《圆柱的体积》教学设计(集锦15篇)
作为一位无私奉献的人民教师,时常需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么你有了解过教学设计吗?下面是小编为大家整理的《圆柱的体积》教学设计,欢迎大家分享。
《圆柱的体积》教学设计1
教学目标
1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点: 圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教 法:启发点拨,归纳总结,直观演示
学 法:自学归纳法,小组交流法
课前准备:课件
教学过程:
一、定向导学(5分)
(一)导学
1.什么叫体积?(指名回答)
生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)
根据学生的回答,板书:
长方体体积=底面积×高
2.圆面积公式是怎样推导出来的?
生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式s=2πr。
3.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?
4、导入
我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)
(二)定向
出示学习目标:
1、理解和掌握圆柱的`体积计算公式。
2、会用公式计算圆柱的体积,并能运用公式解答一些实际问题。
二、合作交流(15分)
1.阅读书25页。
2、看书回答:
(1)圆柱体是怎样变成近似长方体的?
(2)切拼成的长方体的体积、底面积和高分别与圆柱体的体积、底面积、高有什么关系?
(3)怎样计算切拼成的长方体体积?为什么 ?用字母怎样表示?
3、小组展评交流结果。
(1)展评题(1)。圆柱体是怎样变成长方体的?把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)
(2)展评题2。
切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。
(3)展评题3
圆柱体积=底面积×高
v=sh
4、公式检测
学生独立完成书上做一做1、2题。
三、自主学习(5)
1、出示例6
下面这个杯子能不能装下这袋奶
直径8厘米 高10厘米 这袋奶498毫升
2、尝试列式计算.
3、学生展示自学结果。
4、小结
小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,先求出底面积)和高。注意统一单位名称。
四、质疑探究(2)
已知圆柱的底面周长和高又怎样求圆柱的体积?
五、
小结检测
(
13
分)
(一)小结
让学生说出圆柱体积的推导过程,体积公式。
(二)检测
1、把圆柱切开,可拼成一个( ),圆柱的体积等于近似长方体的( ),圆柱的底面积等于( ),圆柱的高等于( ),所以圆柱的体积=( )。
2.圆柱体的底面积3.14平方分米,高40厘米。它的体积是多少?
3.一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
4 判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( )
(2)圆柱体的高越长,它的体积越大。( )
(3)圆柱体的体积与长方体的体积相等。( )
(4)圆柱体的底面直径和高可以相等。( )
5、 一张长方形的纸长6.28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。
板书设计:
圆柱的体积
圆柱体积=底面积×高
v=sh
75× 90=6750(立方厘米) 杯子的底面积:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的体积是6750立方米。答:这个杯子能装下这袋奶。
《圆柱的体积》教学设计2
教学内容:教材第25、26页例4、“试一试”、“练一练”和练习七的1、2题
教学目标:
1、进一步深入地引导学生去了解圆柱,让学生掌握圆柱的体积计算公式,并能解决实际问题。
2、培养学生自学能力,动手能力,观察分析和归纳知识的能力,让学生理解“转化”的方法。
教学重点:理解和掌握圆柱体积的计算公式。
教学难点:圆柱体积计算公式的推导。
教学准备:圆柱体模具。
教学过程:
预习作业检测
学习计算圆的面积时,是怎样得出圆面积的计算公式的?
求下面各圆的面积
R=1厘米求Sd=4分米求Sc=6.28米求S
长方体与正方体的体积都可以用什么公式来表示?
圆柱底面积/平方米高/米体积/立方米
0.61.2
0.253
合作探究
你们是怎么知道圆柱的体积=底面积×高的呢?生答预习得知。
课本上是怎么把圆柱体和长方体联系在一起的呢?
生答,同时师相机用课件展示圆柱体和长方体相互转化的画面。
用切拼法把圆柱体切成16等份、32等份、64等份,由此得出结论:
○1等份越多,拼成的'物体越接近于长方体。
○2长方体与圆柱体等底等高。
○3长方体体积=圆柱体体积
○4圆柱的体积=底面积×高(V=sh)。
根据刚才的结论完成下面的题目:
○1一根圆柱形钢材,底面积是20平方厘米,高是1.5米,
它的体积是多少?生独立完成后,师有选择的找几位学生
的作业进行投影展示,全班交流评价。
○2一个圆柱形状的零件,底面半径5厘米,高8厘米,这
个圆柱的体积是多少立方厘米?
引导学生读题,思考。指名说出自己想的过程。生独立解
答,展示、交流、评价。
当堂达标检测
1、“练一练”第1题。
2、练习七第2题。
3、“练一练”第2题。
教学反思:
《圆柱的体积》教学设计3
一、复习导入
1、回顾上节课内容,提问:圆柱的特征,圆柱的表面积计算方法。
导入:这节课我们学习圆柱的体积、
2、想一想,提问:什么叫做体积?我们学过哪些物体的体积计算公式?
(物体所占空间的大小叫做体积、学过长方体正方体的、)
它们的计算公式是什么?可以归纳为:
长(正)方体的体积===底面积*高
3、想一想:圆面积计算公式的推导过程、
(把圆面积转化为一个近似的长方形的面积,从而推导出圆面积的计算公式)
那么,能不能把圆柱转化为我们已学过的图形来计算它的体积?
二、新授:
叙:以上研究圆面积计算公式的方法叫做割补法,这种方法也适用于推导圆柱体积的计算公式、下面请同学们打开课本看书自学。
演示并提问:
(1)拼成的长方体的体积与圆柱的体积有什么关系?
(2)拼成的长方体的底面积与圆柱的哪部分有关系?有什么关系?
(3)拼成的长方体的高与圆柱的哪部分有关系?有什么关系?
总结:长方体的体积与圆柱的体积相等,长方体的'底面积与圆柱的底面积相等,长方体的高与圆柱的高相等。
因为:圆柱的体积===长方体的体积
长方体的体积===底面积*高
↓↓↓
所以:圆柱的体积===底面积*高
用字母表示为:v==sh
运用以上公式,完成练习题、
(注意:单位要统一,要认真审题,认真计算、)
动脑筋,思考以下几个问题:
已知如下条件,如何求圆柱的体积?
(1)底面积s、高h→→体积v==
(2)底面半径r、高h→→体积v==
(3)底面直径d、高h→→体积v==
(4)底面周长c、高h→→体积v==
强调:圆柱的体积v=sh=rh,在没有告诉底面积和高时,要先找底面半径和高,应用v=rh去计算。
三、巩固练习(填表)
hvs=20平方分米
4分米
r=5厘米
10厘米
d=8分米
6分米
c=12、56米
2米
四、课堂小结
同学们,通过这堂课的学习你知道了些什么?谁来说一下。
回答得非常好,下去以后可以应用所学知识去解答一些实际问题。
板书设计:
圆柱的体积
圆柱的体积===底面积*高
↓↓↓
长方体的体积===底面积*高v==sh
作业设计:完成习题
《圆柱的体积》教学设计4
一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫
1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程
1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
2.你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?
教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
(3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。
【设计意图】课本中的例题呈现如下,
例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。
3.小组合作,测量计算。
(矿泉水瓶内直径为6cm)
教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!
(1)课件出示:
一个内直径是( )的瓶子里,水的'高度是( ),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是( )。这个瓶子的容积是多少?(测量时取整厘米数)
(2)四人小组合作:
A.组长安排好分工:
要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。
B.组内互相说一说:倒置前后哪两部分的体积不变?
矿泉水瓶的容积=( )+( )。
C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。
【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。
4.交流反馈。
教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。
瓶中水高度为6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13
=3.14×9×(6+13)
≈537(毫升)。
瓶中水高度为7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12
=3.14×9×(7+12)
≈537(毫升)。
瓶中水高度为8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11
=3.14×9×(8+11)
≈537(毫升)。
瓶中水高度为9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10
=3.14×9×(9+10)
≈537(毫升)。
教师:出示某品牌矿泉水瓶的标签,上面写着净含量为550毫升,基本符合。
5.解答正确吗?
教师引导学生回顾反思:刚才我们是怎样解决问题的?
小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。
【设计意图】通过回顾解决问题的过程,帮助学生把本环节的数学活动经验进行总结,引导学生在后续的学习中碰到相似的问题也可同样利用转化的思想来解决。
(三)练习巩固,学以致用
1.数学书P27做一做。
(1)学生独立思考,解决问题。
(2)把自己的想法与同桌说一说。
(3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?
求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。
将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
2.输液100毫升,每分钟输2.5毫升,请观察第12分钟时吊瓶图像中的数据。问整个吊瓶的容积是多少毫升?
(1)请学生计算,并反馈订正。
(2)反馈要点:
整个吊瓶容积=图像中空气部分的容积+还剩下液体的体积。
根据图象,可以得出在第12分钟吊瓶有80毫升是空的。
剩下液体的体积=100-2.5×12=70(毫升)。
即整个吊瓶容积=80+70=150(毫升)。
【设计意图】从生活中常见的吊瓶问题引出,感受数学与生活的密切联系,能根据图像提取解决问题的有效信息 ,既提升了所学知识,又关注了学生的思考,培养学生的分析、解决问题能力。
3.如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?
(1)思考:这是一个不规则的立体图形,要求它的体积,它不能像瓶子里的水一样可以流动变形转化,怎么办?
(2)讨论方法:
A.重叠:假设把两个大小一样的斜截体拼成一个底面周长为9.42厘米,高为(4+6)厘米的圆柱,这个立体图形的体积是新圆柱体积的一半。
B.切割:把这个立体图形分为两部分,下面是一个底面周长为9.42厘米,高为4厘米的圆柱体,上面是一个高为(6-4)厘米的圆柱斜截体,且体积是高为(6-4)厘米的圆柱体积的一半。
(3)用自己认可的方法计算,并进行反馈。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(4)反馈小结:可以有不同的转化方法来解决问题。
【设计意图】不满足于一种方法的转化,展示多种方法,开拓学生的思维。
(四)全课总结,提升认识
教师:回忆一下,今天这节课有什么收获?
教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。
在解决问题时,主要要弄清楚转化前后两部分之间的关系。
【设计意图】通过小结,让学生自主地对回顾本课所学知识进行梳理总结,通过归纳与提炼,让学生明确转化思想在数学学习中的重要性。
《圆柱的体积》教学设计5
教学目标:
1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。
2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。
3、培养学生分析问题,解决问题及实践应用能力。
教学重点:
掌握有关圆柱的表面积和体积的计算,会综合运用
教学难点:
运用所学的知识解决生活中的实际问题。
学习过程:
一、复习回顾
1、下列图形的面积公式是什么?
长方形的面积=
正方形的面积=
平行四边形的面积=
梯形的面积=
圆的`面积=
2、长方体的表面积=
圆柱的表面积=
二、探究圆柱的体积公式:
圆柱的体积= 。
如果圆柱的体积用V表示,底面积用S表示,高用h表示,则圆柱的体积公式用字母表示为。
如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。
三、例题学习:
把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?
例2、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?
四、课堂练习
1、求下面圆柱的体积
1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米
3)底面直径5分米,高6分米
2、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
《圆柱的体积》教学设计6
教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。
教学方法:操作法、推理法、讲授法
教学过程:
一、复习引新。
我们以前学过哪些立体图形?
生答:长方体和正方体。
它们的体积是怎么求的?
长方体:长×宽×高,正方体:棱长×棱长×棱长。
二、教学例4。
1、出示长方体和正方体。
它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?
生答:体积=底面积×高,所以长方体和正方体的体积相等。
2、出示圆柱。
猜一猜,圆柱的体积与长方体和正方体的体积相等吗?
生猜测:相等。
究竟如何,今天我们就一起来研究圆柱的体积。
板书课题:圆柱的体积。
问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)
生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。
依据是圆可以转化成长方形计算面积。
3、出示课件。
回顾圆的面积计算公式是怎样推导的。
4、回顾了圆的面积公式推导,你有什么启发?
生答:把圆柱转化成长方体计算体积。
5、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?
6、教师演示课件。
把圆柱拼成了一个近似的长方体。
7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?
生答:拼成的物体越来越接近长方体。
追问:为什么?
生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?
出示讨论题。
1、拼成的长方体的`底面积与原来圆柱的底面积有什么关系?为什么是相等的?
2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?
3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?
板书:
长方体体积=底面积×高
圆柱体积=底面积×高
9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
10、用字母如何表示。
11、出示例4。
现在你知道圆柱的体积与长方体、正方体的体积相等了吗?
为什么?
生答:体积相等,都是用底面积×高。
V=sh
三、巩固练习。
1、出示练习七第一题。
学生直接把答案填写在表中。
提问:你是根据什么填写的?
2、练一练。
这两题,你打算怎么计算?
生答:不知道底面积,要先算出底面积,再乘高。
3.14×2×5 = 62.8(平方厘米)
3.14×(6÷2)×8 = 226.08(平方厘米)
3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?
问:这道题和前面做的有什么不同?怎么计算?
生答:这是求容积的。所以数据是从里面量的。
4、练习七第2题。
观察下面的3个杯子,你能看出哪个杯子的饮料多?
请学生猜一猜。
请学生列出三道算式。
(1)3.14×(8÷2)×4
(2)3.14×(6÷2)×7
(3)3.14×(5÷2)×10
问:你能不求出结果直接比较出大小吗?
生答:第一个杯子的饮料多。
5、练习七第三题。
学生独立解答。
指名说说是怎样算的?
3.14×3×5×1= 141.3(千克)
141.3千克<150千克
答:这个保温茶桶不能盛150千克水。
四、总结。
今天这节课你学到了什么?
《圆柱的体积》教学设计7
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体
积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的'生活问题,起到巩固深化知识点的作用。
圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验
在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。
教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。
教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。
总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!
《圆柱的体积》教学设计8
教学目标
知识与能力
1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
过程与方法
1.通过观察、实验、讨论,学生理解所学知识。
2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。
3.在讲解例题与巩固练习中,学生掌握基本的解题方法。
情感、态度与价值观
1.使学生感觉到数学就在身边,激发其学习数学的兴趣。
2.通过实验操作及设问,培养其创造性思维和大胆的猜想。
教学重点
圆柱体体积的计算
教学难点
圆柱体体积的公式推导方法
教学突破
本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的.计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。
教 具
圆柱的体积公式演示教具,多媒体课件
教学过程
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
(5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
2,复习相关知识,为新课教学作铺垫。
(1)什么叫物体的体积?我们学过什么立体图形的体积计算?(学生自由回答)
(2)出示圆柱体物品,指名学生指出各部分名称。
二、新课教学
设疑揭题:
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:
① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③ 圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
④ 底面积(㎡)高(m)圆柱体积(m3)
4 3
5 6
9 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三、巩固反馈
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题。
⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
四、拓展练习
1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)
2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
五、课堂小结
1.谈谈这节课你有哪些收获。
2.解题时需要注意那些方面。
六、布置作业
1.课后练习1,2题
2.拓展练习2题
板书设计
圆柱的体积
长方体的体积=底面积x高
圆柱——长方体 圆柱的体积=底面积x高
V=sh
《圆柱的体积》教学设计9
评价样题:
学习流程:
一、创设现实情境,增强探究欲望。
1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法?
如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)
看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、亲历建构过程,提高探索能力。
1、提出问题,大胆猜想
你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?
(鼓励学生大胆猜测,说出自己的想法)
2、回顾旧知,帮助迁移
同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的吗?
(演示课件:圆转化成长方形)
3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?
4、小组合作,验证猜想
下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。
(出示合作提纲)小组长做好分工,并完成记录表。
活动记录表
思考:
1、圆柱体可以转化成哪种立体图形?
2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?
3、怎样用简捷的形式表示你推导出来的公式呢?
活动过程:
1、我们用方法,把圆柱体转化成了体。
2、在这个转化的过程中,变了,没有变。
3、通过观察比较,我们发现:把一个圆柱体的底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的'底面积等于圆柱体的(),高就是圆柱体的()。因为,长方体体积=(),所以,圆柱体的体积计算公式是v=()。
5、全班交流,展示评价。
评价交流中,借助评价样题。同时课件演示切拼的过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 6、根据学生的发现引导学生推导出:
圆柱的体积=底面积×高,
用字母表示v = sh。
7、反馈练习。
(1)要求圆柱体积,必须知道哪些条件?
(2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。
圆柱的体积教学设计 相关内容:用转化的策略解决分数问题“长方体和正方体的表面积”的教学实录小学数学《倒数的认识》教案北师大版6年级数学第11册第1单元《圆的认识》教案1、分数四则混合运算《按比例分配》课后反思百分数的意义和读写法反思百分数(三)用百分数解决问题查看更多>>小学六年级数学教案
《圆柱的体积》教学设计10
教学内容:
青教版九年义务教育六年制小学数学六年级下册第23—28页。
教材简析:
该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。
教学目标:
1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。
2、经历探索圆柱计算公式的过程,进一步发展空间观念。
3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点和难点:
圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。
教具准备:
多媒体课件、圆柱体积学具、沙子等。
第一课时
教学过程:
一、创设情境,激趣引入。
谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)
课件出示:两个圆柱体冰淇淋。
谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?
(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)
设计意图:
从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的.猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。
二、回忆旧知,实现迁移。
谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?
(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)
设计意图:
通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。
三、利用素材,探索新知。
㈠交流猜测
谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?
生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?
师谈话:你的想法很好,怎样转化呢?
生讨论,交流。
生汇报,可能会有以下几种想法:
1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。
2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。
3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。
谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。
㈡实验验证
学生动手进行实验。
谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。
学生合作操作,集体研究、讨论、记录。
设计意图本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。
四、分析关系,总结公式
1、全班交流
谈话:哪个小组愿意展示一下你们小组的研究结果?
引导学生发现:
转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。
2、分析关系
引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
3、总结公式。
谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。
(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)
谈话:你发现了什么?
引导观察:分的份数越多,拼成的图形就越接近长方体。
(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)
谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。
根据学生的回答教师板书:
长方体的体积 = 底面积 × 高
圆柱的体积 = 底面积 × 高
谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh
设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。
五、利用公式,解决问题。
自主练习第1题、第2题、第3题
设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。
六、课堂总结
《圆柱的体积》教学设计11
教材版本
《义务教育课程标准实验教科书》 (人教版) 六年级数学下册。
课程标准摘录
1、结合具体情境,探索并掌握长方体、正方体、圆柱体的体积和表面积以及圆锥体体积的计算方法。
2、探索某些实物体积的测量方法。
学情与教材分析
“圆柱的体积” 是人教版六年级下册“圆柱和圆锥”这一单元的第四节的内容,在学习本节内容之前,学生已经认识了圆柱,学习了体积,经历了长、正方体的体积推导过程以及圆面积公式的推导过程。在推导圆柱的体积公式时,把圆柱体转化成长方体,高并没有变,只是把底面的圆形转化成长方形,它的转化过程实际上和圆转化成长方形求面积的方法相同,学生已具备有学习本课的技能。教学中不仅要让学生知道圆柱体积计算公式是什么,而且要让学生主动探索、经历圆柱体体积计算公式的推导过程,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。
学习目标
1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。
2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%。
3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。
4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。
5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。
学习重点
圆柱的体积计算方法
学习难点
圆柱体积计算公式的推导。
教具、学具准备:
1、师:圆柱体积计算公式推导教具,课件。
2、生:削好的圆柱体萝卜或土豆、或圆柱体橡皮泥,小刀。
教学设想
本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。第二个环节自主合作、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的`练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。
教法、学法
演示法、启发引导;实验、合作探究、尝试练习。
评价方案
1、通过小组合作实验完成活动检测目标1、4、5的达成。
2、通过提问检测目标3、4、5的达成。
3、通过评价样题检测目标1、2、4的达成。
评价样题
1、
2、
教学过程
一、激活旧知,引出新知
1、计算下面物体的体积
(1)长方体的长20厘米,宽10厘米,高8厘米。
(2)正方体棱6分米
2、回忆一下圆面积的计算公式是如何推导出来的?
[学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。]
教师(结合课件演示)把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。长方形的长,相当于圆周长的一半,长方形的宽相当于圆的半径。因为长方形的面积=长×宽,所以,用圆周长的一半×半径就可以求出圆的面积,周长一半就等于πR,半径是R,所以圆的面积是S=πR。
[设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。]
3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?
[设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。]
板书:长方体的体积=底面积×高.
[设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。]
圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。
板书:圆柱体所占空间的大小叫做圆柱的体积。
师:这节课,我们就来学习圆柱的体积.(板书课题:圆柱的体积)
二、自主合作,探索新知
1.求圆柱体容器中水的体积
出示长方体容器:问,这是什么?
[学情预设:学生可能说出长方体容器。]
问:怎么求长方体容器中水的体积呢?
[学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。] 问:如果换成圆柱体容器又如何求其中水的体积呢?
[学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。](演示:把圆柱体容器中的水倒入长方体容器)
2.橡皮泥圆柱体的体积
(出示橡皮泥做成的圆柱体)
问:这是一个什么样的立体图形?
问:它是用橡皮泥做成的。你能想办法求出它的体积吗?
[学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。]
3.常用圆柱的体积.
课件出示圆柱体压路机的滚筒的图片。
问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢?
[设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。]
小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。
4.探究规律
问:圆我们可以通过分割、拼合转化成已学过的长方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作:
课件出示操作讨论提纲:
(1)圆柱体可以转化为什么样的立体图形?
(2)转化后的立体图形体积与圆柱的体积大小是否有变化?
(3)转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。
学生讨论,教师参与小组讨论、点拨、操作。
问:下面哪个小组来先进行汇报。
各组派代表边汇报边演示。
[学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱分割的份数多一些,才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。]
问:谁还有补充?(学生补充讲解)
教师拿两个相同的圆柱体体积演示模型演示,边演示边讲解。
师:同学们看,老师这里有两个圆柱体,它们的底相同,高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成近似的长方体,如果我把它分割的份数越多,拼成的图形就越接近长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。
结合课件演示讲解。
师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。
师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:V=Sh)
〔设计意图:学生合作交流,自主探索、经历圆柱体体积计算公式的推导过程,理解和掌握了计算方法,加深了印象,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。达成目标1、3、4、5.〕
5、实际应用
(1)、师:给你圆柱的底面积和高,你会求圆柱的体积吗?
例1、一根圆柱形木料,底面积75平方厘米,高是90厘米,它的体积是多少? 学生独立完成,集体反馈矫正,说思路。
(2)、完成评价样题
〔设计意图:通过尝试练习加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。达成目标2、4. 〕
三、巩固练习,拓展提高
1、应用公式进行口算:
2、
3、
[设计意图:第一层次是已知底面积和高求圆柱体积的口算题,面向全体学生;第二个层次是已知底面半径和高、底面直径和高、底面周长和高,求体积的三种练习题,面向全体学生;第三个层次是求放入水中物体的体积就是求上升的圆柱形水的体积,面向中上层学生。这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。在做练习过程中,一、二层次的练习板演尽量让学困生和中等生去做,给他们展示自己的机会。并及时了解学生信息并根据学生反馈及时调整教学进程,同时对学生存在的问题及时指导。达成目标2、4. ]
四、全课总结,共谈收获
通过今天的学习,你有什么收获?
[设计意图:师生共同小结,学会了什么?怎样求圆柱的体积?这样起到强化重点的目的。]
五、课外创新,拓展延伸
长方体可以这样放(上、下面朝下),还可以这样放(左、右面朝下),还可哪样放(前、后面朝下)。 上、下面朝下时求出圆柱的体积=底面积×高,圆柱的体积还有没
《圆柱的体积》教学设计12
【教学过程】
一、揭示课题,确定目标
谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)
启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)
引导:
(1)什么是圆柱的体积?
(2)圆柱的体积和什么有关?
(3)圆柱的体积公式是怎样推导出来的?
(4)圆柱的体积是怎样求出来的?
(5)学习圆柱的体积公式有什么用?
谈话:对!刚才这几位同学跟老师想的一样。
启发:圆柱的体积就是圆柱所占空间的大小
谈话:这堂课我们主要解决三个问题:(出示探究问题)
1、圆柱的体积和什么有关?
2、这个公式是怎样推导出来的?
3、学习了圆柱的体积能解决什么实际问题?
【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。
二、温故知新,自学课本
1、提出问题
谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计 算的?
引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。
谈话:长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
统一为:长方体或正方体的体积=底面积×高
谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?
引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。
谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接 用体积单位去量呢?
引导:它的侧面是一个曲面,用体积单位直接量是有困难的。
2、引发猜想
谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)
引导:圆柱体的体积既和底面积有关,又和高有关。
3、自学课本
谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?
启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)
引导:我们用图形转化的方法,求圆柱的体积。
谈话:这个办法很好。那么把圆柱转化成什么图形呢?
引导:长方体。
谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。
(用多媒体演示圆形的转化过程,边出示、边交流)
【设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。
三、合作交流 发展能力
谈话:同学们观察一下,拼成的是什么图形?
引导:近似的`长方体。
启发:说得很好,为什么说是近似的长方体,哪里不太像?
引导:长都是许多弧线组成,不是直的。
谈话:这里我们把圆柱分成16等分,还能分吗?
谈话:究竟能分多少份呢?
引导:无数份,可以永远分下去。
谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。
四、师生合作 归纳结论
谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?
汇报:把圆柱体转化为近似的长方体,形状变了,体积没有变。
谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。
汇报:
(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。
(2)转化后的近似长方体的高与原来的圆柱体的高相等。
因为:长方体的体积=底面积×高
所以:圆柱的体积 =底面积×高
(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)
长方体的体积=底面积×高
圆柱的体积 =底面积×高
交流:我们也可以用字母表示圆柱的体积计算公式:v = s h (板书)
引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。
现在请同学们把圆柱体积公式的推导过程再完整地说一遍。
谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。
通过分一分、拼一拼我们把圆柱转化成了近似的长方体。
通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。
【设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。
《圆柱的体积》教学设计13
教学内容:
课本第7页圆柱体积
教学目标:
理解圆柱体积公式的推导过程,掌握圆柱体积计算公式,并能正确地计算圆柱的体积,提高知识的迁移和转化的能力。
教学重点:
圆柱体积计算
教学难点:
圆柱体积的公式推导
教学关键:
实物演示帮助
教具准备:
圆柱体积演示模型
教学过程:
一、复习铺垫。
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。)
2、长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆拄的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?
怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的`图形来求出它的体积?
二、学习探索。
这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积
出示目标:1、推导2、计算
1、圆柱体积计算公式的推导。
教师出示一个圆柱,提问:这是不是一个圆柱?用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:“大家看,这是不是一圆?”“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:)
指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
小结:可以通过求切拼后的长方体的体积来求圆柱的体积。
板书:“长方体的体积=底面积×高”。
请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
板书:圆柱的体积=底面积×高
如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积公式:V=Sh
2、自觉书本第7、8页。
3、教学例3。
出示例3。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
(2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的?
①V=sh=40×1.8=72
答:它的体积是72立方厘米。
②1.8米=180厘米
V=sh=40×1800=72000
答:它的体积是72000立方厘米。
③40平方厘米=0.4平方米
V=sh=0.4×1.8=0.72
答:它的体积是0.72立方米。
④40平方厘米=0.004平方米
V=sh=0.004×1.8=0.0072立方米
答:它的体积是0.0072立方米。
(3)自觉书本第8页例3。提出质疑。
(4)做第9页“试一试”。
三、课堂小结。
通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。
四、巩固练习。练一练1~4题。
五、《作业本》第4页。
《圆柱的体积》教学设计14
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(学生互相讨论后汇报,教师设疑)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh
三、巩固发展
1、课件出示例4,学生独立完成。
指名说说这样列式的`依据是什么。
2、巩固反馈
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)
集体订正,说一说圆柱体的体积还可以怎样算?
4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?
5、拓展练习
(1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)
(2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?
四、全课小结:
谈谈这节课你有哪些收获。
教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积
教学目标:
1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程
《圆柱的体积》教学设计15
教学目标:
1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积
教学难点:
理解圆柱体积计算公式的推导过程。
教学用具:
圆柱体积演示教具。
教学过程:
一、复述回顾,导入新课
以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)
1、说一说:(1)什么叫体积?常用的体积单位有哪些?
(2)长方体、正方体的体积怎样计算?如何用字母表示?
长方体、正方体的体积=()×()用字母表示()
2、求下面各圆的面积(只说出解题思路,不计算。)
(1)r=1厘米;(2)d=4分米;(3)C=6。28米。
(二)揭示课题
你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)
二、设问导读
请仔细阅读课本第8—9页的内容,完成下面问题
(一)以小组合作完成1、2题。
1、猜一猜,圆柱的体积可能等于()×()
2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系
(1)圆柱的底面积变成了长方体的()。
(2)圆柱的高变成了长方体的()。
(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()
[汇报交流,教师用教具演示讲解2题]
(二)独立完成3、4题。
3、如果已知课本第8页左上方柱子的`底面半径为0。4米,高5米,怎样计算柱子的体积?
先求底面积,列式计算()
再求体积,列式计算()
综合算式()
4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)
【要求:完成之后以小组互查,有争议之处四人大组讨论。】
教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。
三、自我检测
1、课本9页试一试
2、课本9页练一练1题(只列式,不计算)
【要求:完成后小组互查,教师评价】
四、巩固练习
课本练一练的2、3、4题
【要求:组长先给组员讲解题思路,然后小组内共同完成】
教师进行错例分析。
五、拓展练习
1、课本练一练的5题
2、有一条围粮的席子,长6。28米,宽2。5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?
【要求:先组内讨论确定解题思路,再完成】
六、课堂总结,布置作业
1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。
2、作业:课本练一练6题
【《圆柱的体积》教学设计】相关文章:
圆柱的体积教学设计05-13
《圆柱的体积》教学设计05-13
《圆柱的体积》教学设计15篇05-13
《圆柱的体积》教学设计(15篇)05-16
圆柱体积教学设计05-31
《圆柱的体积》教学设计范文(精选8篇)04-20
《圆柱的体积》教学反思09-24
圆柱的体积教学反思07-07
《圆柱的体积》教学设计模板(通用5篇)04-20
圆柱体积教学设计15篇05-31