【热】乘法分配律教学设计
作为一位兢兢业业的人民教师,就有可能用到教学设计,借助教学设计可以提高教学效率和教学质量。教学设计应该怎么写才好呢?下面是小编整理的乘法分配律教学设计,仅供参考,大家一起来看看吧。
乘法分配律教学设计1
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。
教学目标
1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2、使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。
教学过程
一、创设比赛场景,在活动中激趣
谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?A组B组
(1)135×6+65×6(1)(135+65)×6(2)9×37+9×13(2)9×(37+13)
在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?
A组B组
(1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125
谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)小结:这真是一个了不起的发现。一切数学知识________于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!
谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】
二、创设活动情境,在合作中探究
1、交流算法,初步感知
(课件出示例题情境图)
谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?
(1)学生的选择方法1:买5件夹克衫和5条裤子,一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师巡视。
[教师板书:(65+45)×5=65×5+45×5],让学生读一读。(2)学生的选择方法2:买5件短袖衫和5条裤子
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
[教师板书:(32+45)×5=32×5+45×5]
启发:比较这两个等式,它们有什么相同的地方?2、深入体验,丰富感知。
现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。在得数相同的两个算式中间的□里画“=”(1)(28+16)×7□28×7+16×7
(2)15×39+45×39□(15+45)×39
(3)74×(20+1)□74×20+74
(4)40×50+50×90□40×(50+90)
(5)(125×50)×8□125×8+50×8
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程),谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)
学生举例并组织交流。(比较这些等式是否具有相同的特点)3、反思学习,揭示规律
提问:像这样的等式,写得完吗?像这样等号左边和右边的'式子都会相等,这是不是巧合?还是有什么规律存在?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思] 小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)
对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!
【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】
三、巩固内化知识,在实践中运用
谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!
1、大显身手
出示“想想做做”第1题,让学生在书上填一填。师:第2题你是怎么想的?
小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]
2、生活应用
(“想想做做”第3题)
小结:说说两种方法的联系。
3、巧妙运用
(“想想做做”第4题)(同桌一人做一组,做在练习本上)谈话:每组两道算式有什么联系?哪一题计算比较简便,现在你知道上课开始时为什么B组同学算得快吗?小结:乘法分配律可以使计算简便。 4、明辨是非
我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?
王小明这样计算:
(3+2)×(34+36)
=5×70
=350(人)
①观察一下,你赞同王小明的算法吗?为什么?②要用乘法分配律,要有什么条件?5、巧猜字谜
猜一猜,等号后边是三个什么字?人×(1+2+3)=
6、大胆猜想
如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?学生小组交流猜想。
谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!教师组织、引导学生总结得出:(a—b)×c=a×c—b×c
小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】
四、回忆梳理知识,在反思中总结今天这节课,你有什么收获?
五、布置作业:
“想想做做”第5题。
乘法分配律教学设计2
教学目标:
1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力,《乘法分配律》教学设计。
2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。
3、能够运用乘法的分配律进行简便计算。
重点、难点:
重点:学生参与推导乘法分配律的过程。
难点:乘法分配律的推理及运用。
教学过程:
一、比赛激趣,提出猜想.
(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做A组的题,右边的两组做B组的题,看谁做的又对又快,开始)
9×( 37+63) 9×37 + 9×63
(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?
教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。
引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×( 37+63) =9×37 + 9×63
(3)将学生的发现以他(她)的名字命名为“**猜想”。
【设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。】
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?
(1)全班同学独立完成。
(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)
还有不一样的方法吗?谁来说说看?(生回答,师板书)
算式(28+22)×3 和28×3+22×3的每一步各表示什么?谁能说给大家听听?
(3)观察这两个算式,你有什么发现?
引导学生比较两个算式异同点,并指名学生说一说自己
生:这两个算式的得数是一样的。
师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。
生:等于号
师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以( 35+25)×3=35× 3+25×3
师:再和前面的一组式子一起观察,
9×( 37+63)=9×37 + 9×63
(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)
2、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)
(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等,教案《《乘法分配律》教学设计》。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)
(2)学生回报:谁来说一说自己举的例子。
(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)
(4)轻声读这些等式,你发现了什么?
3、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)从刚才的举例过程中,你能发现乘法运算中的`规律吗?
学生回报。
(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)
同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?
结合学生回答,教师板书:(a+b)×c=a×c+b×c
齐声读两遍。
(4)对于乘法分配律,用字母来表示,感觉怎样。
引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。
三、加强应用、深化理解
1、瞻前顾后填一填。
(10+7)×6=□×6 + □× 6
8×(125+9)=8×□+ 8×□
7×48+7×52=□×(□ + □)
2、火眼金睛看一看:
判断下面算式是否正确?并说明理由?
56×(19+28)= 56×19+28 ( )
32×(7×3)= 32×7+32×3 ( )
25×12+12×75 = 12×(25+75) ( )
25×99+25 =(99+1)×25 ( )
3、利用乘法分配律,计算下列各题。 ( 80 + 4 ) ×25 34 ×72 + 34 ×28 师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
4、找朋友
(10+6)×4 10 ×4+6 10 ×4+ 6 × 4
5 ×(7+9) 5 ×7+ 5× 9 5 ×7× 9
3 ×25+7 ×25 3+7×25 (3+7)×25
5、对口令
师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。
6、脑筋急转弯。
猜一猜,等号后边是三个什么字?
木×(1+3+2)=?
四、总结:
1、回忆一下,这节课你学会了什么?
2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。
乘法分配律教学设计3
教学内容分析:
乘法分配律是北师大版小学数学四年级上册第三单元P48~P49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学过程:
一、创设情境,激趣导入。
1、出示:
125×8=25×9×4=18×25×4=
125×16=75+25=89×100=
教师请个别学生口算并说出部分题的口算依据及应用的.定律。
2、再出示:119×56+119×44=
师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?
二、引导探究,发现规律。
1、出示课本插图
师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?
生:我看到两个工人叔叔在贴瓷砖。
生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。
生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。
师:你真细心。大家能根据获得的信息提一个数学问题吗?
学生提问题,教师出示问题:一共贴了多少块瓷砖?
2、估计
师:谁能估计工人叔叔大约贴了多少块瓷砖?
学生试着估计。
3、列式解答
师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。
学生用自己喜欢的方法计算,教师巡视。
师:谁来向大家介绍一下自己的算法?
生:6×9+4×9(板书)
=54+36
=90(块)
师:这边的6×9和4×9分别是算什么?
生:分别算出正面和侧面贴的块数。
师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?
生:我是这样列的,(6+4)×9(板书)
=10×9
=90(块)
师:你能说说为什么这样列式吗?
生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。
师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?
生:计算方法不一样,结果却是一样的。
师:所以这两个式子我们可以用一个什么样的数学符号连接起来?
生:等于号。
教师板书。
4、观察算式的特点
师:观察等号两边的式子,它们有什么特点呢?
生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边
的算式是这两个加数分别与一个数相乘,再把所得的积相加。
生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。
师:是这样吗?你们能再举一些类似的例子吗?
5、举例验证
让学生根据算式特征,再举一些类似的例子。
如:(40+4)×25和40×25+4×25
63×64+63×36和63×(64+36)
讨论交流:
(1)交流学生的举例是否符合要求:
(2)交流不同算式的共同特点;
(3)还有什么发现?(简便计算)
师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。
6、字母表示。
师:如果用a、b、c分别表示三个数,你能写出你的发现吗?
学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。
7、揭示课题。
三、应用规律,解决问题。
课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?
1、(80+4)×25
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。
(3)鼓励学生独自计算。
2、34×72+34×28
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求。
(3)简便计算过程,并得出结果。
3、让生观察:36×3
=30×3+6×3
=90+18
=108
师:你能说说这样计算的道理吗?
生独自思考,小组讨论,全班交流。
四、总结。
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。
乘法分配律教学设计4
《乘法分配律》教学设计【1】教学内容:P27:例8。
教学目标
知识与技能:引导学生探究和理解乘法分配律。
过程与方法:感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。
教学难点:乘法分配律的反应用。
教具学具:多媒体课件
教学过程
一、复习引入
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25
=6×25
=150(人)
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25
=100+50
=150(人)
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习
1、P27做一做
2、拓展:乘法分配律是否也适用于减法?
验证:18x5-5x8(18-8)x5
265×105-265×5265×(105-5)
结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的`。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程:
一、复习引入,质疑猜想
1、出示口算题:
师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。
358+25+7572+493+2825×19×4
12×125×8168×5×214×2=
交流:你是怎样想的?
2、分组计算比赛
师:下面我们再来一场分组计算比赛,好不好?
出示:脱式计算
第二组题目:45×12+55×1234×72+34×28
第一、三组:(45+55)×12(72+28)×34
师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。
二、探究新知,验证猜想
1、出示:用两种方法计算这两个长方形中一共有多少个小方格?
8×4+5×4(8+5)×4
思考:为什么两个算式的结果相同呢?
左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。
2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。
(1)请提一个数学问题(淘气一共打了多少个字?)
(2)用两种方法解答问题
(3)思考:为什么两次计算的结果相同呢?
3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。
能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)
想一想:这里的分配,表示什么意思?(表示分别配对的意思。)
师:这道等式反过来写,依然成立吗?
三、巩固新知,应用定律
1、填一填:
4×(25+8)=__×___+___×__
38×37+62×37=___×(___+___)
502×19+11×502=___×(___+___)
48×99+48×1=___×(___+___)
a×b+a×c=___×(___+___)
2、判断对错:
8×(125+9)=8×125+9()
27×8+73×8=27+73×8()
(12+6)×5=(12×5)×(6×5)()
(25+9)×4=25×4+9×4()
3、试一试
(1)观察(40+4)×25的特点并计算
(2)观察34×72+34×28的特点并计算
4、分组计算比赛
85×16+15×16(40+8)×25
68×128-68×2834×(100+20)
四、总结全课
今天,我们又发现了什么?
五、课外思考
其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?
板书设计:
乘法分配律教学设计5
设计说明
当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。教学目标
1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。
2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的`意识,进一步体会数学与生活的联系。
3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一:创设情境导入
提问:长方形的面积怎样求?
指明回答
这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)
学生动手操作
(课件出示两个长方形组合的动画)
二:自主探索,交流合作
1、交流算法,初步感知
提问:请同学们自己求一下新长方形的面积。
教师巡视,观察学生不同的解法
反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导
(课件出示两种解法)
谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?
学生自己写一写,请学生说一说,教师相机板书。
2、比较分析,深入体会
提问:算式左右两边有什么相同和不同之处呢?小组内交流。
反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。
设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。
组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。
3、规律符号化,揭示规律
提问:像这样的算式,写的完吗?
我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。
反馈引导学生用不同的方式来表达规律。
小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)
三:实践运用,初步理解。
1、想想做做1
学生自主完成,组织交流。
第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是
12、并向学生介绍这可以称作是乘法分配律的逆向运用(板书)
2、想想做做2
自主完成,组织交流。
第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个
74,也就是74、
第四小题要和想想做做题1的第二小题做对比。
四:拓展延伸,内化新知
再次出示两个长方形纸片,提问:如何比较这两个长方形的大小
学生反馈,引导说出可以重叠比较。学生动手实践
再问:那么大长方形比小长方形大的面积是那一块?
让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。提问:如何求多出来的面积呢?请同学们自己列式解答。
学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提示。
学生反馈,交流。课件出示两种解法。
谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算式,课件出示并板书。
再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数等于这两个数分别与第三个数乘,再相减。
谈话:这个规律用字母如何表示呢?自己试着写写看。
学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。五:解决实际问题,内化重点难点。
想想做做题5
课件出示,学生读题。
问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个算式之间的联系。
问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间的联系,加强学生对
乘法分配律延伸的理解与内化。
反思:
这节课我是分三个层次来教学。
第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。
第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。
最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。
乘法分配律教学设计6
知识与技能目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、能够运用乘法分配律进行一些简便的计算。
过程与方法:
培养学生观察、归纳、概括等初步的逻辑思维能力。
情感与价值观:
渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点
理解并掌握乘法分配律
教学难点
乘法分配律的推理及运用
教学准备
多媒体电脑、课件
教学过程
一、用简便方法计算下面各题。
452+199+24838×125×8×3
二、比赛激趣,提出猜想
(1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)
10×37+10×63
10×(37+63)
(2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
10×37+10×63=10×(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
(设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)
三、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)
(设计意图:学生用不同的方法列式计算,为探讨规律做准备。
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?
5、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)
(设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)
(2)刚才我们用举例的方法验证了××猜想,在举例的.过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?
(a+b)×c=a×c+b×c
(5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。
四、探索发展,应用规律
(1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38×29+3843×102
(4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
(设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)
五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)
1、请大家根据运算定律在下面的_里填上适当的数。
(10+7)×6=______×6+______×6
8×(125+9)=8×______+8×______
7[]×48+7×52=______×(______+_______)
2、将得数相等的算式用线连起来。
3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?
六、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
乘法分配律教学设计7
教学目标:
1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的`联系。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重难点:
发现并理解乘法分配律。
教学准备:挂图、小黑板。
教学流程:
一、创设情境,导入新课。
师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。
看看买什么衣服好看呢。
二、自主探索,合作交流。
1.出示:买5件夹克衫和5条裤子,一共要付多少元?
师问你打算怎样算?
生口答师板书:
(65+45)×565×5+45×5
请学生分别说清两道算式的含义。
2.师问猜想一下,这两道算式的结果会怎样?
要验证我们的算式是否正确,应该用什么方法?
生计算,个别板演。
证明这两道算式的结果是相等的。
中间应用“=”接连。
3.生读算式(65+45)×5=65×5+45×5
师问等号两边的算式有什么相同和不同?
生同桌说一说,并汇报。
4.这两道算式相等是一种巧合还是有规律的呢?
出示:(2+10)×6=2×6+10×6
(5+6)×3=5×3+6×3
师问中间可以用“=”来连接吗?
5.小组讨论:这三组等式左边有什么特点?
右边有什么特点?
生汇报。
6.师问你能写出具有这样规律的等式吗?
生独立写一写,个别板书。
7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?
生写一写,个别板演。
8.揭题:乘法分配律
(a+b)×c=a×c+b×c
9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。
三、巩固练习,拓展应用。
想想做做:
1.在口里填上合适的数,在○里填上运算符号。
(42+35)×2=42×口+35×口
27×12+43×12=(27+口)×口
15×26+15×14=口○(口○口)
72×(30+6)=口○口○口○口
强调:乘法分配律,可以正着用,也可以反着用。
2.横着看,在得数相同的两个算式后面画“√”
(28+16)×728×7+16×7
15×39+45×39(15+45)×39
74×(20+1)74×20+74
40×50+50×9040×(50+90)
3.算一算,比一比,每组中哪一道题的计算比较简便。
(1)64×8+36×825×17+25×3
(64+36)×825×(17+3)
让学生体会乘法分配律可以使计算简便。
4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。
生独立完成并汇报。
5.你能根据下图列出两
道综合算式吗?
上面的两道算式能组成一个等式吗?
四、全课小结
师问今天你有什么收获?和你的小伙伴说一说。
五、课堂作业
《补充习题》第26页。
乘法分配律教学设计8
《乘法分配律的运用》教学设计及反思
教学目标
(一)使学生学会用乘法分配律进行简算,提高计算能力.
(二)培养学生灵活运用乘法运算定律进行计算的习惯.
教学重点和难点
能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计
(一)复习准备
1.口算:
(二)学习新课
我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)
1.创设情境,激发学生学习积极性.
出示102×( ).
请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.
2.教学例6:用简便方法计算.
(1)计算102×43.
这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一
做,对比一下,找出哪种方法简便.
在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
(2)计算102×24.
订正时说明怎样简算的?根据是什么.
(3)计算9×37+9×63.
启发提问:
①这类题目的结构形式是怎样的?有什么特点?
②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?
在学生充分讨论的基础上,师板书:
提问:这题能简算吗?什么地方错了?应怎样改?
启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.
2.根据乘法分配律把相等的式子用“=”连接起来.
讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?
在讨论基础上得出:
第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.
第3题右边两个积里相同的因数是4,不同的'因数是11和25,应改为(11+25)×4.因此
要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.
(四)作业
练习十四第5~10题.
教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。
乘法分配律教学设计9
乘法分配律
一、教学目标:
(一)知识目标:
使学生在解决实际问题的过程中发现并理解乘法分配律。
(二)智能目标:
使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
(三)情感目标
使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点:在解决实际问题的过程中发现并理解乘法分配律
教学难点:自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。
二、教法学法:启发式教学
三、教学准备:
多媒体课件投影仪主动参与,乐于探究
四、教学过程
(一)创设问题情境
五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,我们学校教舞蹈的老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)
【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。
(二)展开探索过程
1、初步感知
(1)提出要求:仔细观察,从图中你获得了哪些信息?
买这些些服装,叶老师一共要付多少元钱呢?你能列出综合算式吗?
(2)学生独立列式,教师巡视
(3)交流反馈:你是怎么想的,怎样列式
板书:65×5+45×5(65+45)×5
请生交流解题思路,并比较哪种解法更简便。
(4)列成等式
通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?
小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。
2、类比展开
(1)提出类比问题:如果叶老师选择选择的是另两种服装,买的数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?
(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!
(3)学生小组合作完成,交流反馈,相机板书:
32×6+65×6(32+65)×6
32×8+65×8(32+65)×8
32×6+45×6(32+45)×6
32×8+45×8(32+45)×8
(4)观察算式,引导列成等式,仿照等式随意举例
像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。
举例,小组交流,挑选几组板书。
【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。
3、体验感悟
(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?学生有自己的语言描述发现的规律。
(2)修改算式,感悟规律
通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。
课件出示:
(3+4)×63×6+4×6
3×17+3×53×(17+5)
20×(5+13)20×5+5×13
(13+7)×413×4+7
(13+7)×413×4+7
交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。
【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。
4、揭示规律
(1)游戏“交朋友”
课件出示:(80+20)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)
出示:6×(10+20),(A+100)×5,(42+45)×▲,请生帮它们交朋友。
(2)揭示规律
像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表
示??)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8 9×18+9×282
【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。
(三)巩固内化
1、根据乘法分配律,在__里填入合适的数
(1)、(15+23)×2=____×2+_____×2
(2)、(37+12)×16=37×____+12×____
(3)、___×___+___×___= ( 16+26)×8
(4)、(125+11)×8=____×____+____×_____
(5)、276×38+276×62=____×(___+___)
如果计算的话,(4)、(5)你会选择左边的算式还是右边的算式进行计算,为什么?
2、判断下面各题是否正确,把错误的改正过来
(1)2×15+4×15=(2+4)×15??????()
订正:
(2)5×(20+6)=5×20+6????????()
订正:
(3)8×23+8×27=8×23+27????????()
订正:
(4)9×(6×4)=9×6+9×4????????()
订正:
3、应用题
一块长方形的桌面,长68厘米,宽32厘米。周长是多少厘米?(用两种方法解答,并说说你喜欢哪种方法)
*4、用简便方法计算(任选一题)
①(125+9)×8 ②128×31-28×31 ③43×5+46×5+11×5
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。
(四)总结回顾
今天这节课,你有什么收获,从中你得到什么启发?
【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。
(五)课堂作业
六、说板书设计
乘法分配律
例:短袖衫裤子夹克衫乘法分配律:
32元45元65元两个数的和与一个数相乘,可以把这65×5+45×5=(65+45)×两个数分别和这个数相乘,再相加。=325+225=110×5
=550(元)=550(元)
其他购买方案:
32×6+65×6=(32+65)×6
32×8+65×8=(32+65)×8
32×6+45×6=(32+45)×6
32×8+45×8=(32+45)×8
〔a+b〕×c=a×c+b×c
《乘法分配律》教学反思教学乘法分配律之后,发现学生的学习效果很不理想,特别是乘法分配律的'运用,正确率很低。针对这种情况,我想,在教学中应该注意以下几个问题:
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。教学中通过“朝三暮四”的故事解决“这只猴子20天要吃多少个栗子?”这一问题,结合具体的故事情景,得到了(3+4)×20=3×20+4×20这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等
的?”这里不仅要从解题思路的角度理解(3+4)×20=3×20+4×20是相等的,还要从乘法的意义的角度理解,即左边表示7个20,右边也表示7个20,所以(3+4)×20=3×20+4×20。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88 ①竖式计
算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练。
针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等
乘法分配律教学设计10
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。
教学内容:教材第54~55页例题,完成“做一做”。
教学目标:
1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。
2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功
感,增强学习的兴趣和自信。
教学重、难点:
发现并理解乘法分配律。
教具准备:
多媒体课件一套。
教学过程
一、创设问题情境
谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)
二、展开探索过程
1、初步感知。
提问:仔细观察,从图中你获得了哪些信息?
学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的.体会。
提问:猜一猜,这两种方法的计算结果会怎么样?
计算验证:算一算,来证明你的猜想是正确的。
板书等式:(30+25)x4=30x4+25x4
2、类比展开。
(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6
(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?
要求6套课桌椅多少元,你准备怎么解决?
板书:(100+60)x6=100x6+60x6
3、体验感悟。
(1)类似这样的等式还有吗?你能写出第4组吗?
学生举例后,挑3组板书。
(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)
同桌互相检查刚才写的算式是否相等。
(3)交流:介绍你写成功的经验
引导:你是怎么根据左边的算式写出右边的算式的?
4、提示规律。
(1)提问:像这样的等式能写完吗?
(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。
板书:(a+b)xc=axc+bxc
(3)板书:乘法分配律
让学生用自己的语言说说这个字母式子表示什么,师小结。
三、巩固内化
1、在□里填上合适的数,在○里填上运算符号。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。
出示:72x(30+6)= 齐说答案。
出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结
2、横着看,在得数相同的两个算式后面画“√”。
(48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?
出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。
四、总结回顾
通过今天这节课的学习,你有什么收获?
五、布置作业
1、必做题:想想做做第5题。
2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。
乘法分配律教学设计11
教学内容
P36页例3,做一做,练习六习题。
教学目标
1、知识与技能:引导学生探究和理解乘法分配律。
2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
教学重点
乘法分配律的意义和应用。
教学难点
乘法分配律的反应用。
教学过程
一、目标导学
(一)导入新课
1、复习导入
(8+2)×1258×125+2×125
2、揭示课题:乘法分配律
(二)展示目标(见教学目标1、2)
二、自主学习
(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)
1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?
2、计算4×25+2×25的`运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?
3、计算这两道题你发现了什么?能用一句话概括吗?
4、这是乘法的什么运算律?用字母怎样表示?
5、会用简便算法计算4×25+6×25吗?
(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)
(三)自学检测
下面哪些算式运用了乘法分配律?
117×(3+7)=117×3+117×7
24×(5+12)=24×17
(4+5)×a=4×a+5×a
三、合作探究
(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。
(二)师生互探
1、解答各小组自学中遇到不会的问题。
2、针对自学提纲5题请不同方法同学汇报。
3、结合“自学提纲”引导学生归纳总结:(并板书)
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。
四、达标训练(1、2题必做,3题选做、4题思考题)
1、下面哪个算式是正确的?正确的打√,错误的打×。
56×(19+28)=56×19+28()
32×(7+3)=32×7+32×3()
64×64+36×64=64×(64+36)()
2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数
⑴25×(200+4)⑵35×201
25×200+25×435×200+35
⑶265×105—265×5⑷25×11×4
265×(105—5)11×(25×4)
3、用乘法分配律计算。
103×20xx×5524×205
4、在()里填上适当的数。
167×2+167×3+167×5=167×()
28×225—2×225—6×225=()225
39×8+6×39—39×4=()×()
五、堂清检测
(一)出示检测题(1-2题必做,3题选做,4题思考题)
1、用简便方法计算。
24×75+24×25125×22—125×14
(25+20)×435×99+35
2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?
3、计算。
89×10135×36+35×63+35
4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?
(二)堂清反馈:
作业布置
练习册相关习题。
板书设计
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25
=6×25=100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
乘法分配律教学设计12
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用
教学难点:乘法分配律的反应用.
教具:教学课件一套
教学过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
7×28+7×72
7×(28+72)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
7×28+7×72=7×(28+72)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
二、引导探究,发现规律。
1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。
2、商场 “五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)
(1)看到这幅图画,你了解到了什么信息?你想提什么问题?
(2)你能用两种方法列出综合算式吗?
(3)学生独立列式,教师巡视
(4)交流反馈:你是怎么想的,怎样列式计算
板书:65×5+45×5 (65+45)×5
(5)观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了××猜想,在举例的.过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
(5)大屏幕出示关于乘法分配律的总结,学生齐读。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(8+4)× 25 34 ×72+34 ×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
四 、巩固内化
1、 做“想想做做”第1题
学生独立填写,指名报,全班共同校对。
明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?
2、 做“想想做做”第2题
学生自己判断。然后请生说说判断的依据。
3、 做“想想做做”第3题
让每位学生都用两种方法计算长方形的周长,指名板演。
明确:这两种算法有什么联系?符合什么规律?
小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。
4、 做“想想做做”第4题
让学生各自按运算顺序计算,指定两人板演,共同订正。
提问:每组两道算式有什么联系?哪一题的计算比较简便?
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
五、 总结回顾
乘法分配律教学设计13
教学内容:
教科书书第54的例题以及55页的“想想做做”。
教学目标:
1、让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。
2、让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点和难点:
发现并理解乘法分配律。
教学准备:
多媒体课件。
教学过程:
一、复习旧知,作好铺垫
同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)
今天这节课,我们要来研究乘法的另外一个运算定律。
二、联系实际,探究规律
1、谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!
2、课件例题情景图。
(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)
(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?
指名说出算式,教师随学生回答板书:
(65+45)×5 65×5+45×5
让回答的两名学生说说自己的想法。(即先算的是什么。)
第一个算式:先算买一套衣服用多少元。
第二个算式:先算买5件夹克衫和5条裤子各用多少元。
(3)猜一猜:这两个算式结果会怎样?(相等)
(4)计算验证。
师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。
集体交流,指名汇报计算过程。
(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)
3、探索、发现规律。
(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。
同桌讨论交流,指名汇报,鼓励学生自由发表意见。
(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)
(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。
(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?
指名举例,计算算式结果,得出等式,教师板书。
师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)
学生汇报验证的结果。教师结合学生回答板书三个等式。
问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。
(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)
(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。
展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。
表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)
师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。
三、应用规律,巩固练习
1、对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题)横着看,在得数相同的两个算式后面画“√”。
学生自己判断。集体交流时指名说说是怎么判断的?
第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。
问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?
2、掌握得真不错!下面打开书看55页“想想做做”第1题。
学生独立填写后,指名汇报。
讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!
3、完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)
问:图上给我们提供了长方形菜地的什么信息?
你会用两种不同的方法计算它的周长吗?
(1)学生完成在自备本上,指名板演两种不同的方法。
(2)集体交流,出示:(64+26)×2 64×2+26×2
师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?
师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。
4、完成“想想做做”第4题。
出示题目,观察这两组算式,想想每组中两个算式的.结果是否相同?为什么?
比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。
学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?
(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)
这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)
指名说计算过程,教师用课件展示简算过程。
小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。
5、谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?
学生独立完成在自备本上,投影展示不同的算法。
观察这个等式,你有什么想告诉大家吗?
师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!
四、总结回顾
问:今天这节课,你有什么收获?
五、课堂作业
完成“想想做做”第5题。
教后反思:
乘法分配律是在学生学习了乘法交换律、结合律的基础上教学的,这是四年级学习的重点,也是难点之一。本节课我比较注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。首先我先创设了设计买衣服的情景,出示了例题图,让学生尝试通过不同的方法得出结果,再让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接,使之让学生从中感受了乘法分配律的模型,而后让学生作出一种猜测:是不是所有这样的两道算式之间都有这样的联系呢?是不是符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力,从而让学生知道乘法分配律给大家计算带来的便利,从而引出乘法分配律的概念和字母形公式。
在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。出示一些扩展型的练习:由(17+8+15)×60让学生明白乘法分配律也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为以后利用乘法分配律进行简算埋下伏笔。
当然在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还是不够,另外还有部分学困生对乘法分配律不太理解,运用时问题较多,在本节课中的一些具体的环节中也还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来,这些在以后的教学中都要多加注意。
乘法分配律教学设计14
学情分析:
乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。
教学目标:
1.理解并掌握乘法分配律并会用字母表示。
2.能够运用乘法分配律进行简便计算。
3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。
4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。
教学重点:
理解并掌握乘法分配律。
教学难点:
乘法分配律的推理及运用。
教学过程:
一、情景激趣,提出猜想
1.情景
暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)
出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?
(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)
①整理条件、问题
从这段资料中你知道了那些信息?王老师遇到了哪些问题?
②学生列式,抽生回答: (18+23)×8, 18×8+23×8
③交流算式的意义
第一个算式先算什么?再算什么?第二个算式呢?
④计算:(发现两个算式结果相等)
⑤观察、分析算式特点
咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!
现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?
⑥全班交流,引导学生从下面几个方面进行思考
A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。
B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。
C.计算结果:结果相等。
(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)
2.提出猜想
真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?
怎样才能知道像这样的算式都有这样的规律?
引导学生想到用举例的方法进行验证。
师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。
(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的.立足于学生一生的发展而在教学。)
二、举例验证,证明合理性
1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。
2.分组举例
两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。
3.交流:谁愿意把你举的例子和大家一起分享?
A.这个式子符合要求吗?
B.这些式子都有一个共同的规律,这个共同的规律是什么?
教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。
(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)
三、概括归纳,建立模型
1.个性概括
这样的式子你们还能写吗?能写完吗?
强调这样的例子还有很多很多,是写不完的。
你能用一个式子将所有的像这样的式子都概括出来吗?
学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。
2.统一认识
教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成
(a+b)×c=a×c+b×c
给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。
3.进一步认识
这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。
齐读式子。
(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)
四、巩固应用,深化认识
1.哪些算式与72×35相等
72×30+72×5
72×35 72×30+5
70×35+2×35
70×35+2
问:为什么相等?
(设计意图:让学生理解乘法分配律的本质意义)
2.你会填吗?
(10+7)×6= ×6+ ×6
8×(125+9)=8× +8×
7×48+7×52= ×( + )
问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。
(设计意图:学生进一步深刻理解乘法分配律)
3. 7×48+7×52 7×(48+52)
这两个式子你想选择哪个进行计算?为什么?
如果只给你第一个式子,你会想办法让你的计算变得简便吗?
小结:利用乘法分配律有时候可以使计算变得更简便。
(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)
<<<1234>>>
4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。
①34×72+34×28(订正时问:为什么不直接算)
(80+4)×25
订正时问:把(80+4)×25写成80×25+4×25依据是什么?
如果不用好不好算?
(80+20)×25
问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?
教师小结:在计算中要根据数据特点,灵活运用乘法分配律。
②21×25 75×99+75
小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。
(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)
五、全课小结
孩子们,你们今天收获了什么?
当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?
板书设计
乘法分配律
(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)
=41×8 … … … …
=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25
18×8+23×8 … … … … (80+20)×25
=144+184 个性概括:… …
=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75
乘法分配律教学设计15
教学内容:
北师大版四年级下册数学教科书第36页内容,和练习四的第5、6、7、9题。
教学目标:
1、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
教学重点:
充分感知并归纳乘法分配律。
教学难点:
理解乘法分配律的意义。充分感知并归纳乘法分配律。
教具准备:
多媒体课件
教学设想:
本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。
活动过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
9x37+9x63
9x(37+63)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
9x37+9x63=9x(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为xx猜想。(板书:猜想)
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6x9+4x9和(6+4)x9,为什么这样列算式,观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)
轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了xx猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,xx同学,恭喜你!你的`猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。
等号左边表示什么意思?等号右边表示什么意思?大家说的意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。
在读这句话的时候,哪里应特别注意?
请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)x2534x72+34x28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38x29+3843x102
(4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)
1、请大家根据运算定律在下面的_里填上适当的数。5、6、7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。
2、大家请到数学医院,帮老师判断对错。
3、完成连一连。(给一分钟思考时间,然后抢答)
4、完成填一填。(这道题我找表现最好的小组来开火车)
5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)
五、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?
请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
【乘法分配律教学设计】相关文章:
乘法分配律教学设计01-17
《乘法分配律》的教学设计05-22
乘法的分配律教学设计03-17
乘法分配律教学设计03-31
关于《乘法分配律》教学设计09-09
《乘法分配律》教学设计范文05-10
关于《乘法分配律》的教学设计05-10
最新《乘法分配律》的教学设计05-11
乘法分配律教学设计【热门】04-06
《乘法分配律》的教学设计范文05-15