圆的周长(3分钟)

  师:

  1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。

  2、从哪里开始到哪里结束?

  预设:

  1、从这个地方开始,也在这里结束。

  2、小结:起点和终点是同一点。

  3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)

  4、围成圆的一周的曲线的'长是圆的周长。

  (二)活动二:周长的测量(4分钟)

  师:

  1、曲线图形的周长你会测量吗?(不会)

  2、同方谈论一下,你想要怎样测量。

  3、1生说绕绳法。他的方法听懂的举手。

  预设:

  1、听懂人多,师演示一下。

  2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。

  师:

  1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。

  2、教师观察指导。

  (三)汇报演示(4分钟)

  师:

  1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。

  2、这个办法有什么缺点?(不精确会产生误差)

  3、除了这个方法还有没有其他办法?

  预设:

  1、生能主动说出。

  2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)

  3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。

  师:

  1、生自己操作

  2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。

  3、测量中英注意什么?有误差吗?听懂的同学举手。

  4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)

  (四)动图播放绕绳法和滚动法

  1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。

  2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。

  3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)

  4、为什么?(圆的大小或圆的半径、直径不一样)

  三、猜想并探索(15分钟)

  (一)猜想(4分钟)

  1、直径不一样周长就不一样,那周长和直径有什么关系呢?

  2、你想把周长和直径怎样比?(周长除以直径、周长减直径)

  3、可以研究周长和直径吗?(不可以,每依据)

  4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)

  5、用你想用的方法研究一下周长与直径的关系。

  6、生在黑板上记录“周长÷直径”、或“周长减直径”。

  (二)探索(8分钟)

  1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。

  2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。

  3、它叫圆周率,读作π,通常计算式取3.14。

  (三)公式推导(3分钟)

  1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)

  2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?

  3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)

  四、巩固练习(10分钟)

  (一)基础题一道

  (二)能力提升两道

  (三)拓展题一道

  五、课后作业布置

  圆的周长教学设计 14

  教学内容:

  冀教版六年级上册第四单元

  教学目标:

  1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。

  2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。

  3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。

  4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。

  教学重点:

  在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。

  教学难点:

  能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。

  教学流程:

  一、炫我两分钟

  大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的'计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。

  出示口算题目。

  随机评价。

  相信我们都是有智慧有思想的人,我要为你们点赞(动作)。

  二、组内交流,完善梳理

  教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。

  【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】

  三、小组合作交流。

  组内交流尝试小研究。

  出示小组合作交流建议:

  1、组长组织本组成员有序进行交流。

  2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。

  3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。

  4、再次确认发言顺序,准备全班交流。

  【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】

  四、班级交流,提升梳理

  1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。

  2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。

  【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】

  3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。

  师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。

  【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】

  五、应用拓展

  结合练习做相应题目,巩固易错易混知识。

  (一)基础题

  1、判断下面各题是否正确,对的打“√”,错的打“×”。

  (1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )

  (2)半径为2厘米的圆的周长和面积相等。 ( )

  (3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

  2、一个圆的周长是25、12米,它的面积是多少?

  3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?

  (二)拓展提高

  1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?

  2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?

  3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?

  【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】

  六、个人整理

  经过本课时的学习,你有哪些收获呢?

  【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】

  圆的周长教学设计 15

  一、创设情境,导入新课

  1、复习旧知(播放课件)

  师:同学们,你们知道正方形的周长与什么有关吗?(边长)那正方形的周长等于什么?

  2、揭示课题。

  师:现在,老师给你们变个魔术。(演示课件圆)

  师:有的同学反应可真快!什么是圆的周长呢?这也是我们这节课要研究的内容。(板书课题),谁能说一说什么叫圆的周长?有的同学已经举手了。

  生:围成圆的这条线的长就叫做圆的周长,

  师:这条线是什么形状的?

  生:曲线

  师:是曲线,那你能完整地说一遍吗?

  生:围成圆的曲线的长叫圆的周长。(演示课件)

  二、引导探索,探究新知

  1、测量圆的周长的不同方法

  师:老师这里有一个圆,那你们能告诉老师,“圆的周长指的是哪一部分的长”,同桌互相比画一下。

  师:你们能量出圆的周长吗?(能)拿出你们的圆动手量一量,看看哪一组最会动脑筋,测量得又快又好。(学生小组活动)

  师:老师看很多小组已经找到方法了,哪个小组愿意第一个到前面来把你们的方法告诉大家?(学生上台演示讲解)

  师:这种方法还真不错!还有没有不同的方法?(再请一位学生上台)真善于动脑筋!为了大家看的更清楚些,老师把这两种方法重新演示一遍,(演示课件1:球在直尺上滚动一周,直接量出球的周长。演示课件2:线绕圆一周,然后量出线的长度)请同学们看屏幕:

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出所有圆的周长呢?

  生:能!

  (播放课件)转动绑着绳子的小球形成一个圆:能用刚才的方法量出这个圆的周长吗?生:不能!

  师:那我们能找到一种更简便、更科学的办法来解决这个问题吗?

  2、探讨圆的周长与直径的关系

  师:同学们真有信心!我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  师:你觉得是和直径有关系,说说理由好吗?

  师:现在请同学们观察大屏幕,(课件)你发现了什么?

  生:我发现圆的直径越长,它的周长就越长。

  师:观察得真仔细!那到底圆的周长与直径有怎样的关系呢?要解决这个问题,还请同学们继续测量,测量前先听好活动要求。(学生小组活动——测量)

  师:好,现在我们来交流一下你们的实验结果。

  (把学生的实验结果打在课件上)。

  师:大家仔细观察分析,看能发现什么?

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的比值都是三点一几。

  师:这个同学真是好眼力。其他小组还有什么不同的发现吗?

  生:所有圆的周长都是直径的3倍多一些。

  师:看来大家的发现都一样,那我们再来看看这几个圆是不是也有这样的规律?(课件直观展示三倍多一点)看屏幕,注意仔细观察,看能发现什么?

  生:圆不论大小,它的周长都是直径的三倍多一些.。

  3、认识圆周率:

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些.这是个固定不变的数,你们的这个发现和许多大数学家的发现是一样的,人们通常把圆的`周长和直径的这个比值叫做圆周率,用字母π表示。(板书)

  师:好,现在请同学们打开书63页,找出圆周率的概念,全班齐读。

  师:圆的周长和它的直径的比值叫什么?用什么来表示?

  师:老师收集了一些有关圆周率的资料,大家想看吗?看屏幕。(课件)

  师:看了这些资料后,你了解到了什么?

  师:我国古代人民真了不起!我相信:各位同学只要努力学习,将来一定会让我们中国成为世界上最强大的国家!

  4、推导圆的周长的计算公式:

  师:刚才我们用圆的周长除以直径求出了圆周率,那么谁能说一说到底怎样求圆的周长?能得出一个什么样的公式呢?

  板书:C=πd

  师:如果知道半径怎么求周长呢?

  板书:C=2πr

  师:这2个公式都可以来计算圆的周长,要求圆的周长必须知道什么条件?

  生:圆的直径或半径。

  5、现在我们就用我们推导出来的公式来解决问题,请看大屏幕。

  三、初步运用,巩固新知

  1、已知直径、半径求圆的周长

  2、判断

  3、已知周长求直径和半径

  4、提问:小猴甩小球形成的圆的周长你会求吗?(课件)

  四、小结

  1、组织学生说说收获:

  这节课你们学到了什么?

  师:同学们从圆的周长、直径的变化中,看出了圆周率始终不变。如果我们长期坚持这样从变化中看出不变,你们就会变得越来越聪明。

  圆的周长教学设计 16

  教学内容

  苏教版《义务教育课程标准实验教科书数学》五年级(下册)第98~99页例4、例5以及相应的“试一试”“练一练”,练习十八第1~4题。

  教学目标

  1、使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。

  2、使学生在活动中培养初步的动手操作能力和空间观念。

  3、结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。

  教学过程

  一、操作导入

  谈话引入,并指名说说怎样测量圆的直径。

  每个同学拿出事先准备好的三个圆形物体(圆形铁环、一元硬币、塑料胶带或其他任意一个圆)。

  学生独立测量圆的直径,比一比谁量得最精确。

  组织交流。

  [思考:量直径是上一节课的内容。在教学新知之前进行复习,意图有两点:一是因为直径与周长的关系是本节课的主要研究内容,量直径能为研究圆周率和推导圆的周长公式服务;二是让学生练习比较精确地测量直径,为接下来比较精确地测量圆的周长做必要的准备。]

  二、揭示课题

  谈话:今天这节课我们一起来研究圆的周长。(板书课题:圆的周长)

  三、自主探索

  1、出示圆形铁环。

  谈话:这是一个用铁丝围成的圆,谁上来指一指这个圆的周长?(学生指出圆的`周长)同桌讨论一下,什么是圆的周长?(引导学生概括圆的周长的含义)

  提问:你能量出这个铁丝围成的圆的周长吗?

  学生动手尝试测量。(可能会想到把铁丝剪开、拉直,再测量铁丝的长。)

  指名介绍方法,并上台进行测量演示。

  2、出示一元硬币。

  提问:你能测量这枚硬币的周长吗?

  指名说说方法,学生动手测量。

  3、猜测联系。

  提问:对于刚才这几种测量圆周长的方法,你有何评价?

  谈话:回忆一下,我们以前是怎样求长方形、正方形的周长的?

  引导:是啊,用绕线法和滚圆法测量圆的周长比较麻烦,测量的结果也不够准确,我们应该寻找更简便的计算圆周长的方法。那么,圆的周长与它的什么有关系呢?(与直径的长短有关)

  追问:圆的周长与它的直径之间可能有怎样的关系呢?(学生提出各种猜想,也可能会提出圆的周长等于直径的3、14倍)

  谈话:大家能提出不同的猜想,这很好!不过猜想只是猜想,圆的周长与直径到底有什么关系,还需要我们进一步研究与验证。

  4、研究验证。

  出示活动要求:

  (1)每个同学选择一个圆形物体,分别测量它的直径和周长,并计算圆的周长除以直径的商。

  (2)把你们小组测量与计算的结果整理在下面的表格里(表格略)。

  学生活动后,以小组为单位,组织汇报。

  提问:通过对实验结果的分析,你有什么发现?

  小结:其实,圆的周长总是直径的3倍多一些,而且这个倍数是一个固定不变的数。我们把圆的周长除以直径的商称为圆周率。一般情况下,人们用字母π表示圆周率。它是一个无限不循环小数,它的值等于3.1415926……为了计算方便,我们取它的近似值3.14。(板书:圆周率π)

  谈话:关于圆周率还有一段值得我们骄傲的历史呢!请同学们打开书本,读一读第120页下面的“你知道吗”。

  提问:读了这段介绍,你知道了什么,有什么感想?还想知道些什么?

  提问:为什么我们研究的结果和圆周率的实际值有一定的误差?

  [思考:量铁丝围成的圆、一元硬币、塑料胶带等圆形物体的周长,是看似简单、重复的操作,但实际上不断激起了学生思维的浪花。第一次量铁丝围成的圆的周长,几乎所有的学生都能想到将铁丝围成的圆剪开、拉直成一条线段再测量,在操作中充分感受了“化曲为直”的数学思想。量一元硬币的周长,则不能直接剪开、拉直,而必须采用绕线法或滚圆法,这在引导学生灵活解决问题的同时,又使学生感受到实际测量得到周长的方法并不方便,从而产生探究圆周长计算公式的心理需求。在此基础上,再让学生分组自由选择圆形物体测量周长,探究圆的周长和直径的关系,激发了学生参与学习活动的积极性。]

  5、推导公式。

  提问:根据圆周率的意义,怎样求圆的周长?(板书:圆的周长=圆周率×直径)

  提问:如果用C表示圆的周长,怎样用字母表示圆周长的计算公式呢?(板书:C=πd)

  谈话:你能运用圆周长的计算公式解决一些实际问题吗?

  出示“试一试”。

  学生独立解决后,组织反馈。

  四、练习巩固

  1、判断下面的说法是否正确。

  (1)圆周率等于3.14。

  (2)圆的周长总是直径的π倍。

  (3)一个半圆形的周长是这个圆周长的一半。

  学生判断后,让学生说一说自己是怎

  样想的。

  2、一个圆形木桶的外直径是4.8分米,在它的外面加一道铁箍,这道铁箍长多少米?(接头处忽略不计)

  让学生说一说题目的意思,再独立解答。

  3、地球赤道的半径约是6278千米,绕赤道走一圈有多少千米?

  先让学生估计地球赤道的周长,再独立计算。

  五、课堂总结。

  圆的周长教学设计 17

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第11——12页“圆的周长”。

  【教学目标】

  1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

  2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

  3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

  【教学重、难点】

  1、探索发现圆的周长与直径的关系;

  2、运用圆周长的知识解决一些简单的实际问题。

  【教具、学具准备】

  1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

  2、课件1:阿凡提与国王比赛A、B。

  课件2:圆的周长与直径的商的关系。

  课件3:祖冲之有关资料。

  【教学设计】

  一、创设情境

  师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)

  50米

  师:同学们看,比赛开始了——紧张的比赛结束了。今天的比赛谁获胜了?

  生:国王的小花驴获得了胜利

  师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

  师:说说你是怎么想的?

  生:他们的小毛驴跑的路程不是一样长。

  师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

  生:量一量就知道了,

  师:谁能说说正方形的周长和什么有关系,有怎样的关系?

  生:正方形的周长和边长有关系,周长是边长的4倍,

  师:也就是说只要测出正方形的一条边长就可以知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢?

  师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

  得出:围成圆的曲线的长叫圆的周长。

  二、自主合作,探究新知

  (1)发现测量圆的周长的不同方法

  师:下面请同学们把准备的圆拿出来,那“圆的周长指的是哪一部分的长”,同桌互相比画一下。

  师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

  师:把你的好方法在小组内交流一下。

  (上台交流测量的方法)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,

  生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

  生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,

  生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以

  2、就可以求出圆的周长。

  师板:线绕、滚动、拉直化曲为直

  (2)探究发现圆周率和圆的计算公式

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

  生:不行,圆太大了,测量不出来!

  师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

  生:有些圆的周长没办法用绕线和滚动的方法测量出来

  师:那我们能找到一种更简便、更科学的办法来解决这个问题吗?

  师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,

  师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

  生:周长是直径的2倍,生:他们一样长,生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)

  师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

  生:动手量一量,算一算,

  师:说的真好,这可是解决问题的好办法——动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:

  1小组同学作好分工,选好测量员、记录员、汇报员。

  2记录员要及时地把测量员测量的数据记录在书上的表格里。

  3可以用科学计算器帮忙算一算周长和直径的商。

  3、可以用科学计算器帮忙算一算周长和直径的商。

  师:好,现在我们来交流一下你们的实验结果。

  生:实物展台交流。

  师:大家仔细观察分析,看能发现什么?

  圆的周长

  (厘米)

  圆的直径

  (厘米)

  周长与直径的商

  (保留两位小数)

  生:我发现了这三个圆的.大小虽然不一样,但圆的周长和直径的商都是三点几。

  生:所有圆的周长都是直径的3倍多一些,

  师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

  生:圆不论大小,它的周长都是直径的三倍多一些。

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,

  师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母∏表示。(板书:圆的周长÷直径=圆周率)

  师:关于圆周率,大家都知道什么?你说,

  生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,

  师:老师也收集了一些有关的资料,大家想看吗?

  看屏幕,这就是祖冲之,(课件介绍祖冲之)

  师:我们通过圆的周长除以直径得到了“π”也就是圆周率(板书:C÷d=π)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

  生回答、师板书:C÷d=π→C=πd→C÷π=d

  d=2r→C=2πr→C÷2π=r

  三、拓展练习,实践应用

  (1)计算跑道的周长。

  师:(课件显示比赛跑道的有关数据正方形的边长(即圆的直径)50米)现在我们知道了这个圆形跑道的直径,请同学们利用公式快速算一算,这两个跑道的周长是多少?看看国王和阿凡提的比赛到底是不是公平?(学生开始计算,知道比赛不公平)

  (2)判断。

  (3)巩固练习:

  A、1、判断并说明理由:π=3.14()

  2、选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确的是:()

  a、大圆的圆周率大于小圆的圆周率;

  b、大圆的圆周率小于小圆的圆周率;

  c、大圆的圆周率等于小圆的圆周率。

  B、做P12下面T1:填表

  T2:教师指名读题后,可以让学生说一说题中要求的问题实际上是求什么?注意算式与单位。

  四、拓展练习课后延伸

  师:阿凡提看到同学们帮他解决了这个大难题,非常高兴。可是,可恶的国王阴谋没有得逞,心里很不服气,他又冥思苦想出了个新花招,设计出了新型跑道,要和阿凡提再展开一场比赛

  同学们想不想看看新跑道是什么样子

  师:(课件出示新跑道)国王看到阿凡提毫不犹豫的答应了,心里真是乐开了花,心想,阿凡提呀,聪明人也有犯糊涂栽跟头的时候,我绕里面的小圈跑8字,不知要比你外面的大圈近多少路程,这个第一肯定是我的了。

  师:请同学们课后去研究。

  圆的周长教学设计 18

  【教学资料】

  圆周长计算公式的推导,周长计算。(人教版《义务教育课程标准实验教科书·数学》六年级第62~64页的教学资料。)

  【教学目标】

  1.理解圆周率的好处,推导出圆周长的计算公式,并能正确的进行简单的计算。

  2.培养学生的观察、比较、分析、综合及动手操作潜力。

  3.领会事物之间是联系和发展的辩证唯物主义观念以及通过现象看本质的辨证思维方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  【教学重点与难点】

  重点:圆的周长计算公式的推导,能利用公式正确计算圆的周长。

  难点:深入理解圆周率的好处。

  【教材分析】

  “圆的周长”概念的教学,是以长方形,正方形周长知识为认知基础的,是前面学习“圆的认识”的深化,“圆的周长”计算方法的.教学,是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。因此它起着承前启后的作用,是小学几何初步知识教学中的一项重要资料。

  【学情分析】

  学生在学习圆的周长前已经理解了周长的好处,掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,明白半径,直径的关系并且会画圆,能测量出圆的直径。这节课是在这样的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。同时学生对各项动手操作的实践活动十分感兴趣,并且本班大部分学生思维活跃,善于动脑思考,有必须的自主学习潜力,相互探讨学习的风气较浓,对新事物比较感兴趣,平时教学中,经常开展小组合作式的探究学习活动,学生有较强的合作意识。老师只要充分发挥、调动他们的积极性,他们是乐意做课堂的主人的!

  【教学用具准备】

  教师准备:PPT课件、细绳、直尺、绳子系的小球。

  学生准备:圆形物品、圆形橡筋、直径为2、3、5厘米的圆形纸片、直尺、三角板、棉线、软皮尺、剪刀、实验报告单、计算器。

  【设计理念】

  我们的课堂是生活的课堂,生命的课堂。但是,在现实的课堂中“为讨论而讨论”、“为合作而合作”、“为活动而活动”等华而不实虚有其表的教学现象频频出现。细细反思,教学观念与教学行为之间的距离主要涉及到课堂教学的有效性问题。如我在本课设计上力求为学生创设“探究──发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华,从而使小组交流、师生交流、生生交流得以有效进行。我在教学中采取的策略如下:

  1、利用现代教育技术,发挥强大的演示作用。

  《圆的周长》从激趣引入、演示操作、指导探究、练习的出示都充分应用现代教育技术将文字、图形、动画、声音等多种信息加工组成在一起来呈现知识信息的特点,使学生在学习的过程中,充分调动他们的感官,激发他们的学习兴趣,调动他们学习的积极性,同时把知识的构成过程有效的呈现给学生。

  2、在操作中感悟。

  教学过程是教师引导学生把人类的知识成果转为个体认识的过程,是一处“再创造”的过程。在这个过程中,实践操作是最基本、最重要的手段和方法之一。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。

  3、在探究中发现与拓展。

  儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过测量圆的周长、探讨圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。

  总之,课堂应是师生互动、心灵对话的舞台;课堂应是师生共同创造奇迹、唤醒各自沉睡的潜能的时空;课堂应是向在场的每一颗心灵都敞开温情双手的怀抱,平等、民主、安全、愉悦是她最显眼的标志。

  【设计思路】

  从本课教学资料整体看,我的设计思路是下面的图:

  圆周长认识

  圆周长获取

  测量

  圆周率

  圆周长应用

  公式

  计算

  圆的周长教学设计 19

  【教学资料】

  课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习

  【教学目标】

  1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题

  2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。

  3、培养学生创新思维潜力。

  4、通过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。

  【教学重点】

  探索圆的周长公式

  【教学难点】

  对圆周率π的理解

  【学具准备】

  每四个学生一组

  1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个

  2、直尺一把

  3、细绳一条、两根长31.4厘米的细铁丝

  4、实验表格

  5、计算器

  【教具准备】

  实物投影议、电脑

  【教学过程】

  一、设疑导入、培养创新意识

  1、电脑演示:有甲、乙两学生争论。

  甲说:“我脑袋大。”

  乙说:“我脑袋比你在大。”

  师:“如果你是裁判员应如何评判,两人才能都服气?”

  2、学生四人小组讨论

  请学生说一说自己的方法

  甲生:“看谁的脑袋大。”

  师:“如果看不出来怎样办?”

  乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”

  师:“十分好!很有创意。”

  丙生:“用绳绕头一周,测量绳的长度。”

  师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。

  二、动手尝试操作,探求新知

  1、动手尝试操作

  (1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。

  圆的周长c(厘米)

  直径d(厘米)

  周长÷直径(c÷d)

  1

  2

  3

  4

  (2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。

  讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。

  (3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。

  2、探索规律

  (1)师将填好的实验表格在实物投影议上出示。

  学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。

  (2)思想教育

  师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约2000年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。

  教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。

  师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”

  生:“不能”。

  师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”

  (3)推导圆周长公式

  师:“从公式看出,明白什么条件能够求出圆周长?”

  生:“直径、半径。”

  师:“如果圆的周长已知,怎样才能求出圆的`半径或直径?”

  三、圆周长公式的应用(尝试练习)

  1、出示例1

  学生尝试练习,找学生板演,师生共同讲评。

  2、完成例1下面的“做一做”。

  3、出示例2

  学生尝试练习,找学生板演,师生共同讲评。

  4、完成例2下面的“做一做”题目。

  5、第8页练习二的1、2、3题。

  四、再次尝试操作、第二次创新

  1、求出人脑袋的横切面的半径

  (1)利用桌面上现有的测量工具,通过计算,怎样求出你脑袋的半径?

  (2)四人一组互相合作,动手测量,计算时可利用计算器。

  (3)将运算的结果对全班公布,并说明理由。

  2周长相等的正方形、圆,谁的面积大

  (1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?

  师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”

  (2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。

  五、全课小结

  1、这天我们学习了什么资料?

  2、经过这节课的学习,你有什么收获?

  3、师:“这天我们通过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。

  六、作业

  第9页练习二中的第9、10、11题。

  板书设计

  圆的周长

  围成圆的曲线的长叫圆的周长

  c=πdc=2πr

  例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  (生板演)3.14×0.95

  =2.983

  =2.98(米)

  答:这张圆桌面的周长约是2.98米。

  例2、一个圆形水池,周长是37.68米。它的直径是多少米?

  (生板演)解:设水池的直径是X米。

  3.14×X=37.68

  X=12

  或:37.68÷3.14=12(米)

  答:水池的直径是12米。

  圆的周长教学设计 20

  教学目标

  1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。

  2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。

  3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。

  教材分析:

  《圆的周长》是六年级数学上册第一单元11至13页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

  学情分析:

  因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。

  教学重点:

  正确计算圆的周长。

  教学难点:

  理解圆周率的意义,推导圆的周长的计算公式。

  教学过程:

  (一)创设情境,提出问题。

  师:同学们,你们每天下课都会去学校中间的圆形花园玩。如果我绕着它的最大横截面走一圈,大约走多少米呢?这个问题是求什么呢?(板书课题:圆的周长)我们今天就来解决这个问题。

  (二)自主学习,探究新知。

  1、自主探究

  (1)熟悉圆的周长的概念。

  师:同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。

  (找个别学生示范)

  生:圆的周长是指圆一周的长度。

  2、合作交流

  在六人小组内讨论交流求圆周长的方法。

  3、汇报展示

  ①用围的方法。指名演示。问:要注意什么?

  ②用滚的方法。指名演示。

  问:要注意什么?

  生:在圆上先作了记号,沿直尺滚动一周。无论是滚动法还是绳围法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)

  教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么花园最大横截面的周长,还能用以上这些方法吗?

  生:不能。

  4、猜想验证

  师:圆的周长与什么有关呢?

  生1:与直径有关。

  生2:圆的周长与半径有关。

  师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。

  5、探讨圆的周长与直径的关系。

  ①小组合作

  要求学生以六人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,三人同步计算计算圆的周长与直径的商,第六个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。

  周长

  直径

  周长与直径的商(保留两位小数)

  1号圆片

  2号圆片

  3号圆片

  ②学习“圆周率”

  师:同学们,由于各种原因,不同的圆计算出的周长与直径的商可能不完全相同,但实际上,这个商是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)

  (3)渗透数学文化

  师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?

  6、推导公式

  师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?

  生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)

  师:你能用字母表示圆的周长计算公式吗?

  生:C=πd。(板书公式:C=πd)

  师:如果已知半径呢?

  生:C=2πr。(板书公式:

  C=2πr)

  师:为什么呢?

  生:因为直径是半径的`2倍。

  师:孩子们,就让我们带着满满的收获,再次看看花园吧!已知花园最大的横截面的直径是15米,如果朱老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。

  (三)巩固新知,解决问题

  1.判断

  (1)圆的周长是直径的π倍。

  (2)大圆的圆周率大于小圆的圆周率。

  (3)π=3.14

  ⑴、老师家里有一块圆形的桌布,直径为1米。为了美观,准备

  在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  ⑵、请同学们以小组为单位,画一个周长是12.56厘米的圆,先

  讨论如何画,再操作.

  四、课内小结,扎实掌握:

  通过今天的学习,你有什么收获?

  五、课外引申,拓展思维:

  一个茶杯口的直径你有什么方法知道?

  结束语:

  同学们,圆形是一种很漂亮的图案,圆满的人生是我们一生的追求,只有我们努力拼搏、发愤图强才能使我们的人生圆满、国家强盛。

  圆的周长教学设计 21

  教学内容:

  冀教版《数学》六年级上册第六单元一课时

  教学目标:

  1、知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握圆的周长的计算公式,并能正确地计算圆的周长;能利用圆周长计算公式解决简单的实际问题,发展应用意识。

  2、能力目标:通过对圆周长测量方法和圆周率的探索,圆的周长计算公式的推导等数学活动,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力及团队合作精神。

  3、情感目标:通过介绍我国古代数学家祖冲之在圆周率的伟大成就,对学生进行爱国主义教育。

  教学重点:

  能利用公式正确计算圆的周长。

  教学难点:

  理解圆周率的意义,圆的周长计算公式的推导。

  教学准备:

  课件,直径不同的圆,细绳,软皮尺,直尺,计算器。

  教学过程:

  一、导入

  师:老师给同学们带来了两位老朋友了。(课件出示长方形和正方形)

  师:相信大家对长方形和正方形都有很多的了解了,我不让大家介绍了,老师要问同学们两个问题。”

  1、什么叫长方形和正方形的周长?

  2、长方形和正方形的周长和什么有关?

  学生思考后回答:围成长方形四条边长的总和叫长方形的周长,围成正

  方形四条边长总和叫正方形周长。长方形的周长和它的长和宽有关,正方形周长和边长有关。

  (课件出示圆形)

  师:“你对圆形有哪些了解?”

  学生能说出圆的各部分名称,直径是半径的2倍,圆有无数条对称轴,对称轴就是圆的直径。

  师:那什么是圆的周长呢?

  生:围成圆一圈弧线的长度总和叫圆的周长。

  师:那你还想知道哪些圆的知识呢?

  生:我想知道圆的周长和面积。

  师:这节课我能满足你们的一个愿望,我们一起来研究的是圆的周长。

  (板书课题)

  二、探索新知

  1、周长的测量(自主发现、动手操作)

  师:利用准备的学具,测量一枚一元硬币的周长,看哪位同学的`方法最准确?

  学生说出三种方法:绳测法、滚动法、软皮尺测,学生边说边进行演示。

  2、圆周与直径的探究

  师:在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。大家想一想圆的周

  长与什么有关系。生“直径。”

  师:你们是怎么看出圆的周长和直径有关系?圆的周长跟直径是否存在关系呢?我们一起来研究一下。

  3、小组合作探究圆周长与直径、半径的关系。

  师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。

  小组合作要求:

  1、利用手中的学具测量物品中圆的周长和它的直径。

  2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)

  3、观察得到的数据,你发现了什么?

  师:哪个小组先汇报?先说说你们采用的方法,再说结果。生:绕线法。生:滚动法。

  学生汇报几组数据,教师板书。

  师:通过刚才的动手操作,你们发现了什么?哪个组说说?生:圆的周长÷直径=3倍多一些。

  师:打开数学书,我们自学83页知识来了解。

  学生自学了解了圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,叫做圆周率,用字母π表示。圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值。

  (板书:圆周率π)课件出示补充祖冲之小知识窗

  早在1500多前,我国古代的数学家祖冲之就精密地计算出圆周率的值在3.—3.之间。这是当时计算出的最精确的圆周率的值,比国外科学家的发现要早1000多年。师:看完这个小知识,你有什么想法?生:祖冲之真伟大,我们的祖先非常的有智慧。师:我们的祖先很聪明,我们更应该发扬光大。师:圆的周长怎么求呀?生:圆的周长=直径×师:板书C=πd谁来说说你是怎么理解的?生:C表示圆的周长,d表示直径,π表示圆周率,

  C=πd师:如果知道半径,应该怎样写?生:C=2πr师:你是怎么想的?

  生:在同一个圆里,直径是半径的两倍。

  三、实践与应用

  1、一面圆镜的镜面直径是40厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米?

  2、求圆的周长

  (1)r=6

  (2) r=10

  (3) d=5

  3、校园里有一颗大柳树,我想知道柳树的直径,你们有什么办法吗?同学们课下求一求。

  四、教师小结

【圆的周长教学设计】相关文章:

圆的周长教学设计01-25

《圆的周长》教学设计03-07

圆的周长教学设计15篇03-19

圆的周长教学设计(15篇)04-09

圆的周长教学设计15篇04-01

《圆的周长》教学设计(15篇)04-16

《圆的周长》教学设计15篇04-16

《圆的周长》教学设计(通用11篇)11-09

《圆的周长》优秀教学设计(精选12篇)03-25

《圆的周长》教学设计(通用5篇)04-01