《比的应用》教学设计(15篇)
作为一名教师,时常要开展教学设计的准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。我们应该怎么写教学设计呢?下面是小编收集整理的《比的应用》教学设计,希望能够帮助到大家。
《比的应用》教学设计1
教学内容:
课本 练习五
教学目标:
通过练习使学生进一步掌握有关倍数的三步计算应用题,能正确熟练地解答此类应用题,促进学生综合分析能力的提高。
教学重点:掌握有关倍数的三步计算应用题
教学用具:幻灯、小黑板
教学过程:
一、基本训练
1、口答
同学们做了12朵黄花,做的红花的朵数比黄花的3倍多4朵。
⑴红花做了多少朵?
⑵黄花的红花一共做了多少朵?
⑶红花比黄花多做了多少朵?
学生口答老师板书,同时问其他学生各步所表示的意义
2、说图意并列式
11岁
小明:
大6岁
爸爸:
大25岁
爷爷:
二、补问题,再解答。?岁
补充完整使应用题使其成为三步计算应用题。
校园里有月季花46盆,菊花的盆数比月季花的3倍少20盆。 ?
三、基本练习
1、红丰农场种油菜12公顷,种小麦的数量是油菜的2倍,种大麦的数量比种油菜和小麦总和还多4公顷。种大麦多少公顷?
2、红丰农场种油菜12公顷,种小麦的数量比油菜的'2倍少5公顷。种油菜和小麦共多少公顷?
3、红丰农场种油菜12公顷,种小麦的数量是油菜的2倍,种大麦的数量比小麦的3倍少9公顷。种大麦多少公顷?
4、红丰农场种小麦24公顷,种大麦的数量比小麦的3倍少9公顷。大麦比小麦多种了多少公顷?
四、编题练习
要求学生自己编一题 倍数关系的三步计算应用题。
一人编好后,前后4人任选一题,进行解答,再一起批改。
五、课堂作业
课本 练习五 第3-6题
《比的应用》教学设计2
一、教学目标
(一)知识与技能
理解求一个数的几分之几可以用整数除法和乘法的知识来解决。
(二)过程与方法
通过分一分、拿一拿,理解情境中的数量关系,探求解决求一个数的几分之几的方法。
(三)情感态度与价值观
感悟数形结合的思想,初步了解分数的在实际生活中的应用和价值。
二、教学重难点
教学重点:掌握实际问题中求一个数的几分之几的方法。
教学难点:利用图形、语言、算式三种表征的转化来解决有关分数的实际问题。
三、教学准备
课件等。
四、教学过程
(一)复习导入,揭示课题
1.复习导入。
学生拿出准备好的正方形纸,折出它的,并用阴影部分表示出来。
全班展示、交流不同的折法。
出示作业纸上的苹果图:
要求学生将6个苹果平均分成3份,写出一份占苹果总数的几分之几,两份占苹果总数的几分之几,并将苹果总数的涂成红色,苹果总数涂成绿色。
2.揭示课题。
(1)这节课我们将继续学习应用分数解决生活中的一些实际问题。
(2)板书课题。
【设计意图】通过复习“1”是一个物体和一些物体时如何用分数表示整体与部分的关系,加深了对分数意义的理解,为学习新知作好准备。
(二)尝试探索,学习新知
1.阅读与理解。
(1)课件出示例2,学生自由读题,理解题意。
有12名学生在踢毽子,其中是女生,是男生。男女生各有多少人?
(2)交流:说一说从题目中,你知道了什么?
(3)你能用画示意图的方式表示出“其中是女生,是男生”吗?
(4)展示学生画的示意图,并进行对比和交流。
(5)请学生修改或完善自己画的图。
2.分析与解答。
(1)借助示意图,讨论解决问题的'方案。
①引导学生读图思考:因为是女生,要求女生人数就要把12平均分成三份,求出一份是多少,并要求学生以同样的思路去求男生的人数。
②组织学生合作探究求男生人数的其他方法,并让学生选取自己认为简便的方法。
(2)学生独立列式解答。
3.回顾与反思。
(1)说一说怎样检验答案是否正确。
预设:
方法1:将解答的结果和画出的示意图一一对应。
方法2:女生的人数和男生的人数相加,4+8=12,解答正确。
……
(2)回顾解决问题的过程。
先让学生回顾与总结解决问题的过程,讨论后师生共同小结。
(3)汇报交流后,让学生书写答案,完善解题步骤。
【设计意图】在创设现实情境后,引导学生联系分数的意义,通过自己的实际操作和观察,画出示意图,理解情境中的数量关系,探究解决问题的方法。
(三)课堂练习,巩固新知
1.完成练习二十二第5题。
2.完成练习二十二第6题。
3.完成练习二十二第9题。
借助操作和直观图进一步巩固分数的意义。
【设计意图】练习的设计主要是让学生应用分数的含义解决问题,通过提供直观图,方便学生在操作的基础上,形成解题思路。
(四)全课总结,升华认识
1.通过这节课的学习,你有哪些收获?
2.你还有什么疑惑的地方?
《比的应用》教学设计3
【教学目标】
一、知识与技能
1。知道物体的浮沉现象,能从受力分析的角度判断物体的浮沉状况。
2。知道物体的浮沉条件,能运用它解释浮沉现象。
二、过程与方法
1。经历探究物体浮沉条件的实验,体会物体漂浮、上浮、下沉、悬浮的原因。
2。提高实验动手能力和探究能力,能把所学知识与生活、生产实践相结合。
三、情感、态度与价值观
1。认识浮力对人类生活、生产的影响。
2。重视理论联系实际,学以致用,初步认识科学技术对人类社会发展的作用。
【教学重点】
上浮、下沉、漂浮、悬浮的分析与判断。知道轮船、潜水艇、气球、飞艇的工作原理。
【教学难点】
物体处在上浮、漂浮、悬浮、下沉的不同状态下,浮力、重力、密度的比较。 【教学仪器】:
烧杯、水、体积相同的蜡块和铁块、两个铁罐子、沙子、潜水艇模型、热气球模型。 【教学流程】:
(一)新课引入
[演示]:1.出示铁块和蜡块让学生观察发现它们体积相等。2.将体积相同的铁块和蜡块同时浸没在水中后松手。
[现象]:铁块沉入杯底而蜡块上浮最终浮在水面。
[提问]:1.浸没在水中的铁块、蜡块(松手后)各受到什么力?
(浮力、重力)
2.铁块和蜡块受到的浮力相等吗? (相等。因为V排相等,根据阿基米德原理可知浮力相等。)
3.既然铁块和蜡块受到的F浮相同,为什么松手后铁块沉底而蜡块上浮?液体中,物体的浮沉取决于什么呢?
[讲解]:物体的浮沉条件:
分析蜡块:松手后,浸没在水中的蜡块所受到的F浮>G蜡,所以蜡块上浮。当蜡块逐渐露出水面,V排减小,浮力减小,当F浮= G物时,蜡块最终漂浮在水面。即:F浮>G物上浮,最终漂浮。
分析铁块:松手后,浸没在水中的铁块所受到的F浮<G铁,铁块下沉。到达容器底部后,铁块受到F浮、G铁和F支,三力平衡,静止在容器底,我们说铁块沉底。即:F浮<G物下沉,最终沉底。
若一个物体浸没在水中,松手后F浮=G物,受力平衡,物体的运动状态不变,我们说物体悬浮在液体中。即:F浮=G物,最终悬浮。
总结:通过上述分析,我们知道浸在液体中物体的浮沉取决于物体所受F浮与G物的关系。
(二)进行新课
1.讨论:
(1)木材能漂浮在水面,其原因是什么?
(2)把一根木头挖成空心,做成独木舟后,其重力怎么变化?它可载货物的多少怎么变化?重力变小,可以装载的货物变多。
[指出]:从浮力的角度看,把物体做成空心的办法,增大了可利用的浮力,而且这种古老的“空心”办法,可以增大漂浮物体可利用的浮力。
[质疑]:密度比水大的下沉的物体有没有办法让它上浮或漂浮呢?
2.实验:
两个外形相同的铁罐子,一个空心,一个装满沙;同时按入水中,松手后实心的下沉,空心的上浮最终漂浮。
[质疑]:(1)铁的密度大于水的密度,空心的铁罐子为什么能漂浮呢?可能是 因为什么呢?
(因为它是空心的,F浮>G物,所以能上浮,最终能漂浮。)
(2)要想让实心的铁罐子也漂浮,可以怎么办呢? (把沙取出来,变成空心的。)
(3)大家的想法是如何调节的铁罐子的浮沉的呢?(F浮不变,挖空使G物变小,当F浮>G物,铁罐子自然就浮起来了。)
[指出]:上述实验告诉我们采用“空心”的办法,不仅可以增大漂浮物体可利用的浮力,还可以使下沉的物体变得上浮或漂浮。
3.应用
·轮船
(1)原理:采用把物体做成“空心”的办法来增大浮力,使浮力等于船和货物的总重来实现漂浮。
(2)排水量:满载时,船排开的水的质量。 即:排水量=m船+m货
[质疑]:1.轮船从河水驶入海里,它的重力变不变?它受到的浮力变大、变小还是不变?(不变,始终漂浮)
2.它排开的液体的质量变不变?(不变)
3.它排开的液体的体积变不变? (变,ρ海水>ρ水,所以V排海水<V排水)
4.它是沉下一些,还是浮起一些?(V排变小了,所以上浮一些)
[强调]:同一条船在河里和海里时,所受浮力相同,但它排开的河水和海水的体积不同。因此,它的吃水深度不同。
·潜水艇
[演示]:
潜水艇能潜入水下航行,进行侦查和袭击,是一种很重要的军事舰艇。它是怎么工作的呢?我们用打吊瓶用的'小塑料管来模拟潜水艇。请同学们利用和塑料管连接的细管给塑料管吹气或吸气。
现象:吸气时,水逐渐进入管中,管子下沉;吹气时,管中的水被排出,管子上浮;
[质疑]:(1)小塑料管浸没在水中所受F浮是否变化?(塑料管形变很小,V排基本不变,所以可以认为F浮不变)。
(2)那它是怎样上浮或下沉的呢?
(吹气时,水从管子中排出,重力变小,F浮>G物,所以上浮;吸气时,水进入管子,重力变大,F浮<G物,所以下沉)
[讲解]:潜水艇两侧有水舱,当水舱中充水时,潜水艇加重,就逐渐潜入水中;当水舱充水使艇重等于同体积水重时,潜水艇就可悬浮在水中;当压缩空气使水舱中的水排出一部分时,潜水艇变轻,就可上浮了。
潜水艇:
原理:靠改变自身重力来实现在水中的浮沉。
[强调]:潜水艇在浸没在水下不同深度所受浮力相同。
·气球和飞艇
[演示]:“热气球”的实验。
[质疑]:酒精燃烧后袋内空气密度怎样变化?
原理:ρ气<ρ空气,(即利用密度小于空气的气体,通过改变气囊里气体的质量来改变自身体积从而改变所受浮力的大小来实现升降的。)使它受到的F浮>G物而升空。
[讨论]:要使充了氦气、升到空中的气球落回地面,你们能想出什么办法?要使热气球落回地面,有什么办法?(放气或停止加热)
其他应用
密度计、盐水选种等。
附:板书设计
(一)物体的浮沉条件:
F浮>G物 上浮 最终漂浮 ρ液>ρ物
F浮=G物 悬浮 ρ液=ρ物
F浮<G物 下沉 最终沉底 ρ液<ρ物
(二)通过调节物体受到的F浮或G物,可以调节物体的浮沉。
(三)应用
1.轮船:把物体作为“空心”的办法来增大浮力,使浮力等于船和货物的总重来实现漂浮。
2.潜水艇:依靠改变自身重力来实现在水中的浮沉。
3.气球和飞艇:ρ气<ρ空气,使它受到的F浮>G物而升空。
三.小结:
四.布置作业:动手动脑学物理:3、4。
五.教学后记:
《比的应用》教学设计4
教学目标
(一)使学生学会分析解答有关倍数的三步应用题、
(二)使学生进一步学会用线段图表示已知条件和问题、
(三)提高学生分析能力、
教学重点和难点
用线段图帮助理解题意,分析数量关系,掌握解题思路既是重点,又是难点、
教学过程 设计
(一)复习准备
1、板演:
华山小学三年级栽树56棵,四年级栽的树是三年级的2倍、三、四年级一共栽树多少棵?
2、全班同学根据线段图提问题、
先编题,再列式、
(1)一步计算的应用题、
有篮球20个,排球是篮球的3倍、有排球多少个?
20x3=60(个)
(2)两步计算的应用题、
有篮球20个,排球是篮球的3倍、篮球比排球多多少个?
20x3—20=40(个)
有篮球20个,排球是篮球的3倍,篮球、排球共有多少个?
20x3+20=80(个)
编题后把问题在线段图上表示出来、
订正板演题时要说出解题思路、
(二)学习新课
1、新课引入
把复习题增加一个条件,即“五年级栽的比三、四年级栽的总数少10棵”,把问题改成“五年级栽树多少棵”,像这样的问题这就是我们今天要研究的(板书:应用题)
2、出示例5
华山小学三年级栽树56棵,四年级栽树是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵、五年级栽树多少棵?
(1)读题,理解题意、读出已知条件和问题,并和复习题比较有什么地方不同
(2)引导学生用线段图表示题中的条件和问题、
三年级栽56棵四年级栽的是三年级的2倍
五年级栽棵10棵
(3)学生独立思考,试算、
(4)集体讨论、互相交流,说思路、
教师提出要求五年级栽树多少棵,根据题里给的条件能直接算出来吗?要先算什么?再算什么?引导学生分析、叙述自己的思路、
(求五年级栽树多少棵,必须知道三、四年级栽多少棵、三年级栽树的棵数已经知道,四年级栽树棵数没直接告诉,所以先求四年级栽多少棵,算式为56x2=112(棵),再求三、四年级的总数,算式为56+112=168(棵)、因为五年级栽的棵数比三、四年级栽的总数少10棵,所以最后用总数减去10棵:168—10=158(棵)
随着学生的回答,板书:
(1)四年级栽多少棵?
56x2=112(棵)
(2)三、四年级共栽多少棵?
56+112=168(棵)
(3)五年级栽多少棵?
168—10=158(棵)
答:五年级栽158棵、
还有不同的想法吗?
如果题中五年级栽树的条件改为“五年级栽树的.棵数比三、四年级栽的总数多10棵”,怎样求五年级栽的棵数?
(用三、四年级栽的总数加10棵,168+10=178(棵)、)
(5)求三、四年级栽树的总数还有别的比较简便的方法吗?
提示:从倍数关系上考虑,谁是1倍数?三、四年级的总数是几倍数?怎样求三、四年级的总数?
(四年级栽的是三年级栽的2倍,三年级栽的是1倍数,四年级栽的是2倍数,三、四年级栽的总数是 2+1=3倍数:56x(2+1)=168(棵),然后再加上10棵,就是五年级栽的棵数:168+10=178(棵)、)
小结
解答应用题要认真审题,理解题意是基础,分析数量关系是解题的关键、采用什么方法分析要因题而异,由于解题思路的不同,解题方法也不一样,解题步骤也不一样,因此要灵活运用、
(三)巩固反馈
1先画图,再解答、
学校举行运动会、三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多12人,五年级参加比赛的有多少人?
2、看图解答、
3、条件有变化、先讨论、独立解答,再集体交流、
学校里有柳树36棵,松树比柳树少12棵,杨树的棵数等于松树和柳树总数的4倍、有杨树多少棵?
订正时可以明确,题目要求“杨树有多少棵?”这句问话本身数量关系不明显,因此可以根据已知条件的关系找出新的数量,直到所求的问题、
(四)全课总结
引导学生说出怎样分析应用题的数量关系、
(五)作业
练习五第1~3题、
课堂教学设计说明
本节课三步应用题是在学生学过的有关倍数的两步应用题的基础上发展的,两步应用题增加一个条件,改变其问题,就是三步应用题、本节课仍以思路教学为重点,通过画线段图,学会分析数量关系,以掌握解题思路,提高分析问题的能力、本节课着重体现以下几个方面:
1、培养学生画线段图分析数量关系的能力、画线段图虽不作教学要求,但它比文字叙述的题要具体的多,在分析数量关系中,恰当地运用线段图是帮助学生由形象思维过渡到抽象思维的桥梁,因此无论是复习、新课、练习都十分重视画图、看图分析的训练、
2、重视学生叙述思维过程的练习、应用题不但要注重结果的正确性,还要重视思维过程的逻辑性,因此解答应用题要让学生说出自己是怎么想的,口述出思维过程,这也是培养学生逻辑思维能力的手段、
3、注重知识间的联系、发展和变化、把复习题改变条件可使两步题变成三步题,条件变化了,解题方法也变了,让学生在分析不同的数量关系中,掌握解题思路,达到举一返三的目的
4、设计不同层次的练习、先基本、后变化、先易后难,把说思路、画线段图贯穿于全课中、让学生通过不同的练习,达到熟悉数量关系,掌握不同的思路,提高分析、解答应用题的能力、
板书设计
例5 华山小学三年级栽树56棵,四年级栽的棵数是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵、五年级栽树多少棵?
(1)四年级栽多少棵?
56x2=112(棵)
(2)三、四年级共栽多少棵?
56+112=168(棵)
(3)五年级栽多少棵?
168—10=158(棵)
答:五年级栽158棵、
简便算法:
56x(2+1)=168(棵)
168—10=158(棵)
练习、看图解答
(1)小强集邮多少张?
45x5—20
=225—20
=205(张)
(2)两人共集邮多少张?
45+205=250(张)
答:两人共集邮250张、
《比的应用》教学设计5
设计思路:本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。
教学内容:六年级上册比的应用
教学目标:
1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。
2、能正确解答按比例分配问题。
3、培养解决问题的能力,促进探索精神的养成。
教学重点:掌握解答按比例分配应用题的步骤。
教学难点:掌握解题的关键。
教学过程:
一、创设情境,感受价值
1、师:同学们,大家平时放过东西吗?
2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)
注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?
3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。
注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。
二、探究教学
1、探究例题
呈现例题,根据学生的建议,共同完成例1
师:植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵? (2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息?
师:请同学们独立思考,独立完成(教师巡视、指导)
(3)展示结果
根据学生的回答板书解题方法
第一种:60÷(2+3)=12(棵) 12×3=36(棵) 12×2=24(棵)
第二种:2+3=5
60×3/5=36(棵) 60×2/5=24(棵)
注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。
2、揭示课题
师:像这样把一个数量按照一定的`比进行分配,我们通常把这种分配方式叫做按比例分配。
3、思考:如何检验答案是否正确呢?
讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?
指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。
三、巩固练习教材做一做。
四、总结
通过这节课的学习,你有什么收获?
教学反思:
1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。
2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。
《比的应用》教学设计6
一、教学内容:
人教版五年级上册第33页的例题12。
二、教学目标:
在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。
三、教学重点:
让学生学会能根据实际情况采用“进一法”或“去尾法”取商的近似值。
四、教学难点:
能够根据实际情况采用“进一法”、“去尾法”或“四舍五入法”。
五、教具:
课件
六、教学过程:
一、情景导入。
(一)创设小强生日会的情景。
1、老师:同学们,今天是几月几日?
2、老师:今天,老师非常高兴,因为今天刚好是小强的生日,他邀请了我们全班一起去参加他的生日会。大家想去吗?
3、(播放去小强家的录像课件)
4、(播放课件)进门后:
瞧,小强好像有点烦恼,那我们去问一下他。小强说:“我的生日会在七点开始,我的爸爸五点半才下班。他的公司离家有60千米。他下班坐的士回家,的士每小时行驶50千米。我担心他不能准时赶到。”
5、老师:你知道小强有什么烦恼吗?能帮助他解决吗?
6、出示题目:
爸爸的公司离家有60千米。他下班坐的士回家,的士每小时行驶50千米。爸爸回家大约要多少小时?(保留整数)
学生列式解答:60÷50=1.2(小时)≈1(小时)
7、提问:小强的生日会在七点开始,他的爸爸五点半才下班,能准时赶到吗?
(从爸爸下班到生日会开始要1.5小时,现在爸爸从公司回到
家大约要1小时,所以爸爸可以准时到达。)
8、老师:刚才,我们是根据什么方法来求出商的近似值?
(四舍五入法)
9、导入:其实在日常生活中,我们经常会遇到利用商的近似值来
解决问题。如果所有商的近似值都用四舍五入法求出来,你们说行吗?今天,我们继续学习一些求商的近似值的方法。
板书课题:《近似值的实际应用》
二、探究新知。
1、教授教科书第33页的例题12的第(1)小题。
(1)播放课件:(走进厨房)
瞧,小强的妈妈王阿姨好像有点烦恼,那我们也去问一下她。小强的妈妈说“今天为了给小强庆祝生日,特意买来了许多菜及一些调味料,准备做一顿美食大餐。但是,买来的香油太大瓶,不方便煮食,想把香油装入小玻璃瓶里。但是不知道需要准备多少个玻璃瓶装?”
老师:你知道小强的妈妈有什么烦恼吗?能帮助她解决吗?
(2)出示题目:小强妈妈要将2.5千克的香油分装在一些玻璃瓶里,每瓶最多可盛0.4千克,需要准备几个瓶?
(先让学生自己独立审题,分析题目再列式解答。)
2.5÷0.4=6.25(个)
答:需要准备6.25个瓶。
(3)提问:①瓶子应该是一个一个的,能用小数表示吗?
②应该用什么数来表示?
③有什么方法可以保留整数?
(4)提问:如果用“四舍五入”法保留整数,应该是多少个瓶子?
学生在练习本上做题,然后汇报。(6.25≈6要用6个瓶子。)
(5)提问:根据实际情况,用6个瓶子能将2.5千克的香油全部装入瓶子吗?
同桌讨论:随机点拔汇报。
(因为6个瓶子只能装2.4千克香油,还有0.1千克香油,需要多一个瓶子装,所以要准备7个瓶子才能装完。)
(6)老师:像这样的题目,我们要根据实际情况,采用“进一法”来求出商的近似值。方法就是在保留整数时,无论十分位上的数是多少,一律往整数部分进一。(板书:进一法)
(7)示范教学:2.5÷0.4=6.25(个)≈7(个)
答:需要准备7个瓶。
2、教授教科书第33页例题12的.第(2)小题。
(1)播放课件:(客厅)
小强妈妈说:“为了答谢大家刚才的帮助,我特意准备了一些小礼物送给大家。这些礼物我打算在生日会玩游戏的时候送给大家。为了增加神秘感,我想把礼物包装一下。准备了一些礼盒和红丝带,但我不知道这些红丝带可以包装几个礼盒?”
(2)出示题目:王阿姨用一根25米长的红丝带包装礼盒,每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?
(3)学生独立审题,分析题目,列式解答。
25÷1.5=16.66(个)
(4)提问:①礼盒数能够用小数来表示吗?
②如果用整数表示,根据“四舍五入法”或“进一法”保留整数,那么这些红丝带可以包装几个礼盒?
(5)想一想:包装17个礼盒,丝带够吗?为什么?
四人小组讨论,再向全班汇报:
(因为1.5×16=24(米)包装16个礼盒24米剩下的1米丝带不够包一个礼盒,所以我认为只能包装16个礼盒。)
(6)提问:你们认为能包装多少个礼盒?
(7)老师:像这样的题目,我们要根据实际情况,采用“去尾法”来求出商的近似值。方法是在保留整数时,无论十分位数上的数是多少,一律去掉。(板书:去尾法)
(8)示范教学:25÷1.5=16.66(个)≈16(个)
答:这些红丝带可以包装16个。
3、看书质疑。
请大家打开教科书的33页,先把例12上面的内容补充完整,再想一想,有什么不明白的地方就提出来。
《比的应用》教学设计7
这学期暑假我参加了清丰县教委中心组织的《多媒体环境下的教学设计与资源应用》课程培训。古语有云“活到老,学到老”,在这个信息高速发展的时代,不能与时俱进,肯定会被淘汰,而这一至真名理,始终需要我们的贯彻实施,同时这也是一个提高自我修养的绝好机会,通过这次培训我学到了很多东西,大概有以下几点:
一.通过这次电脑课程的培训,我知道了教学资源的检索、收集、下载和加工处理的重要性,提高了我对电脑操作的熟练程度,对于相关的软件也可熟练操作,也有了一定的实践经验,对于以后的课件制作是一大助力,了解了多媒体环境下教学设计的特点和方法,也学会了教学资源与教学设计整合的方法,并亲身实践以加深印象。
二.随着时代的发展,信息的变更变得至关重要,有时候掌握信息就等于掌握了未来,而因特网上的.大量信息就很好的帮助了我,它让我随时随地的掌握信息的变化,以更好的掌握时代的发展,能更好的跟上时代的步伐,不至于被淘汰,不过因特网上的信息因为太过庞杂,所以无可避免的夹杂一些有害信息,所以做好信息的筛选尤为重要,这一点也是我们最应该教给学生的,以便他们取其精华,去其糟粕,更好的学习,同时通过这个的学习,也增加了我与学生交流的话题,更好的了解学生的变化,建立和谐的师生关系。
三.通过培训,我认识到了合作的重要性,与小组的几位老师合作的也很愉快,使我充分验证了“众人拾柴火焰高”这句名言,也使我交到了不少良师益友,这些将是我以后学习生活中的榜样和前进的动力。
总之,通过这次的学习培训,我是受益颇多,不仅加强了自己的专业技能,学到了很多多媒体应用技巧,也打开了一扇更为广阔空间的大门,相信未来会更光明。
《比的应用》教学设计8
教学内容:
人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。
学情分析:
1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。
2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的.基础上使学生学会准确表达。
教学目标:
1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。
3、使学生在学习分数的意义的基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。
教学重难点:
重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
难点:从分母和分子的意义这一角度理解“整体”与“部分”的关系。 教学准备:
多媒体课件,答题纸,小棒。
教学过程:
师:你想到的这个数表示什么意思?
(预设:平均分、分数线、分子、分母、分数的意义。师选择板书)
二、探究新知。
1、初步感受整体由“1个”变“多个”
(1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?
(2)、现在你又想到了哪个数?它表示什么意思?
(3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?
(4)教师对学生的回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?
2.理解部分与整体的关系。
(1)课件出示六个苹果,动态演示平均分的过程。
学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)
(2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)
3、回顾建模。
课件出示:
引导学生回顾总
结:我们不仅可以把一个完整的物体
或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。
三、动手操作,加深认识。
1、“均匀地分”。
(1)提出要求:老师给大家准备了12个苹果,
请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。
(2)生独立思考,动手操作。
(3)、汇报交流。
(4)对比提升。
课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。
2、“创新地画”。
(2)生独立思考,动手操作。
(3)、汇报交流,展示学生作品。
预设:因为都是把整体平均分成了2份,取其中的1份。
师:哪儿不同?
预设:总数不同,每份数也不同。
四、闯关游戏,加深理解。
第一关:“准确地拿”。
第二关:“独具慧眼”。
五、回顾反思,结束全课。
1、引导学生回顾反思:今天你有什么收获?
2、师给与评价
《比的应用》教学设计9
因式分解是初中代数的重要内容,因其分解方法较多,题型变化较大,教学有一定难度。转化思想是数学的重要解题思想,对于灵活较大的题型进行因式分解,应用转化思想,有章可循,易于理解掌握,能收到较好的效果。
因式分解的基本方法是:提取公因式法、应用公式法、十字相乘法。对于结构比较简单的'题型可直接应用它们来进行因式分解,学生能够容易掌握与应用。但对于分组分解法、折项、添项法就有些把握不住,应用转化就思想就能起到关键的作用。
分组分解法实质是一种手段,通过分组,每组采用三种基本方法进行因式分解,从而达到分组的目的,这就利用了转换思想。看下面几例:
例1、 4a2+2ab+2ac+bc
解:原式 =(4a2+2ab)+(2ac+bc)
=2a(2a+b)+c(2a+b)
=(2a+b)(2a+c)
分组后,每组提出公因式后,产生新的公因式能够继续分解因式,从而达到分解目的。
例2、 4a2-4a-b2-2b
解:原式=(4a2-b2)-(4a+2b)
=(2a+b)(2a-b)-2(2a+b)
=(2a+b)(2a-b-2)
按“二、二”分组,每组应用提公因式法,或用平方差公式,从而继续分解因式。
例3、 x2-y2+z2-2xz
解:原式=(x2-2xz+z2)-y2
=(x-z2)-y2
=(x+y-z)(x-y-z)
四项式按“三一”分组,使三项一组应用完全平方式,再应用平方差进行因式分解。
对于五项式一般可采用“三二”分组。三项这一组可采用提公因式法、完全平方式或十字相乘法,二项这一组可采用提公因式法或平方差公式分解,因此变化性较大。
例4、 x2-4xy+4y2-x+2y
解:原式=(x2-4xy+4y2)-(x-2y)
=(x-2y)2-(x-2y)
=(x-2y)(x-2y-1)
例5、 a2-b2+4a+2b+3
解:原式=(a2+4a+4)-(b2-2b+1)
=(a+2)2-(b-1)2
=(a+2+b-1)(a+2-b+1)
=(a+b+1)(a-b+3)
对于六项式可进行“二、二、二”分组,“三、三”分组,或“三、二、一”分组。
例6、 ax2-axy+bx2-bxy-cx2+cxy
①解:原式=(ax2-axy)+(bx2-bxy)-(cx2-cxy)
=ax(x-y)+bx(x-y)-cx(x-y)
=(x-y)(ax+bx-cx)
=x(x-y)(a+b-c)
②解:原式=(ax2+bx2-cx2)-(axy+bxy-cxy)
=x2(a+b-c)-xy(a+b-c)
=x(x-y)(a+b-c)
例7、 x2-2xy+y2+2x-2y+1
解:原式=(x2-2xy+y2)+(2x-2y)+1
=(x-y)2+2(x-y)+1
=(x-y+1)2
对于折项、添项法也可转化成这三种基本的方法来进行因式分解。
例8、 x4+4y4
解:原式=(x4+4x2y2+4y4)-4x2y2
=(x2+2y2)2-4x2y2
=(x2+2xy+2y2)(x2-2xy+2y2)
例9、 x4-23x2+1
解:原式=x4+2x2+1-25x2
=(x2+1)2-25x2
=(x2-5x+1)(x2+5x+1)
又如x3-7x-6可用折项、添项多种方法分解因式:
⑴x3-7x-6=(x3-x)-(6x+6)
⑵x3-7x-6=(x3-4x)-(3x+6)
⑶x3-7x-6=(x3+2x2+x)-(2x2+8x+6)
⑷x3-7x-6=(x3-6x2-7x)+(6x2-6)
只有掌握好三种基本的因式分解方法,才能应用转化思想处理灵活性较大、技巧性较强的题型。
《比的应用》教学设计10
教学目标
1.复习成正比例和反比例关系的量的意义。
2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。
3.进一步培养同学们分析、推理和判断等思维能力。
教学重点和难点
1、 判断两种相关联的量成什么比例;确定解答应用题的方法。 教学准备 多媒体课件
教学过程设计
今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。
一、复习概念
1、什么叫成正比例的量?它的关系式是什么?
2、什么叫成反比例的'量?它的关系式是什么?
3、正反比例它们有什么相同和不同的地方?
二、复习数量关系
1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成
什么比例?
1.工作效率一定,工作时间和工作总量。( )
2.每块砖的面积一定,砖的块数和铺地面积。( )
3.挖一条水渠,参加的人数和所需要的时间。( )
4.从甲地到乙地所需的时间和所行走的速度。( )
5.时间一定,速度和距离。( )
2.选择题:
1.如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。 ① 成正比例② 成反比例③ 不成比例
2.步测一段距离,每步的平均长度和步数( )。
① 成正比例② 成反比例③ 不成比例
3.比的后项一定,比的前项和比值()。
① 成正比例② 成反比例③ 不成比例
4.C= πd 中,如果c一定,π和 d( )。
①成正比例 ② 成反比例③ 不成比例
5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。
?40:15= 60: ② 40=15×60 ③ 60=15×40
三、复习简单应用题
例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?
A、题中涉及哪三种量?其中哪两种是相关联的量?
B、哪一种量是一定的?你是怎么知道的?
C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。
2、总结 正 、反比例解比例应用题要抓的四个环节
3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。
②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。
③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。
④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
⑤、小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?
⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?
四、 巩固练习
1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?
解:设可装订本。
(30+10)=500×30
4 0=15000
=15000
=375
答:可装订375本。
2、比一比,想一想,每一组题中有什么不同, 你会列式吗?
(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?
(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?
五、拓展延伸
用正反两种比例解答:
1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?
六、全课总结
解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。
七、板书设计
正反比例应用题
=K(一定) X×Y=K(一定)
X和Y成正比例关系。 X和Y成反比例关系。
正y 、反比例解比例应用题要抓的四个环节
第一、分析:可分四步。
第一步:确定什么量是一定的。
第二步:相依变化的量成什么比例。
第三步:找准相对应的两个量的数。
第四步:解方程(根据比例的基本性质)
第二、设未知数为X,注意写明计量单位。
第三、根据正反比例的意义列出方程。
第四、检验并答题。
《比的应用》教学设计11
第四课时
教学内容
应用题(教材第137页总复习第8~10题,教材第140页练习三十四第12一15题)。
教学要求
使学生进一步掌握应用题的一般解题步骤,正确地分析应用题中数量间的关系,可以根据具体的题目,既能按照一般的分析思路进行解答,又能根据题里已知条件间的特殊数量关系,选用简便方法解答,从而提高学生分析和解决问题的能力。
教学步骤
一、基本数量关系的训练
平均每小时行的路程=()÷时间
两地距离○()=相遇时间
实际产量○()=计划产量
提前的天数=()○()
二、复习应用题一般的.解题步骤
1.说一说解答应用题一般的解题步骤。
2.补上问题再解答:
(1)小龙有三盒彩色粉笔,共72支,又买了两盒,?
学生可能补的问题:
①现在小龙共有多少支彩色粉笔?
②又买了多少支彩色粉笔?
把问题补充完整后,让学生自己分析,列综合算式计算,教师指名口头分析数量关系并说出算式,教师板书。第①题有两种解法,教师要给予肯定。②题是①题的一部分。
(2)两地相距330千米。甲车每小时行32千米,乙车每小时行34千米。两车同时从两地相对开出,?
学生可能补的问题:
①开出后几小时两车相遇?
②相遇时两车各行多少千米?
③相遇时甲车比乙车少行多少千米?
④开出后2.5小时,两车相距多少千米?
⑤如果甲车先开出1小时后,乙车才开出,还要几小时相遇?
让学生自己分析,逐题解答,可引导画线段图理解。
3.改题。
把上题改成已知相遇时间求两地距离的问题。
学生编题,教师板书,然后让学生自己解答:口述数量关系,并列式,集体讲评。(略)
教师小结:解答应用题可根据四个解题步骤,认真审题,理解题意,对稍复杂的问题可以画线段图帮助理解,分析数量关系,列式计算、解答。做完题要认真检验答案,如有列式错误,必须订正。
三、练习
教材第140页练习三十四第12~15题。
作业辅导
1.吉阳乡原计划18天挖一条是3600米的水渠,实际每天比原计划多挖40米,实际提前几天挖完这条水渠?
2.建筑工地要运走一堆土,原计划每天运240车,30天可以运完。现在要提前15天运完,每天要运多少车?
3.某水利专业队,15人3天可以修水渠135米,照这样计算,增加5人再修6天一共可修水渠多少米?
4.某电视机厂四月份(30天)计划生产电视机1080台,实际头7天就生产了420台。照这样计算:(1)可提前几天完成任务?(2)全月可以超产多少台?
《比的应用》教学设计12
课题:
分数的简单应用
科目:
数学
教学对象:
三年级
课时:
2课时
教学内容分析:
本节课是在学生初步认识了分数之后,学习用分数解决一些简单的实际问题,主要先让学生了解把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示,加深学生对分数含义的理解,学会用简单分数描述一些简单的生活现象;接着通过直观操作与已经掌握的分数含义相结合解决简单的实际问题,培养了学生解决问题的能力,发展抽象概括和类比推理能力,发展学生的数感。让学生在具体情境中探究分数,体验学习数学的乐趣,积累数学活动的经验。
教学目标:
1、通过说一说,分一分,画一画等数学活动,让学生经历“整体”由“1个”到“多个”的过程,指导把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
2、借助解决具体问题的活动,使学生能运用分数的相关知识,描述一些生活现象;发展抽象概括和类比推理能力,发展学生的数感。
3、让学生在具体情境中探究分数,体验学习数学的乐趣,积累数学活动经验。
学习者特征分析:
1、学生是9-10岁的儿童,思维活跃,课堂上喜欢表现自己,对数学学习有浓厚的兴趣;
2、学生在学习中随意性非常明显,渴望得到教师或同学的赞许;
3、学生在平常的生活当中有“自己的事情自己做”的经历和体验,比如自己整理书包、系红领巾等;
4、学生已对数学有一定的认识和了解,对分数有了一定的认识;
5、学生已经学习了分数的简单计算;
6、学生对于分数有了自己的理解,对于整体和平均分有了一定的认识和理解,知道了一个整体的平均分,用分数表示和计算。
教学策略选择与设计:
在教学中,首先我通过让学生对比发现一个正方形和4个正方形的区别和联系,循序渐进地让学生体会“1”是一些物体时,如何用分数表示整体与部分关系,初步形成认识:与“1”是一个物体是相同的,平均分成几份分母就是几,取其中的几份分子就是几,取几份就有几个1份那么多。
接着,出示苹果图,让学生进一步巩固把多个物体看成一个整体的数学思维,并且让学生自己动手画一画,分一分,亲身经历“整体”由“1个”到“多个”的过程。在分苹果的过程中,有意识地进行拓展,让学生了解到“总数一样,平均分的份数不一样,每一份所用的分数表示也不一样”和“总数不一样,平均分的份数一样,每一份的数量也不一样”,培养学生的逻辑思维能力。
在整节课教学中,注重让学生用数学语言描述动作过程和结果,通过语言描述可以将学生的思维过程外显,加深对分数含义的理解。
教学重点:
知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
教学难点:
从份数的角度理解“部分”与“整体”的关系和平均分。
教学过程:
一、创设情景,揭示课题
谈话:让学生举例说分数及表示的意思,比较分数的大小,做几道分数的加减法的题,复习分数加减的规律。
小结:把一个物体平均分成几份,分母就是几,取其中的几份,分子就是几。
师:这节课,我们继续学习分数。
二、探究体验,经历过程
1、初步感知整体由“1个”变成“多个”。
(1)黑板出示例1(1)左侧的内容
①让学生用分数表示涂色部分并说说4/1表示什么意思。
②如果涂色部分有2份呢?用分数怎么表示?3份呢? (2)课件出示例1(1)右侧的内容,动态演示剪的过程。 ①课件演示将一个正方形平均分成了4个正方形。
问:涂色部分是其中的几份?这样的一份还能用分数表示吗?
②这样的2份是4个正方形的几分之几呢,3份呢?
③对比两个4/1,它们所表示的意思是否一样?
小结:不仅可以把一个正方形平均分,还可以把4个正方形看成一个整体平均分。其中的1份都能用4/1表示。
2、从份数角度理解部分与整体的关系
课件出示第100页例1(2)的内容,动态演示平均分的过程。(有6个苹果,平均分成了3份)
① 其中的1份是苹果总数的几分之几?你能说说这个1/3表示的意思吗?你是怎么知道每一份用1/3表示的?
②1份是苹果总数的1/3,2份是苹果总数的几分之几呢?3份呢?
3、自主探索,加深认识
出示学具(苹果图),还可以怎么分?
(1)学生独立思考,自主探索
(2)学生展示,汇报交流
(3)对比提升,为什么同样是一份,却用不同的份数表示? (平均分的份数不一样)
4、比较辨析,提升认识 出示课件
①你能用分数表示其中的一份吗?
②为什么都能用1/3表示?(都是把苹果平均分成了3份,取其中的1份?)
② 每一份各有多少个苹果呢?(2个、3个、4个)
④为什么同样都是1/3,每一份的数量却不一样? (苹果的总数不同,所以每一份的数量也不同)
三、巩固练习,深入理解
1、完成教材第100页“做一做”的第1题。重点让学生说说分数表示的意义。
2、完成教材第100页“做一做”的'第2题。 学生独立完成后,集体交流。 (将9个△平均分成了几份?每1份有几个△,2份呢?)
3、完成教材第100页“做一做”的第3题。 同桌合作学习,动手摆一摆,并说一说想的过程。 (把这个10根小棒平均分成5份,其中的1份是2根,2份就是4根。)
4、完成教材第102页练习二十二第2题。学生独立完成,集体交流,让学生结合图说一说分数表示的意义。
四、课堂小结 这节课你有什么收获?
教学评价设计:吕家岘小学办公室主任对我的这节课作如下评价: 首先白丽老师作为一名刚刚走上工作岗位的新教师,在第一次公开课上能达到这个教学水平还是不错的,当然除了优点以外,还存在一些不足之处,比如整个课堂气氛的创造上还不够,还要进一步下功夫,另外课堂的把握上也还存在一些问题,希望在以后的教学过程中多向有经验的老教师学习,多听老教师的课。 板书设计: 分数的简单应用
6个苹果平均分成3份, 1份是苹果总数的 2份是苹果总数的
12÷3=4(人) 12÷3=4(人) 4×2=8(人)
答:女生有4人,男生有8人。
教学反思:分数的简单应用是在学生学习了分数的认识、比较分数的大小和分数计算的基础上而解决实际问题的内容。这节课从学生的认知规律出发,符合三年级学生的年龄特点。教师应该认真分析教材内容,把分数的意义、分数的计算和解决问题融为一体。把解决问题的方法潜移默化的渗透给学生。
1、激发兴趣,主动探究。
学生有了兴趣就会产生强烈的求知欲望,就能积极主动地参与活动,成为学习的主体。教师应该抓住小学生好动的特点,充分利用操作材料,组织学生动手操作,通过摆一摆、画一画、算一算、说一说等活动,促使学生耳、口、手、脑等各种感官并用。教师参与到学生当中引导学生由浅入深逐步探究,营造了宽松和谐的学习氛围,激发了学生学习兴趣。
2、问题引导,落实目标。
紧紧围绕教学目标设计教学活动,教学中教师把学生当作研究者、发现者。课堂上教师以问题为引导,让学生自由地思考探究、操作交流。学生亲身经历数学知识的形成过程,经历知识从形象到表象再到抽象的过程。从中体验解决问题的思想和方法。例如:三分之一是女生,三分之一表示什么意思?三分之二是男生,三分之二是什么意思?进一步理解分数的意义。再如:请你用自己喜欢的方式求出男、女生的人数,再以小组为单位和小组同学说一说你是怎么想的?通过交流的过程学生将图形、语言、算式三种表征进行有机结合,在解决问题的同时加深了对分数的理解。
3、大胆放手,能力培养。
《数学课程标准》强调:“要鼓励学生独立思考、自主探究,为学生提供积极思考与合作交流的空间。”本节课教师充分利用学生已有的知识经验,给学生提供自主学习和合作交流两种学习方式。给予了学生自己操作、主动探究的空间,学生真正的成为了学习的主人,真正的掌握了学习的主动权,真正把课堂还给了学生。学生在小组合作讨论、全体汇报交流时,思维相互碰撞,智慧相互启迪,有的学生用小棒摆一摆,有的学生画一画,有的学生用算式计算,且算法多样。达到不同学生之间的资源共享,优势互补的目的,既培养了学生的合作意识,又培养了学生的探究能力。学生体验到成功的喜悦。
4、本节课抓住了学生的身边生活去学习数学,应用数学。把教材的内容与现实紧密结合起来,符合学生的认知特点。同时也消除了学生对数学的陌生感。
通过本节课也看到了自己需要努力的方向。譬如时间安排前松后紧,有一点拖堂;教师语言还不够精炼,上下衔接不流畅。但今后的教育道路还很长,我会不断努力,每一节课都会与我的学生共同成长。
《比的应用》教学设计13
本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。
一、有效的“复习回顾”
学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。
二、有效的“新知探究”
根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式 ,并理解确定正比例函数表达式的方法和条件。
三、有效的“拓展延伸”
设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。
四、有效的“感悟收获”
通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。
五、有效的'“巩固提高”
通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。
六、有效的“作业布置”
根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。
以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家
《比的应用》教学设计14
(1)教学设计
一.教学目标
1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3.渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
三、教学过程:
(一)复习引入
1.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系:sinA=cosB= sinB=cosA= tanA= tanB=
(2)三边之间关系 (勾股定理)
例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)教学过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的'两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
2.教师在学生思考后,继续引导"为什么两个已知元素中至少有一条边?"让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题
例1:已知a、b、c为Rt△ABC的三边,且斜边c=30
a=15,解这个三角形.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
解 ∵sinA=a/c= 1/2
∴ ∠a=30° ∴ ∠B=60°
∴根据勾股定理求出b=
例 2:在Rt△ABC中, ∠B =30°,b=20,解这个三角形.
引导学生思考分析完成后,让学生独立完成
在学生独立完成之后,选出最好方法,教师板书
完成之后引导学生小结"已知一边一角,如何解直角三角形?"
答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底
注意:例1中的b和例2中的c都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。
4.巩固练习
(1)P74 练习(单班)
(2) P77习题1(双班)
说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.
(三)总结与扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2.教师点评.
四、布置作业
1 、P84习题1 、2.(单班)
2 、P78习题6(双班)
《比的应用》教学设计15
教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。
在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。
本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。
巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。
小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。
教学目标:1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。
2、培养学生分析问题和解答问题的能力。
教学重点:找准每一步的单位“1”和数量关系。
教学难点:掌握两类应用题的结构特点,找准数量关系。
教学过程:
一、复习导入
1、口算天天练。(课件示题,指名口答)
渗透个别算式的知识点。
2、“看谁先找到题中的单位‘‘1‘‘。”指名口答
3、分析分率句,口头列式解答。
教师小结:题目中已知了分率和单位“1”的量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位“1”的量,要用除法计算。
4、谈话引入新课。
东华小学的校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)
问:在这道题中,有几个单位“1”?这两个单位“1”的.量是已知还是未知?
这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)
二、新授课
1、教学例4。
1.)师引导学生分析题目中的数量关系。
2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。
3.)师引导,学生确定每一步的算法。
师小结:刚才我们用连除的方法解答了题目中有两个单位“1”并且都未知时,求其中一个单位“1”的量的这类问题。
4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)
2、完成“练兵场1”中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)
更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?
3、教学例5。
1.)出示例题,齐读题目。
2.)师引导学生分析题目中的数量关系。
3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。
4.)师引导,学生确定每一步的算法。
师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位“1”并且一个已知,一个未知时,求其中未知的一个单位“1”的量的这类问题。
5.)谁还会用列方程的方法解答这道题?(指名板演)
4、完成“练兵场1”中的题目。集体订正。
三、巩固练习
1、基本练习。只列式,不计算
要求先独立做,然后集体订正。
下面几道题和前面的稍稍有点不同,敢挑战吗?
2、变式练习。
3、拓展练习。
四、小结
今天我们学习了题目中含有两个单位“1”的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。
五、布置作业
练习十一的2、3、6题。
【《比的应用》教学设计】相关文章:
《比的应用》教学设计02-07
比应用教学设计05-08
《比例的应用》教学设计04-21
《比的应用》教学设计15篇05-01
《比例的应用》教学设计15篇04-21
关于《杠杆的应用》教学设计范文04-18
《正比例的应用》教学设计模板04-18
两步计算应用题教学设计03-19
六年级《比应用》教学设计05-11