《圆柱的体积》教学设计15篇
作为一位杰出的教职工,通常需要准备好一份教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。优秀的教学设计都具备一些什么特点呢?以下是小编整理的《圆柱的体积》教学设计,希望能够帮助到大家。
《圆柱的体积》教学设计1
教材版本
《义务教育课程标准实验教科书》 (人教版) 六年级数学下册。
课程标准摘录
1、结合具体情境,探索并掌握长方体、正方体、圆柱体的体积和表面积以及圆锥体体积的计算方法。
2、探索某些实物体积的测量方法。
学情与教材分析
“圆柱的体积” 是人教版六年级下册“圆柱和圆锥”这一单元的第四节的内容,在学习本节内容之前,学生已经认识了圆柱,学习了体积,经历了长、正方体的体积推导过程以及圆面积公式的推导过程。在推导圆柱的体积公式时,把圆柱体转化成长方体,高并没有变,只是把底面的圆形转化成长方形,它的转化过程实际上和圆转化成长方形求面积的方法相同,学生已具备有学习本课的技能。教学中不仅要让学生知道圆柱体积计算公式是什么,而且要让学生主动探索、经历圆柱体体积计算公式的推导过程,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。
学习目标
1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。
2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%。
3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。
4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。
5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。
学习重点
圆柱的体积计算方法
学习难点
圆柱体积计算公式的推导。
教具、学具准备:
1、师:圆柱体积计算公式推导教具,课件。
2、生:削好的圆柱体萝卜或土豆、或圆柱体橡皮泥,小刀。
教学设想
本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。第二个环节自主合作、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的'练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。
教法、学法
演示法、启发引导;实验、合作探究、尝试练习。
评价方案
1、通过小组合作实验完成活动检测目标1、4、5的达成。
2、通过提问检测目标3、4、5的达成。
3、通过评价样题检测目标1、2、4的达成。
评价样题
1、
2、
教学过程
一、激活旧知,引出新知
1、计算下面物体的体积
(1)长方体的长20厘米,宽10厘米,高8厘米。
(2)正方体棱6分米
2、回忆一下圆面积的计算公式是如何推导出来的?
[学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。]
教师(结合课件演示)把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。长方形的长,相当于圆周长的一半,长方形的宽相当于圆的半径。因为长方形的面积=长×宽,所以,用圆周长的一半×半径就可以求出圆的面积,周长一半就等于πR,半径是R,所以圆的面积是S=πR。
[设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。]
3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?
[设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。]
板书:长方体的体积=底面积×高.
[设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。]
圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。
板书:圆柱体所占空间的大小叫做圆柱的体积。
师:这节课,我们就来学习圆柱的体积.(板书课题:圆柱的体积)
二、自主合作,探索新知
1.求圆柱体容器中水的体积
出示长方体容器:问,这是什么?
[学情预设:学生可能说出长方体容器。]
问:怎么求长方体容器中水的体积呢?
[学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。] 问:如果换成圆柱体容器又如何求其中水的体积呢?
[学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。](演示:把圆柱体容器中的水倒入长方体容器)
2.橡皮泥圆柱体的体积
(出示橡皮泥做成的圆柱体)
问:这是一个什么样的立体图形?
问:它是用橡皮泥做成的。你能想办法求出它的体积吗?
[学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。]
3.常用圆柱的体积.
课件出示圆柱体压路机的滚筒的图片。
问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢?
[设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。]
小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。
4.探究规律
问:圆我们可以通过分割、拼合转化成已学过的长方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作:
课件出示操作讨论提纲:
(1)圆柱体可以转化为什么样的立体图形?
(2)转化后的立体图形体积与圆柱的体积大小是否有变化?
(3)转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。
学生讨论,教师参与小组讨论、点拨、操作。
问:下面哪个小组来先进行汇报。
各组派代表边汇报边演示。
[学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱分割的份数多一些,才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。]
问:谁还有补充?(学生补充讲解)
教师拿两个相同的圆柱体体积演示模型演示,边演示边讲解。
师:同学们看,老师这里有两个圆柱体,它们的底相同,高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成近似的长方体,如果我把它分割的份数越多,拼成的图形就越接近长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。
结合课件演示讲解。
师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。
师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:V=Sh)
〔设计意图:学生合作交流,自主探索、经历圆柱体体积计算公式的推导过程,理解和掌握了计算方法,加深了印象,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。达成目标1、3、4、5.〕
5、实际应用
(1)、师:给你圆柱的底面积和高,你会求圆柱的体积吗?
例1、一根圆柱形木料,底面积75平方厘米,高是90厘米,它的体积是多少? 学生独立完成,集体反馈矫正,说思路。
(2)、完成评价样题
〔设计意图:通过尝试练习加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。达成目标2、4. 〕
三、巩固练习,拓展提高
1、应用公式进行口算:
2、
3、
[设计意图:第一层次是已知底面积和高求圆柱体积的口算题,面向全体学生;第二个层次是已知底面半径和高、底面直径和高、底面周长和高,求体积的三种练习题,面向全体学生;第三个层次是求放入水中物体的体积就是求上升的圆柱形水的体积,面向中上层学生。这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。在做练习过程中,一、二层次的练习板演尽量让学困生和中等生去做,给他们展示自己的机会。并及时了解学生信息并根据学生反馈及时调整教学进程,同时对学生存在的问题及时指导。达成目标2、4. ]
四、全课总结,共谈收获
通过今天的学习,你有什么收获?
[设计意图:师生共同小结,学会了什么?怎样求圆柱的体积?这样起到强化重点的目的。]
五、课外创新,拓展延伸
长方体可以这样放(上、下面朝下),还可以这样放(左、右面朝下),还可哪样放(前、后面朝下)。 上、下面朝下时求出圆柱的体积=底面积×高,圆柱的体积还有没
《圆柱的体积》教学设计2
一、教学对象及学习内容特点分析:
圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。
二、教学目的:
学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。
学生能应用圆柱体积公式进行圆柱体积的计算。
学生能利用知识之间相互"转化"的思想探索解决新的问题。
三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。
四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。
五、教学过程的设想和点评
教师的教学行为学生的学习行为点评
第一阶段:创设情景,设疑引趣。
教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。
提问:小组讨论寻找解决这两个圆柱体积大小的方法。
1、学生小组讨论解决的方法。
2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。
通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。
第二阶段: 自主探究。概括规律
1、电脑提供学生探索资源:
(1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。
(2)把圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个近似的长方体。
2、学生反馈自学内容,师生共同导出圆柱的体积公式V=Sh1、学生打开电脑"自能学习"中的"寻方法",有选择地看学过的平面图形的面积公式和立体图形体积公式的'导出过程,从中找到推导圆柱体积公式的方法
2、学生通过观察圆柱公式的推导过程。
3、小组讨论填写实验报告。
4、师生导出圆柱的体积公式后,学生自学课本例题,并完成例4内容。通过利用资源、自能学习,让全体学生都能动脑、动口、动手参与到学习中去,使学生学会学习、学会协作,所学知识的理解更为深刻、透彻。在自学的过程中教师通过监控密切观察着学生的学习情况,发现问题及时解决。
圆柱体积公式的推导过程,学生会有不同的方法,如用课本的方法或用类比的方法,教师应给予恰当的评价。
第三阶段:拓展公式,自能训练。
1、公式拓展。
在日常生活中,圆柱的底面积通常没有直接给出,那么我们通过什么条件也能求出圆柱的底面积呢?
2、教师小结:无论已知圆柱的底面半径、直径还是底面周长,我们都必须根据V=Sh,先求出圆柱的底面积,然后乘以高才能求出圆柱的体积。
3、质疑
1、学生可根据已学的"圆的面积"公式导出。
(当已知圆柱底面的半径时V=∏r2h、当已知直径时V=∏(d÷2)2h、当已知周长时,先求半径,再求底面积,然后求圆柱体积。
2、判断。并说明原因
(1) 一个圆柱体的底面积是8平方厘米,高是6厘米,这个圆柱体的体积是48立方厘米。
(2) 一个圆柱的底面积是10平方米,高是10米,它的体积是100平方米。
(3) 一个圆柱体铁罐,底面直径是2米,高是3米,求它的体积。 列式是:3.14×22×3
1、根据生活实际,当知道圆柱底面半径、直径或周长时,怎样求圆柱的体积这个问题,可以让学生充分拓展思维,不要停留在只会死记公式、生搬硬套的低层次上。并大力鼓励、表扬爱动脑筋的同学
2、通过练习,学生对基本知识有一定的理解,教师也了解了学生对知识的掌握情况。
第四阶段:反馈学习、应用提高。
1、提出练习要求:先做"巩固"练习,有余力的再做"提高"练习。
2、小结练习情况,及时表扬对而快的同学及小组
3、回应开头,解决"浆糊笔"和"转笔刀"争论的问题。学生在电脑上完成。
1、赛车游戏:看谁跑得快。
(1)圆柱的底面积是15平方米,高是3米,体积是( )立方米。
(2)已知圆柱的高是20厘米,底面积100平方厘米,圆柱的体积是( )平方厘米。
(3)一个圆柱形的粮囤,从里面量底面半径是2米,高是2.5米。这个粮囤能装稻谷( )立方米。
(4)一个圆柱的体积是80立方分米,底面积是16平方分米,它的高是( )分米。
2、提高练习。考你智慧:看谁攀得高。
(1)一个圆柱,它的底面直径4厘米,高是3米,体积是( )立方厘米。
(2)一个圆柱体铁架,它的底面周长是62.8分米,高是6分米,它的体积是( )立方分米。
在计算过程中,学生会遇到不少问题,可通过师生交流或小组互相帮助解决,从而实现互帮、互学共同提高。
六、归纳总结、自我评价。
1、提出要求,学生谈收获。
2、总结本节情况。 谈收获,并作出自我评价。通过谈收获,体现学习的自主性,体验获得成功的乐趣。
七、对教学过程的设想和点评:
新课程标准注重小学生对周围世界与生俱来的探究兴趣和需要,在小学阶段,学生的知识积累与思维能力较为有限,强调用符合小学生年龄特点的方式学习,提倡课程贴近小学生的生活,这节课从学生身边学习用品"卷笔刀"和"浆糊笔"的入手,通过拟人的方式,由它们上学过程中引起的争论导出学习的内容,激发学生学习的积极性。这样在教学进程中安排好相关的情景组织学生参与其中,亲历过程,自主地开展活动,通过看、做、玩、想等方式,让学生既学会知识与技能,又培养智能、情感态度与价值观,促进学生科学素养的形成。
新课标还积极倡导让学生亲身经历以探究为主的学习活动,培养他们的好奇心和探究欲,使他们学会探究解决问题的策略,为他们终身的学习和生活打好基础。这是一节在网络环境下开展的探究型数学课,引入后,教师则大胆放手,营造了一个开放的探究空间,通过学生小组讨论寻找比较圆柱大小的方法,引导学生通过自主、合作探究这种学习方式进行实践活动,观察由圆柱转变成已学过长方体的过程,在观察中相互启发,共同提高,形成共识后并加以记录。再将大家的记录结果对比、讨论、从而得出结论:圆柱的体积=转变成的长方体的体积,从而导出圆柱的体积公式V=SH。在这一过程中,教师以学生的发展为本,关注每一位的发展,珍视每位学生的探究体验及独特见解,在学生探究结果的表述过程中,对同一个问题,不同的人可以得出不同的结论,他们通过互相交流互相讨论,思维更是得到发展与创新。不仅激发了每一位学生主动参与探究实践活动,更让学生在探究中学会合作、懂得思考、大胆发表自己的独特见解,更学会倾听、尊重他人的意见,从而实现互帮、互学共同提高,并在探究中发现、学习,激发学生学习的兴趣,培养了实践的能力。
网络环境下的教学方式不仅改变了以往教师满堂灌的现象,在拓宽学生知识面的同时,更培养了学生搜集信息、处理信息并进行合理解释的能力,大大地激发了学生自主学习的积极性,学生的创新意识日渐增强,真正实现了利用信息技术为教学内容服务。
《圆柱的体积》教学设计3
【教材简析】:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
【教学内容】:
p19-20页的内容和例题,完成“做一做”及练习三第1~4题。
【教学目标】:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公 式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
【教学重点】:掌握圆柱体积的计算公式。
【教学难点】:圆柱体积的计算公式的推导。
【教学过程】:
第一课时本册总课时:12 课时
一、复习
1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、什么叫做物体的体积?你会计算下面那些图形的体积?
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)
(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)
(3)拼成的近似长方体的高与原来的圆柱的.高有什么关系?(相等)
(3)通过观察,使学生明确:
长方体的底面积等于圆柱的底面积,
长方体的高就是圆柱的高。
长方体的体积=底面积×高,
所以圆柱的体积=底面积×高,
v = s h
圆柱的体积计算公式是:
v=s h
2、课堂练习:
(1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?
(2)指名学生分别回答下面的问题:
① 这道题已知什么?求什么?
② 能不能根据公式直接计算?
③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)让学生解答和板算,最后师生共同完成.
解:v=sh
=75×90
=675(立方厘米)
答:它的体积是675立方厘米。
3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的(v=π rh)
4.作业:
《圆柱的体积》教学设计4
教学内容:
人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积
教学目标:
1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
掌握和运用圆柱体积计算公式。
教学难点:
圆柱体积计算公式的推导过程
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积.
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的`假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,推导公式。
(1)、思考你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第17页例4上面的一段话:用字母表示公式。
《圆柱的体积》教学设计5
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
二、自主探究
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的'知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
(设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh ( 设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)
《圆柱的体积》教学设计6
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具,多媒体课件
教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的'体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用,小学数学教案《第十一册圆柱的体积公开课》。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
底面积(㎡)高(m)圆柱体积(m3)
63
0.58
52
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三.巩固反馈
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,切实体验到数学就存在于自己的身边。)
四.拓展练习
1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)
2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)
五.课堂小结:
1.谈谈这节课你有哪些收获。
2.解题时需要注意那些方面。
(设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。)
六.布置作业
1.A册习题2.7
2.拓展练习2题
教学反思:
本节课的教学体现了:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;三、正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果,不足处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。
《圆柱的体积》教学设计7
教学目标:
1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。
2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。
3、培养学生分析问题,解决问题及实践应用能力。
教学重点:
掌握有关圆柱的表面积和体积的计算,会综合运用
教学难点:
运用所学的知识解决生活中的实际问题。
学习过程:
一、复习回顾
1、下列图形的面积公式是什么?
长方形的面积=
正方形的面积=
平行四边形的面积=
梯形的面积=
圆的面积=
2、长方体的表面积=
圆柱的表面积=
二、探究圆柱的体积公式:
圆柱的体积=。
如果圆柱的体积用V表示,底面积用S表示,高用h表示,则圆柱的体积公式用字母表示为。
如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。
三、例题学习:
把一个棱长6分米的.正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?
例2、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?
四、课堂练习
1、求下面圆柱的体积
1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米
3)底面直径5分米,高6分米
2、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
《圆柱的体积》教学设计8
教学目标:
1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;
2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。
3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。
教学重点:
掌握和运用圆柱体积计算公式进行正确计算。
教学难点:
理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学准备:
1、用于演示把圆柱体积转化成长方体体积的教具。
2、多媒体课件。
教学过程:
一、复习导入、揭示课题
谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)
1、呈现长方体、正方体和圆柱的直观图。
2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)
3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。
二、自主探究,精讲点拨
1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?
2、学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下
(1)你准备把圆柱体转化成什么立体图形?
(2)你是怎样转化成这个立体图形的?
(3)转化以后的立体图形和圆柱体之间有什么关系?
3、推导圆柱体积公式。
学生交流,教师动画演示。
(1)把圆柱体转化成长方体。
(2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)
(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。
(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)
(5)推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)
教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:
圆柱的体积 = 底面积×高
V = S h
三、运用公示,解决问题
教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?
①知道圆柱的底面积和高,可以求圆柱的体积。
练习七的第1题:填表。
②知道圆柱的`底面半径和高,可以求圆柱的体积。
试一试。
③知道圆柱的底面积直径和高,可以求圆柱的体积。
练一练的第1题:计算下面各圆柱的体积。
④知道圆柱的底面周长和高,可以求圆柱的体积。
一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?
四、迁移应用,质疑反馈。
1、判断正误,对的画“√”,错误的画“×”。
2、计算下面各圆柱的体积。
3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。
五、全课小结。
这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。
六、作业布置:
完成作业纸上的习题
教学反思
本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。
而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
不足之处是:
1、
2、 留给学生自由讨论、实践和思考的时间较少。 教学时教师语言过于平缓,没有调动起学生的积极性。
《圆柱的体积》教学设计9
教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。
教学方法:操作法、推理法、讲授法
教学过程:
一、复习引新。
我们以前学过哪些立体图形?
生答:长方体和正方体。
它们的体积是怎么求的?
长方体:长×宽×高,正方体:棱长×棱长×棱长。
二、教学例4。
1、出示长方体和正方体。
它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?
生答:体积=底面积×高,所以长方体和正方体的体积相等。
2、出示圆柱。
猜一猜,圆柱的体积与长方体和正方体的体积相等吗?
生猜测:相等。
究竟如何,今天我们就一起来研究圆柱的体积。
板书课题:圆柱的体积。
问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)
生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。
依据是圆可以转化成长方形计算面积。
3、出示课件。
回顾圆的面积计算公式是怎样推导的。
4、回顾了圆的面积公式推导,你有什么启发?
生答:把圆柱转化成长方体计算体积。
5、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?
6、教师演示课件。
把圆柱拼成了一个近似的长方体。
7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?
生答:拼成的物体越来越接近长方体。
追问:为什么?
生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的`长方体和原来的圆柱有什么联系?请与同学们进行交流?
出示讨论题。
1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?
2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?
3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?
板书:
长方体体积=底面积×高
圆柱体积=底面积×高
9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
10、用字母如何表示。
11、出示例4。
现在你知道圆柱的体积与长方体、正方体的体积相等了吗?
为什么?
生答:体积相等,都是用底面积×高。
V=sh
三、巩固练习。
1、出示练习七第一题。
学生直接把答案填写在表中。
提问:你是根据什么填写的?
2、练一练。
这两题,你打算怎么计算?
生答:不知道底面积,要先算出底面积,再乘高。
3.14×2×5 = 62.8(平方厘米)
3.14×(6÷2)×8 = 226.08(平方厘米)
3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?
问:这道题和前面做的有什么不同?怎么计算?
生答:这是求容积的。所以数据是从里面量的。
4、练习七第2题。
观察下面的3个杯子,你能看出哪个杯子的饮料多?
请学生猜一猜。
请学生列出三道算式。
(1)3.14×(8÷2)×4
(2)3.14×(6÷2)×7
(3)3.14×(5÷2)×10
问:你能不求出结果直接比较出大小吗?
生答:第一个杯子的饮料多。
5、练习七第三题。
学生独立解答。
指名说说是怎样算的?
3.14×3×5×1= 141.3(千克)
141.3千克<150千克
答:这个保温茶桶不能盛150千克水。
四、总结。
今天这节课你学到了什么?
《圆柱的体积》教学设计10
教学内容:
课本第7页圆柱体积
教学目标:
理解圆柱体积公式的推导过程,掌握圆柱体积计算公式,并能正确地计算圆柱的体积,提高知识的迁移和转化的能力。
教学重点:
圆柱体积计算
教学难点:
圆柱体积的公式推导
教学关键:
实物演示帮助
教具准备:
圆柱体积演示模型
教学过程:
一、复习铺垫。
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。)
2、长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆拄的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?
怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
二、学习探索。
这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积
出示目标:1、推导2、计算
1、圆柱体积计算公式的推导。
教师出示一个圆柱,提问:这是不是一个圆柱?用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:“大家看,这是不是一圆?”“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:)
指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
小结:可以通过求切拼后的长方体的体积来求圆柱的体积。
板书:“长方体的体积=底面积×高”。
请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
明确:长方体的底面积等于圆柱的底面积,长方体的.高就是圆柱的高。
板书:圆柱的体积=底面积×高
如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积公式:V=Sh
2、自觉书本第7、8页。
3、教学例3。
出示例3。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
(2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的?
①V=sh=40×1.8=72
答:它的体积是72立方厘米。
②1.8米=180厘米
V=sh=40×1800=72000
答:它的体积是72000立方厘米。
③40平方厘米=0.4平方米
V=sh=0.4×1.8=0.72
答:它的体积是0.72立方米。
④40平方厘米=0.004平方米
V=sh=0.004×1.8=0.0072立方米
答:它的体积是0.0072立方米。
(3)自觉书本第8页例3。提出质疑。
(4)做第9页“试一试”。
三、课堂小结。
通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。
四、巩固练习。练一练1~4题。
五、《作业本》第4页。
《圆柱的体积》教学设计11
教学内容:
苏教版义务教育教科书《数学》六年级下册第18-19页练习三第10—16题,思考题以及动手做。
教学目标:
1.通过知识梳理、交流展示等,使学生进一步理解圆柱表面积和体积的区别,能选择恰当的方法解决问题,在浸没实验中,能测算出不规则物体的体积,积累活动经验,提升实验素养。
2.使学生经历观察、操作、比较、分析、估计、类比、归纳等活动过程,培养学生初步的比较、分析、综合、抽象、概括,以及简单的判断、推理能力,提高转化的意识和能力,发展数学思考,增强空间观念。
3.通过丰富的数学学习活动,使学生进一步体会数学与生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
教材分析:
圆柱和圆锥这部分内容是学生认识了圆,掌握了长方体和正方体的形状特征以及表面积与体积计算方法的基础上编排,是小学数学最后教学的形体知识。与长方体、正方体一样,圆柱也是基本的几何形体,在日常生活和生产劳动中经常能够看到。教学圆柱能够扩大学生认识几何形体的范围,丰富对形体的认识,有利于解决更多的实际问题。教学圆柱,也能够丰富学生认识几何形体的活动经验,深入理解体积的意义,有利于完善认知结构,发展空间观念,有利于转化能力和推理能力的进一步提高。
学情分析:
学生在过去的学习中已经积累了十分丰富的图形与几何的学习经验,特别是圆面积的计算方法,长方体、正方体、圆柱和圆锥的`特征,长方体、正方体和圆柱的表面积和体积的计算方法等知识的探索过程,以及在这些过程中获得的学习经验和方法,都为本课圆柱体积的综合练习奠定了坚实的基础。本节课,学生通过知识梳理、交流展示等活动,可以进一步理解圆柱表面积和体积的区别,并能选择恰当的方法解决问题,发展数学思考,增强空间观念,进一步体会数学与生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
设计理念:
从以教定学,到以学定教,再到由学转教。学习金字塔理论告诉我们:最好的学习是讲给别人听,随着教学改革的不断推进,我们从“以教定学”走向了“以学定教”,以学定教,呼唤教育教学回到学生的真实学情、现实认知水平等方面上来,根据学生的“学”,设计教师的“教”,日益凸显了教师是组织者、引导者、合作者的角色定位。叶圣陶先生说过,“教是为了不教”,赋予“以学定教”更多的生长意义,我们在不知不觉中,从“以学定教”转向了“由学转教”,即由学生的学转为由学生来教的更高级的学习生态。教学方式的改变让我们更加明确了学习的意义。
重点难点:
教学重点:用圆柱的表面积和体积公式解决实际问题。教学难点:合理分析问题并选择恰当算法,增强空间观念。
教学准备:
教师准备:反馈器一套;希沃白板、课件及5块互动大屏;投影仪;两份合作学习(实验)单;板贴一套等。
学生准备:底面被平均分成16份的圆柱形学具16套;知识梳理图50张;预学单50张;圆柱形容器及土豆或铁块若干等。
《圆柱的体积》教学设计12
《圆柱的体积》是青岛版标准实验数学课本第十二册第二单元《圆柱和圆锥》中信息窗3的内容,它包括圆柱体的体积计算公式的推导和运用公式计算圆柱的体积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体转化成已学过的立体图形,再通过观察、比较找出两个图形之间的关系,来推导出圆柱的体积计算公式。《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。在此之前,学生已掌握了一定的几何知识与数学方法,部分学生思维活跃,数学成绩较好,加上“圆的面积公式”的推导的学习,辅以多媒体的教学,学生应该容易完成圆柱体体积计算公式的推导过程,为今后学习复杂的形体知识打下扎实的基础
[教学目的]
1、运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解其推导过程。
2、会用圆柱的体积计算公式计算圆柱形物体的体积或容积。
3、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。
4、借助远程教育的课件资源演示,培养学生抽象、概括的思维能力。
[教学重难点]
圆柱体体积计算公式的推导过程
[设计理念及策略]
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”即要求我们在教学中,要让学生通过自主的知识建构活动,学生的潜能得以开发,情感、态度、价值观得以培养,从而提高学生的数学素养。因此根据本节课内容的特点,这节课的教学将通过对圆柱体积知识的探究,重点培养学生探究数学知识的能力和方法。为了把“一切为了学生的发展”这一新的教学理念融入到了课堂教学之中。在课堂教学中将以学生的活动为主,让学生通过亲身体验、实际操作来找出数学知识之间的内在联系。在学生学习过程中,充分运用了远程教育资源中动画、声音、视频文件,并进行了有效地整合。本节课将使用以下策略:
1、利用迁移规律引入新课,借助远程资源为学生创设良好的学习情境。
2、以合作探究为主要的学习方式,充分发挥学生的自主性,体现学生的主体地位。
3、练习多样化,层次化。
4、引导学生把知识转化成相应的技能,从而提高灵活运用的能力,培养学生的综合素质。
[教学准备]
多媒体课件、圆柱体体积演示器
[教学过程]
一、回忆旧知,实现迁移。
1、学习圆的面积时,我们是怎样推导出圆的面积计算公式的?利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。
2、计算圆的面积。
A.半径5厘米
B.直径6分米
二、指名说说自己想法。
教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)
1、交流猜测谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?怎样转化呢?
2、生讨论,交流。
三、验证。
教师演示:
(1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?
(2)将圆柱的底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?
(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。
四、探索圆柱与所拼成的近似长方体之间的关系。
1、学生动手进行实验。请每个小组拿出学具,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。
2、学生利用学具独立操作(教师巡视、指导操作有困难的学生),思考并讨论。
3、通过刚才的实验你发现了什么?
①拼成的近似长方体的体积与原来的圆柱体积有什么关系? ②拼成的近似长方体的底面积与原来圆柱的底面积有何关系? ③拼成的近似长方体的高与原来的圆柱的高有什么关系?
4、学生汇报交流。
五、分析关系,总结公式引导学生发现并说出:
圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。 总结公式。
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
六、拓展训练。
一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
七、课堂总结。
[附:板书设计]圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
[教学反思]
1、这节课是通过观察、猜想、操作验证、巩固、应用这几个环节来完成的。学生在最佳的情景中通过实践、探索、发现,得到了“活”的知识,学到有价值的数学。
2、操作验证是本节课的关键,为体现活动教学中学生“主动探索”的'特点,我从问题入手,组织学生围绕观察猜想后展开验证性的操作活动。学生以活动小组为单位,思维活跃,积极探索,学习能力、抽象概括能力和逻辑思维能力得到了提高。
3、充分利用媒体资源,化解难点,提高课堂效果;注重习题多样化、层次化,拓展学生思维。
一、情景引入
1、举起圆柱形水杯。
(1)同学们请看,这是一个什么形状的被杯子?关于圆柱的知识你都知道哪些?生充分交流。
很好,关于圆柱你还想知道什么啊?
体积是吗?
(2)如果,老师在杯子里面装满水(用水瓶在杯子里倒水,提起学生兴趣),你能知道这些水的体积是多少吗?
生充分交流
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算(求水的体积了)。评价:这个方法真好,把它转化为求长方体的体积来求水的体积。量筒学生能说出来就说,不能就直接过去。
(那么现在我想知道杯子的体积,,你有什么好的方法吗?)学生交流测量不规则物体。
同学们,是不是所有的圆柱都能用刚才的办法求出体积呢?(出示课件压路机柱子)。如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?
这就需要我们探究出一种适合所有圆柱体积的计算方法,这节课就让我们一起来研究圆柱的体积(出示课题:圆柱的体积)板书课题:圆柱的体积。
二、新课教学:
(1)学生猜想环节
师:大家猜想圆柱体体积和什么有关?学生交流。说出为什么?自己比划着说,也可以用事物演示,比较高和底)
同学们的思想都很活跃,那么现在你们想采用什么方法去研究圆柱体体积? (万一没有会的,就要引:我们过去学习图形的时候,都是通过哪些方法研究学习。转化。)
让我们在一起回顾一下圆形面积的推导过程(演示圆形的推导过程)
我们能把一个圆采用化曲为直、化圆为方的方法,把圆转化为长方形,从而推导出了圆面积的计算公式,板书。转化圆转化为长方形。
(2)学生探究环节
现在能否采用类似的方法,将圆柱转化成我们学过的图形来求它的体积呢?来求出它的体积。先独立思考,再把你的想法在组内交流一下。让学生说出怎么样切割。
谁能说说该怎么分,拿出萝卜,这就是一个圆柱,你想怎么分?亮出刀,来吧,请动手。
教具演示,一共是16份,让我们闭着眼睛想象一下32,,64份是什么样?(渗透极限思想,得板书出极限)抬头看大屏幕,看看你们想的和老师分的一样吗?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),放到64份时,问学生,看到这里,你发现了什么?:分成的扇形越多,拼成的立体图形就越接近于长方体。
那么现在你能探究出圆柱的体积公式了吗?请拿出书包里的学具,同桌两人一组,共同探究,看看哪组同学最善于观察也最会配合。
让学生说,结论都是学生说出来的,老师不要多话。
学生研究,上来交流,自由选择用教具还是大屏幕。
出示课件,最后总结,刚才,我们通过将圆柱转化长方体(板书):,推导出了圆柱的体积公式:板书能用字母表示出来吗?v=sh
简直太棒了,现在让我来考考大家把,看看你们能不能学以致用。
三、练习巩固
(1)口答
(2)分层练习,采用星级分等,让学生自由选择1到3题。星级越高,难度越大。
(3)知道体积求高的练习,设计到单位的转换。
(4)开放性题目,自己动手求一个杯子(圆柱)的体积。
教学反思:
这次送课下乡的经历,对我来说是一次难得的锻炼机会。这期间的备课、上课、听评课,让我对数学教学的一些方法性问题有了更进一步的认识,并且对自身存在的问题也有了更明确的了解,利于今后有针对性的进行解决。
先来说一说我通过这次送课下乡,对数学教学的一些方法性认识。首先就是“生生互动”。“师生互动”在我的课堂上体现的应该是比较多的,但是通过丛老师和夏主任等老师的评课,我更深刻的体会到了,现在的课堂更加需要的事“生生互动”。要给学生更多的话语权和自由度。这节课,其实我也尝试了让学生之间去交流,比如说各种小组合作,同桌合作,还有学生回答问题遇到困难的时候自己找其他同学帮助等方式,但是感觉还是停留在表层,没有深入进去。这点在以后的教学中应该引以为戒。
“个教育”的初步尝试。在课堂上,如何体现个教育。决定不单单是出示几个简单的分层练习,更重要的事要有对知识点的分层,对全体学生具体学习情况的一种把握。个教育,更要求老师把握学生的实际情况,因人而异,因班而异。本节课,在探究圆柱体积公式的时候,我当时让学生讨论了两种方法,一种是底面积乘高,一种是底面周长一半乘高乘半径。这样一讲,反而起到了时而其反的效果,本来学生挺明白的了,一讲,反而有学生糊涂了,这是因为桥头整体学生水平还不是太高,造成的问题。
下面我具体谈谈对本节课的教学设计和教学过程的一些反思:
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在设计教案的时候,我比较注意以下几点:一、抓住新旧知识的联系,利用转化的方法,通过想象、实际操作,从经历和体验中思考,让学生自己探究出圆柱的体积计算公式。二、创设贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和。三、设计练习的时候注重多层次问题,以及开放性问题的设计,满足不同程度学生的需求,将练习的选择权利放手给学生,特别是星级题目的方式,让学生感到很新奇,激发了学生挑战难题的欲望,和解决问题的热情。四、培养学生问题意识。“问题是数学的心脏。”学生有了问题,才会思考和探索,有探索才会有发展。所以我整堂课的设计都是用一个一个的问题串起来的,特别是导课的时候用一次一次的质疑,将学生的积极性都调动起来了,营造出一种学生想要迫切探究圆柱体积计算方法的氛围。这些都是我这节课的一些比较成功的地方。当然这节课也留下了很多的遗憾:首先就是以往上课语言表达的问题再次被点了出来,这次虽然较以往说话语速过慢变成了较快了,可是还是没有什么高低起落调,所以让听课的学生和老师都感觉缺少激情,这个问题应该尽快解决。再就是,课堂上,对学生的放手不够,学生的自主权还是欠缺的,新的理念告诉我们,学生已不是课堂教学中的听众、观众、知识的接受者,而需要成为课堂教学的主动参与者、问题者、自主者、合作者,所以在今后的教学中要着重增加学生的自主权,让学生自己提问题,自己解决问题,遇到困难先求助同学。老师一引导为主,在教学设计的时候,要敢于给学生广阔的空间,本节课,在引导学生猜想解决圆柱体积问题的时候,我先给学生复习了圆转化为长方形的过程,从一定程度上,限制了学生的思维。如果能把这个环节改为温馨提示性质的小提醒,效果就会截然不同了。
作为一名青年教师,要抓住每一次这样的机会,去积极认真的准备课,全身投入的上课,还要深刻,认真的反思,在不反思中提高、在反思中对症下药。
《圆柱的体积》教学设计13
教学目标
1、理解圆柱体体积公式的推导过程,掌握计算公式。
2、会运用公式计算圆柱的体积。
教学重点
圆柱体体积的计算。
教学难点
理解圆柱体体积公式的推导过程。
教学过程
一、复习准备
(一)教师提问
1、什么叫体积?怎样求长方体的体积?
2、圆的面积公式是什么?
3、圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)
二、新授教学
(一)教学圆柱体的体积公式。(演示动画“圆柱体的体积1”)
1、教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。
2、学生利用学具操作。
3、启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。
③近似长方体的高就是圆柱的高,没有变化。
4、学生根据圆的面积公式推导过程,进行猜想。
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5、启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体。
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
6、推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由。
因为长方体的体积等于底面积乘高。(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的`体积公式。(板书:V=Sh)
(二)教学例4。
1。出示例4
例4。一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
2。反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5。
1、出示例5
例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3.14×
=3.14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7.8(立方分米)
答:这个水桶的容积大约是7.8立方分米。
三、课堂小结
通过本节课的学习,你有什么收获?
1、圆柱体体积公式的推导方法。
2、公式的应用。
四、课堂练习
(一)填表
底面积S(平方米)
高h(米)
圆柱的体积V(立方米)
15
3
6.4
4
《圆柱的体积》教学设计14
教学内容:
冀教版小学数学六年级下册第32—34页。
教学目标:
知识和技能:经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。
过程与方法:让学生经历观察、猜想、证明等数学活动过程。探索并掌握圆柱体积公式,能计算圆柱的体积。
情感、态度和价值观:在探索圆柱体积的过程中,培养学生应用已有知识解决问题的能力,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和结论的确定性。
教学重点:
探索并掌握圆柱体积公式,能计算圆柱的体积。
教学难点:
圆柱体积公式的推导过程及简单应用。
教具准备:
两个不易直观比较体积大小的圆柱桶,探索体积的课件
教学时数:
一课时
教学过程:
一、情景导入
1.出示“亮亮和爷爷过生日”的情境图。学生观察,说说发现了什么?想到了哪些问题?2.学生观察思考后回答。
生:亮亮和爷爷的生日蛋糕都是圆柱形的。
生:生日蛋糕大,就是蛋糕的体积大;生日蛋糕小,就是蛋糕的体积小。
3.出示两个圆柱体,学生观察、猜想。
师:同学们这两个圆柱体,哪个大些?(说出理由)生:我认为第一个大一些。生:我认为第二个大些。生:要是能算出体积就好了?
师:是啊,有时我们观察到的.大小不一定准确,我们还是通过计算比较大小更准确些。今天我们就一起学习“圆柱的体积” 3.揭示并板书课题:圆柱的体积
(设计意图:创设情境导入激趣,通过观察让学生对圆柱体体积有了初步的认识,充分调动学生的求知欲,同时又为学生探索新知做好准备。)
二、合作探究
(一)引导回忆
1.设疑:看到课题你能想到哪些有关数学知识?你还想知道什么数学知识?2.学生回忆后回答。
3.教师结合学生的回答适当的板书。板书:长方体的体积=底面积×高生:我还想知道怎样求圆柱体积的大小?
师:同学们知道的可真不少,对以前学过的知识掌握得很扎实,那么怎样才能知道一个物体的体积有多大呢?现在我们就共同研究圆柱体积的计算方法。
(设计意图:通过创设问题情境,可以引导学生运用已有的生活经验和就知识积极思考,形成任务驱动的探究氛围。
(二)推导、论证“圆柱的体积” 1.引发思考猜想
师:我们以前学过学过了长方体和正方体的体积,我们知道了物体所占空间的大小叫做物体的体积。那么怎样计算圆柱的体积呢?请同学们猜想一下。
生:我们是不是象学过的长方体和正方体体积一样用“底面积×高”呢?
师:同学猜想的很有道理。
师:再回顾我们以前探索圆面积公式时是把圆转化成哪种图形来计算的?(课件演示:圆面积公式的推导)生:我们可以按照这样的方法把圆柱体转化为已经学过的长方体或正方体推导出圆柱体体积。 2.师生合作推导验证
教师用课件演示,学生观察思考。
师:把圆柱体平均分成16份、32份??同样可以拼成一个近似长方体。请同学们观察两次等份的异同。学生观察思考后回答
生:相同点是都可以拼成一个近似的长方体。
生:不同点是等分的份数不同,等分的份数越多,拼成的图形就越接近一个近似的长方体。
3.同学们观察很仔细,请你们想想,拼成的近似长方体和圆柱体有什么关系?你发现了什么?
4.小组同学讨论后汇报结果,同时板书。
生:(1)把圆柱拼成长方体后,形状变了,体积不变。
板书:长方体的体积=圆柱的体积
(2)拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
师:(1)配合回答,演示课件,闪烁相应的部位,并板书相应的内容。
板书:圆柱的体积=底面积×高
,用字母表示V=Sh
师:让学生书空,再次让学生巩固圆柱体积公式的推导过程。(设计意图:再探究圆柱体积计算的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的稳定性。三、出示例题:一根圆柱形的木料,底面积是320平方厘米,高是米。这根木料的体积是多少立方厘米?1.学生读题试算。 2.集体订正。
四、应用与拓展
1.完成教材第34“试一试”。(1)学生仔细看图,明确题意。(2)学生自主完成后,全班交流。
五、课堂总结
本节课你有什么收获?还有什么疑问?附:板书
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
教学反思:
本节课的教学体现了:
一、利用迁移规律引入新课,为学生创设良好的学习情境;
二、遵循学生的认知规律,引导学生观察、思考、猜想、论证,调动学生多种感观参与学习;
三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好,达到预期效果。不足之处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。
《圆柱的体积》教学设计15
教学内容:
人教版六年级下册第19~20页圆柱体积公式的推导和练习三的第1~3题。
教学目标:
1、通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。
2、在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。
3、探索和解决问题,体验转化及极限的思想方法。
4、学会由未知向已知转化的学习方法。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:掌握圆柱体积公式的推导过程。
教学方法:尝试指导法
学法指导:猜想→讨论→操作→概括→尝试→辨析→总结
教学用具:圆柱的体积公式演示课件。
学习用具:准备推导圆柱体积计算公式所用的学具。
教学过程:
一、激疑引入
同学们,你们看,茶叶罐是什么形状的?如何求它的体积?你有办法吗?……今天,就让我们一起来研究圆柱体积的计算方法(板书课题:圆柱的体积)。
二、探究新知
1、猜想
现在该怎样来计算圆柱的体积呢?不妨大胆猜想一下好吗?
2、表扬鼓励,实践迁移
(1)有同学能把圆柱转化成我们已学过的立体图形,来计算它的体积,真是既聪明又能干!
让学生互相讨论,思考应如何转化,然后组织全班汇报。(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。)
(2)操作:学生操作学具,切割拼合。
(3)感知:将圆柱体模具(已切好)当场演示。
①让一位学生把切割好的一半拿上又叉开;
②另一位学生将切割好的另一半拼合上去;
③观察得到一个什么形体?同时你发现了什么?逐步引导学生观察、对比、分析。
(4)课件演示,让学生明白:分成的'扇形越多,拼成的立体图形就越接近于长方体。
(5)讨论:圆柱与所拼成的近似长方体之间的有什么联系?
(6)汇报:你发现了什么?【圆柱→近似长方体:①体积相等;②底面积相等;③高相等;④表面积不相等。】
(7)概括总结
①让学生试着总结公式;
②老师在学生总结的基础上用课件出示
长方体的体积=底面积×高
↓ ↓ ↓
圆柱体的体积=底面积×高
用字母表示:v=sh
3、运用新知,尝试解答
[做一做]一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?
(1)尝试:让学生理解题意,自己尝试解答。
(2)展示:根据v=sh可得:75×90=6750(cm3)
(3)讲评并强调:计算体积时结果应用体积单位。
(4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?如果已知的是底面的直径d和高h呢?
让学生独立思考,写出计算公式,再相互交流。
得到:v=πr2h
[完成教材第20页例6]一个圆柱形水杯,从里面量底面直径是8厘米,高是10厘米。已知一袋纯牛奶有498mL。问这个杯子能不能装下这袋牛奶?
1、教师引导学生:要回答这个问题,先要计算出杯子的容积。
2、学生独立计算杯子的容积,然后与牛奶的容积作比较,就完成了任务。
三、巩固练习
1、完成下表。
底面积/ m2 | 高/m | 圆柱的体积/ m3 |
7 | 3 | |
5.6 | 4 |
2、一个压路机的前轮是圆柱形,轮宽2.5米,半径1米。它的体积是多少立方米?
四、全课小结
同学们,今天我们学习了什么知识?你还有什么不懂的问题?
五、布置作业(练习三第2、3题)
板书设计
圆柱的体积
圆柱转化近似长方体
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
V柱=sh
V柱=πr2h
【《圆柱的体积》教学设计】相关文章:
《圆柱的体积》教学设计05-13
《圆柱的体积》教学设计08-31
圆柱的体积教学设计05-13
“圆柱的体积”教学设计09-19
圆柱的体积教学设计09-17
《圆柱的体积》教学设计优秀12-13
《圆柱的体积》教学设计[集合]08-31
《圆柱的体积》教学设计(15篇)05-16
《圆柱的体积》教学设计(精选15篇)06-19
《圆柱的体积》教学设计精选15篇06-17