圆的周长教学设计

时间:2023-06-10 13:08:09 教学资源 投诉 投稿

圆的周长教学设计精选15篇

  作为一名辛苦耕耘的教育工作者,可能需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么教学设计应该怎么写才合适呢?下面是小编为大家收集的圆的周长教学设计,仅供参考,大家一起来看看吧。

圆的周长教学设计精选15篇

圆的周长教学设计1

  教学内容:

  冀教版《数学》六年级上册第六单元一课时

  教学目标:

  1、知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握圆的周长的计算公式,并能正确地计算圆的周长;能利用圆周长计算公式解决简单的实际问题,发展应用意识。

  2、能力目标:通过对圆周长测量方法和圆周率的探索,圆的周长计算公式的推导等数学活动,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力及团队合作精神。

  3、情感目标:通过介绍我国古代数学家祖冲之在圆周率的伟大成就,对学生进行爱国主义教育。

  教学重点:

  能利用公式正确计算圆的周长。

  教学难点:

  理解圆周率的意义,圆的周长计算公式的推导。

  教学准备:

  课件,直径不同的圆,细绳,软皮尺,直尺,计算器。

  教学过程:

  一、导入

  师:老师给同学们带来了两位老朋友了。(课件出示长方形和正方形)

  师:相信大家对长方形和正方形都有很多的了解了,我不让大家介绍了,老师要问同学们两个问题。”

  1、什么叫长方形和正方形的周长?

  2、长方形和正方形的周长和什么有关?

  学生思考后回答:围成长方形四条边长的总和叫长方形的周长,围成正

  方形四条边长总和叫正方形周长。长方形的周长和它的长和宽有关,正方形周长和边长有关。

  (课件出示圆形)

  师:“你对圆形有哪些了解?”

  学生能说出圆的各部分名称,直径是半径的2倍,圆有无数条对称轴,对称轴就是圆的直径。

  师:那什么是圆的周长呢?

  生:围成圆一圈弧线的长度总和叫圆的周长。

  师:那你还想知道哪些圆的知识呢?

  生:我想知道圆的周长和面积。

  师:这节课我能满足你们的一个愿望,我们一起来研究的.是圆的周长。

  (板书课题)

  二、探索新知

  1、周长的测量(自主发现、动手操作)

  师:利用准备的学具,测量一枚一元硬币的周长,看哪位同学的方法最准确?

  学生说出三种方法:绳测法、滚动法、软皮尺测,学生边说边进行演示。

  2、圆周与直径的探究

  师:在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。大家想一想圆的周

  长与什么有关系。生“直径。”

  师:你们是怎么看出圆的周长和直径有关系?圆的周长跟直径是否存在关系呢?我们一起来研究一下。

  3、小组合作探究圆周长与直径、半径的关系。

  师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。

  小组合作要求:

  1、利用手中的学具测量物品中圆的周长和它的直径。

  2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)

  3、观察得到的数据,你发现了什么?

  师:哪个小组先汇报?先说说你们采用的方法,再说结果。生:绕线法。生:滚动法。

  学生汇报几组数据,教师板书。

  师:通过刚才的动手操作,你们发现了什么?哪个组说说?生:圆的周长÷直径=3倍多一些。

  师:打开数学书,我们自学83页知识来了解。

  学生自学了解了圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,叫做圆周率,用字母π表示。圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值。

  (板书:圆周率π)课件出示补充祖冲之小知识窗

  早在1500多前,我国古代的数学家祖冲之就精密地计算出圆周率的值在3.—3.之间。这是当时计算出的最精确的圆周率的值,比国外科学家的发现要早1000多年。师:看完这个小知识,你有什么想法?生:祖冲之真伟大,我们的祖先非常的有智慧。师:我们的祖先很聪明,我们更应该发扬光大。师:圆的周长怎么求呀?生:圆的周长=直径×师:板书C=πd谁来说说你是怎么理解的?生:C表示圆的周长,d表示直径,π表示圆周率,

  C=πd师:如果知道半径,应该怎样写?生:C=2πr师:你是怎么想的?

  生:在同一个圆里,直径是半径的两倍。

  三、实践与应用

  1、一面圆镜的镜面直径是40厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米?

  2、求圆的周长

  (1)r=6

  (2) r=10

  (3) d=5

  3、校园里有一颗大柳树,我想知道柳树的直径,你们有什么办法吗?同学们课下求一求。

  四、教师小结

圆的周长教学设计2

  【教学资料】

  本课选自义务教育课程标准实验教科书五年级(下册)第十单元《圆》。

  【教材分析】

  这部分资料是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,透过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的潜力,体会数学与现实生活的密切联系。

  【教学目标】

  1.让学生经历圆周率的探索过程,理解圆周率的好处,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

  2.培养学生的观察、比较、分析、综合及动手操作潜力,发展学生的空间观念。

  3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。

  【教学重点】

  透过多种数学活动推导圆的周长公式,能正确计算圆的周长。

  【教学难点】

  圆的周长与直径关系的探讨。

  【教学准备】

  多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。

  【教学过程】

  一、把准认知冲突,激发学习愿望。

  1.谈话:同学们,明白大家都喜欢看《喜羊羊和灰太狼》的动画片,这天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)

  2.要想确定它俩究竟谁跑的路程长,可怎样做?(生:先求出正方形和圆形的周长,再进行比较。)

  3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)这天这节课,我们一齐来研究圆的周长。(揭示课题:圆的周长)

  (设计意图:《喜羊羊与灰太狼》是当前孩子们最喜闻乐见的动画片。设计两者进行赛跑时生活问题,转化为比较圆的周长和正方形周长的数学问题。创设生动的教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好地展示并便于学生理解圆周长的概念。)

  二、经历探究全程,验证猜想发现。

  (一)认识圆周长的含义并初步感知圆周长与直径之间的关系。

  谈话:那什么是圆的周长呢?(课件出示3个车轮)

  2.师:上面的3个数据是表示什么的?(生:圆的直径)“英寸”是什么意思?(学生看书回答)

  3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)

  (设计意图:本环节淡化了对圆周长概念的讲述,以生活中常见的三个车轮为研究的对象,在滚动的过程中具体理解圆周长的含义。并借助观察、比较、合作交流,初步感知到圆的周长与它的直径有关。)

  (二)交流测量圆周长的方法:

  1.学生拿出课前剪的圆,互相指一指它们的周长。

  2.用什么办法测量它们的周长?(同桌交流方法)

  3.指名到前面投影上展示测量周长的方法:

  ①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向那里,圆滚动一周的长就是这个圆的周长。

  ②绕圈法。明确:线贴紧圆周,把剩余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。

  ③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。

  4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的“化曲为直”的方法。

  5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎样办?引发学生探究圆的周长与直径之间的关系。

  (设计意图:精心做好实验准备。为了发散学生的思维,课前让学生准备了软尺,因为软尺既具备了线的特点又兼有尺子的功能,不仅仅能提高实验的速度,而且也能减少实验误差。对学生实验的方法进行深入细致的指导,促使学生有效地进行探究。最后抛出的一个问题也激发了学生进一步探究新方法的欲望。)

  (三)认识圆周率。

  1.谈话:接下来同学们分4人小组,选取自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)

  2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)

  3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的`3倍多一些)

  (设计意图:本环节的设计中,教师为学生带给了从事数学活动的时间和空间。在操作前明确操作要求、操作方法以及操作的注意点,然后以小组合作的方式动手实践,探索圆周长和直径之间比值的规律,提示出圆周率的概念,让学生体验到学习数学的乐趣,获得学习体验。)

  4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的周长大约是直径的3倍)

  5.介绍祖冲之在求圆周率中做出的贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)

  6.学生说说从资料的介绍中明白了什么?(学生交流自己的学习所得)

  7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。期望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。

  (设计意图:那里向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学礼貌的发展,体验到人类不断探索的脚步。透过介绍祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时对学生的后续学习也起到了必须的激励作用。)

  (四)推导公式

  1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎样计算?(生:圆的周长=圆周率×直径)

  2.谈话:如果圆的周长用大写字母C表示,那么这个公式用字母怎样表示?

  3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的直径是半径的两倍)那这个公式还可怎样变换?

  4.齐读公式,加深印象。

  (设计意图:当学生发现了已知直径求圆周长的方法后,让学生思考还能够已知什么条件来求圆周长,这样透过学生自己总结得出的结论印象更深刻。)

  三、刷新应用潜力,总结巩固新知。

  1.(课件出示第1题)学生口答两个圆的周长。

  2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)透过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)

  3.(课件出示一个喷水池)一个圆形喷水池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)

  4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)

  (设计意图:设计有层次的巩固练习,从计算直观的图形的周长到解决实际问题,让学生学以致用,体会到数学知识在生活中的运用价值,进一步激发数学学习的兴趣和爱好。)

  四、交流学习收获,课后拓展延伸

  1.透过这节课研究圆的周长,你有什么收获?(学生全班交流)

  (设计意图:让学生对本节课所学习的知识进行一个系统的回顾和总结,让学生掌握学习方法,感受数学价值,增强学习和发展的自信心。)

  2.谈话:此刻如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎样做?(学生独立完成,后全班交流)有没有其它方法?(学生可透过计算解决,也可直接观察两个图比较)

  3.师:种种方法都能够帮忙我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:

  问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)

  【设计意图:让学生利用所学新知去解决课前矛盾,一方面让学生体验到了学习数学知识的价值,另一方面拓展题的创设使得本节课的知识有了一个很好的延续。】

  教学反思

  一、“情境”与“知识”两条主线相互交融。

  结合本节课的教学资料和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们明白,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此十分感兴趣,也有必须的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一齐,构成一个完整的统一体,激发了学生的学习兴趣,时学生用心主动地投入到学习活动中。

  二、动手操作让学生亲身经历知识的构成过程。

  动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们带给了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选取、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践潜力,获得用心的情感体验。

  三、数学阅读让学生感受数学的厚实的文化

  在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到必须的激励作用。结合本节课的教学资料,教师向学生介绍了圆周率的有关认识。那里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。

圆的周长教学设计3

  教学目标:

  1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、初步学会透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:推导并总结出圆周长的计算公式。

  教学难点:深入理解圆周率的意义。

  教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。

  教学过程

  一、情景导入:

  师:老师这里有一张图片,同学们想看吗?

  师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?

  师: 我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?

  师:这节课我一起研究圆的周长。

  板书课题:圆的周长

  二、探究新知:

  1、圆的周长含义

  师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。

  师:围成圆的曲线的长叫做圆的`的周长。

  2、测量圆的周长 师:怎样才能知道圆的周长是多少呢?师: 请同学们拿出准备好的圆片,你能想办法测量出它的周长吗? 生测量活动,师巡视。

  师:谁愿意说说你是怎么测量的?

  师:还有不同测量的方法吗?

  师多媒体演示。

  我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。

  我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。

  师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。

  生:用绳子量出水池的周长。

  师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。

  师:有没有比测量更科学、更简便的方法呢?

  生:计算

  3、探究圆的周长计算方法

  ①探究圆的周长与直径的倍数关系

  师:如何计算圆的周长呢?

  师:我们可以回想一下,计算长方形的周长需要什么条件,怎么计算?

  师:计算正方形的周长需要什么条件,怎么计算?

  师 :同学们看,计算长方形、正方形的周长都需要一定的条

  件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。

  师:如果圆的周长与直径有关,又有什么关系呢?

  师 我们再来看,长方形的周长与它的条件长和宽之间有什么关系。

  师:正方形的周长与它的条件边长之间有什么关系。

  你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。

  这个倍数会是几呢?同学们来猜测一下,这个倍数大于几

  生1:大于2;

  生2:大于3;

  生3:大于4;

  师:能说说你是怎样想的?

  师:你从图上来看,圆的周长与直径之间的倍数会大于几。

  生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。

  师: 有理有据。我们再来看,圆的周长和直径之间的倍数会小于几呢?

  生猜并说理由。

  师:这个问题有点难,老师来作个辅助图形,请看大屏幕。

  (师多媒体演示圆外切正方形)

  师:你发现了什么?

  生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。

  师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?

  生:计算。

  师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。

  下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。 (小组活动,师巡视。)

  师:一定注意要测量准确,减少误差。

  (集体汇报交流)

  师:哪个小组愿意把你们的计算结果给大家展示一下。

  (生说并展示结果)

  师:请同学们来观察这些圆的周长除以直径的商,有什么特点。

  生:都比3大一点。

  师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。

  师:会读吗?(板书pài)

  师:一起读,用手在桌子上写几遍。

  师:会写了吗?

  师:π就是圆的周长除以直径的商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?

  生:测量不准确。

  师:很会分析问题,我们计算出的这些商都不一样,是因为测量有

  误差造成的。

  师:老师这里有关于圆周率的历史资料,同学们想看吗?

  师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)

  师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?

  师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。

  生:圆的周长等于圆周率乘直径。

  师:如果用字母C表示,那么C=?

  (板书C=πd)

  师:如果知道了圆的半径,我们还可以怎样计算圆的周长?

  (板书:C=2πd)

  师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。

  由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)

  三、实践应用:

  师:现在我们来解决几个问题好吗?

  1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。

  2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)

  3、判断题

  4、思考题

  四、小结。

圆的周长教学设计4

  1.简单而富有内涵的引入

  余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。

  有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。

  2.自发而科学严谨的探究

  关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的'进行探究,"这两个圆,哪个圆的周长比较长?""圆的周长和什么有关?""怎么样研究它们之间的关系?""怎样测量圆的周长?"每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的智慧!

  3.数学思想和文化的渗透

  在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了"变"与"不变"辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!

  思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?

圆的周长教学设计5

  教学目的

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、了解圆周率的数学史话,接受爱国主义教育和培养严谨的科学精神。

  教学重点、难点

  推导圆周长计算公式,理解圆周率的意义。

  教具准备

  圆片、铁圈、绳子、直尺。

  教学过程

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:小明和小强进行赛跑比赛,(如图)小明绕着长方形地跑,小强绕着圆形跑。小明跑的路程是什么?小强呢? 同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为小明和小强谁获胜的可能性大些?(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

  (3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能) 指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  【反思】教育心理学家奥苏伯尔说过:“影响学生的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并据此进行教学。”我们应遵循实际,在把学生已有的知识作为教学的起点。注意不断地把学生的认识组织在矛盾运动中,使教学过程成为“不断地揭示和呈现矛盾→引导学生分析矛盾和研究矛盾→解决矛盾”的过程。测量圆的周长,教师让学生经历了“剪开拉直”→“先绕后量”→“滚动测量”→“寻找计算方法”的过程。教师和学生一起不断地产生认知冲突,不断地平息冲突,又不断地产生冲突,最终产生寻找圆周长计算的一般方法。学生在这种“冲突→平衡→再冲突→再平衡”的周而复始的矛盾运动中,理解了知识,激发求知的欲望和热情。

  二、经历探究全程,验证猜想发现。

  ㈠圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  ㈡圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,多媒体课件显示:圆的周长总是直径的3倍多一些)

  【反思】合理猜想──有效探究的前提。猜想是人们依据事实、凭借直觉所做出的推测,是一种创造性的思维活动。纵观数学发展历史,很多著名的`数学结论都是从猜想开始的。伟大的数学家高斯指出:“若无某种大胆放肆地猜想,一般是不可能有知识的进展的。”数学方法理论的倡导者波亚利对数学猜想有过这样的描述:“在数学的领域中,猜想是合理的、值得尊重的、是负责任的态度。”他认为,在有些情况下,教猜想比教证明更为重要。所以,教会学生学会数学猜想就显得尤其重要。本节课,教者引导学生进行了两次合理猜想。一是猜想圆的周长与直径有关,是通过直觉观察引发的。二是猜想圆的周长与直径有倍数关系,是根据正方形的周长与边长的关系而类比产生的。教者引导学生通过对图形的分析,挖掘有价值的问题:圆的周长一定是直径的2-4倍。合理的猜想科学地定位了探究的思路,提高了课堂的实效。学生在猜想过程中,新旧知识的碰撞,激发智慧的火花,思维有了很大的跳跃,提高了数感,发展了推理能力,锻炼数学思维。小心验证──科学归纳的保证。美妙的猜想,只有经过科学的验证,才能彰显智慧的光环。为了提高探究的效率,验证时往往要融入讨论、实验、计算、观察、归纳和概括于一体,教者应留给学生足够的时空,充分解放学生的脑、手、眼、口等多种感官参与探究过程。要在鼓励学生发表独特见解的基础上,善于找到结论的相似之处进行归纳。小心验证,还要讲求实事求是。尊重学生研究的结果,要正确处理好研究结果与科学的结论之间的差距,不能简单地否定学生研究的结果,挫伤学生的积极性。本节课探究圆的周长与直径的倍数关系,学生运用“化曲为直”的方法测量圆的周长,算出周长与直径的比值。由于测量的误差,学生只能计算出圆的周长是直径的3倍多一些。教者遵循实际,肯定学生验证的真实性。课堂上教师实事求是的科学态度,会进一步激发学生探究的热情,同时这种科学态度对学生终身的影响也是不可估量的。

  三、感受数学文化,激发情感体验。

  1、、介绍刘徽的“割圆术”。课件演示把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。

  2、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  3、介绍计算机计算圆周率的情况。

  4、教学圆周率:π≈3.14。

  【反思】数学文化的内涵不仅表现在知识本身,还寓于它的历史。著名数学家霍格本曾经说过:“数学史实际上是与人类的各种发明与发现、人类经济结构的演变、以及人类的信仰相互交织在一起的”,确实打开数学发展史,见到的是人类文明进步的历史,完全有理由、也有必要让学生更多地去了解,使得数学的学习成为名副其实的文化传播。本节课向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。通过介绍刘徽和祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时通过史话的介绍,让学生觉得圆周率发现的不易,帮助他们从小培养严谨的科学精神。

  四、刷新应用能力,总结巩固新知。

  1、请你用自已的话总结一下怎样计算圆的周长?用字母怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

  2、尝试练习:一辆自行车车轮的直径是0.66米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)

  3、明辨是非:

  (1)圆的周长和直径的比的比值叫做圆周率。( )

  (2)大圆的圆周率大于小圆的圆周率。( )

  (3)π的值等于3.14。( )

  (4)半径是10厘米的圆,它的周长是31.4厘米。( )

  4、抢答:求下面各圆的周长: d=2厘米,d=3厘米,d=4厘米,d=5厘米, d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。 5、课堂作业:练习二十五2-5题。

  【反思】荷兰数学教育家弗赖登塔尔反复强调:“学习数学的唯一正确方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生”。“如果学习者不进行再创造,他对学习的内容就难以真正的理解,更谈不上灵活应用了”。我们不但要在学生学习新知识的过程中去引导和帮助学生进行这种“再创造”,而且在组织练习时应不断设置思维障碍,不断引起学生的认知冲突,在学生力所能及的范围内,让学生跳起来摘果子,去进行这种“再创造”,并在“再创造”的过程中体验成功的喜悦。本节课教师在练习运用阶段,通过让学生抢答,引导学生记住3.14×1、3.14×2、……3.14×9这些算式的乘积。这看似有点死记硬背,但实践证明:对这些运算结果的适当记忆,可以减轻学生的计算负担,为学生的后续学习打下坚实的基础。

圆的周长教学设计6

  教学内容

  北师大版小学数学六年级上册教材第9页~第11页。

  课前思考

  本节课的教学目标非常明确:利用学具合作探究圆的周长的测量方法,发现圆的周长与它的直径之间的关系,从而推导出圆的周长计算公式;能运用公式解决一些简单的数学问题。以此教学目标为指导,为了能抓牢学生的注意力,激发起他们主动参与课堂活动的兴趣,课堂上李老师组织学生积极利用圆片、卷尺、绳子等学具进行探究,使教、学具在数学课堂上的作用得以体现。

  课堂写真

  (教师利用课件出示两种自行车图片,学生观察。)

  师:你会选择哪一辆参加我校组织的自行车比赛呢?

  生:第一辆。

  师:为什么选择第一辆自行车呢?

  生:因为它的轮子大,跑得快。

  师:为什么它跑得快呢?

  生:因为它滚一圈的长度长。

  师:对!轮子大,滚一圈的长度也就长。我们把车轮滚动一圈的长度就叫作它的周长。那么这两款自行车车轮的周长到底是多少呢?谁能帮助我们解决这个问题?

  生:我们可以通过测量的方法得到车轮的周长呀!

  师:你的反应很快。那么如何测量呢?这是需要我们思考的问题!下面就请同学们小组合作,利用小圆片及其他学具探究圆的周长吧!

  (学生开始讨论,操作学具,2分钟后,每个小组都有了各自的测量方法。)

  [分析] 李老师从学生的生活出发,利用多媒体课件出示自行车的车轮让学生首先明确“圆的周长”的意义,接着引导学生思考如何得到圆的周长。在学生想到测量方法时,李老师又鼓励学生用手中的学具探究测量圆的周长的方法。在她的主导作用下,学生积极主动地参与了学习,给这节课开了一个好头。

  师:哪个小组愿意先来晒一晒你们的测量方法?

  生:我们第一小组先来。我们组是在圆形纸片的边缘标一个起点,然后把它放在直尺上,让这个起点对准零刻度,最后把纸片沿直尺滚动一圈,就得到它的周长了。

  师:嗯!这是个不错的方法,但请同学们思考:如果有一个很大的圆形游泳池,要测量它的周长,我们能把它放在直尺上滚动一圈吗?

  [分析] 让学生操作学具展示自己的测量方法,锻炼他们的动手能力,有了学具的参与,学生用事实说明了问题。同时也促进了他们的合作能力和语言表达能力。接着,李老师又提出了新的问题,为后面的课程做铺垫。

  生:下面请听一听我们第二小组的方法。我们小组是用绳子绕圆片一周得到它的周长,所以我们也可以用绳子绕圆形游泳池一周,再测量出绳子的长度,不就测量出了圆形游泳池的周长了吗?

  (说完,大家为第二小组的同学们鼓起了掌。)

  师:大家对你们的方法已经做出了肯定,这个测量方法的确很棒!

  (此时,第二小组同学们的脸上露出了得意的笑容,就在这时,老师拿出一根绳子,绳子的一端系着一个小球,接着将绳子在空中旋转起来。)

  师:同学们请看,小球走过的路线是什么形状呢?

  生:是一个圆形。

  (这时,教师转向第二组的同学并提问。)

  师:如果想得到这个圆的周长,还能用你们小组的这种绕线测量的方法吗?

  生:不能。

  [分析] 第二小组同学们利用绳子、直尺等学具创设了“绕线法”解决了问题后,李老师再次提出了质疑,这次的问题更难解决,也让同学们进一步意识到测量方法的局限性。

  师:第三小组的同学,你们有什么好方法?

  (第三小组派代表发言。)

  生:我们可以把系有小球的绳子放在纸片上,固定一端,拉紧绳子,旋转一周,用笔描画出小球的运动路线,然后将这个圆剪下来,再利用之前同学们说的滚动或者绕线的方法测量出这个圆的周长,不就解决了这个问题吗?

  (同学们听完后,恍然大悟,都夸赞第三小组的同学聪明,此时的他们心里美滋滋的。)

  师:你们组的想法很有创意,但大家有没有想过,这个小球的运动方式就好比公园里巨大的摩天轮,如果要得到摩天轮的周长,这个方法还可行吗?

  生:不可行。

  师:看来,用测量的方法得到圆的周长具有一定的局限性,而且测量中也存在误差,数据不够精确,我们还要像研究长方形或正方形的周长那样,找到一个科学普遍的公式来计算圆的'周长。

  生:圆的周长与什么有关?有怎样的关系?

  师:请利用你们手中的学具合作探究吧!

  (同学们通过操作学具,经历测量、填表、计算、观察等活动,终于发现了圆的周长是它的直径的3倍多一些。再结合教材推导出了圆的周长计算公式,心中的成就感和自豪感油然而生。)

  [分析] 同学们带着心中的疑惑去探究,目的明确,再加上小组合作,合理的分工,充分利用学具,让每一个学生都有事可干,教室里气氛活跃而井然有序。经过学生自己的努力,他们终于发现了圆的周长与它的直径之间的3倍多一些的关系,也推导出了圆的周长计算公式。

  课后解读

  数学课堂中应用教具、学具,能锻炼学生的动手操作能力和思维能力,使他们对知识有更深刻的认识和理解。本节课李老师就是利用教具学具紧紧抓住了学生们的注意力,让他们通过一系列的操作活动积极主动地获取了新知,让学生在“玩”中学、“学”中玩,使大家印象中枯燥的数学课变得活跃起来。

圆的周长教学设计7

  一、素质教育目标

  (一)知识教学点

  1、认识圆的周长,知道圆周率的意义。

  2、理解和掌握圆周长的计算公式。

  (二)能力训练点

  1、会用公式正确计算圆的周长。

  2、通过引导学生探究圆周长的意义,培养学生抽象概括能力。

  (三)德育渗透点

  1、通过对圆的周长测量方法的探究,渗透化归思想。

  2、通过介绍祖冲之在圆周率方面的研究成就,进行爱国主义教育。

  (四)美育渗透点

  通过演示,使学生受到美源于生活,美来自生产和时代的进步,感悟数学知识的魅力。

  二、学法引导

  1、引导学生操作、实验,从中发现规律。

  2、运用周长公式,指导学生计算。

  三、教学重点:

  圆周长的计算方法

  四、教学难点:

  圆周率意义的理解。

  五、教具、学具准备:

  微机、实物投影、小黑板、系有螺丝帽的线、大小不等的圆片、铁圈、皮尺、直尺、线绳。

  六、教学过程:

  (一)认识圆的周长

  1、创设情境

  (屏幕显示)两只小蚂蚁在地上跑步,红蚂蚁沿着正方形路线跑,黑蚂蚁沿着圆形路线跑。

  2、迁移类推

  (1)要求红蚂蚁所跑的路程,实际上就是求正方形的什么?什么叫正方形的周长?怎样计算正方形的周长?(板书:围成)

  (2)求黑蚂蚁所跑的路程,实际上就是求圆的什么?(板书并揭示课题:圆的周长),围成圆的这条线是一条什么线?(板书:曲线)这条曲线的`长就是什么的长?什么叫圆的周长?(生回答,师完成板书:围成圆的曲线的长叫做圆的周长)。

  3、实际感知

  (1)师拿出一个用铁丝围成的圆,让学生用手摸出圆周长的那部分。

  (2)让全班学生动手摸摸硬币、硬纸板、圆柱的周围,同桌之间边说边指出周长是指哪一部分的长。

  (二)测量圆的周长

  圆的周长是一条封闭的曲线,你能用手边的测量工具,测出圆的周长吗?你能想出几种测量方法?(学生自己动手测量硬币、圆铁圈、硬纸板等)。

  学生说出测量方法:化曲为直、滚动、软皮尺测、绳绕圆一周。生边说,师边微机演示。

  师:你们想的这些方法都很好,但是不是对所有的圆都能用这些方法测量出它的周长呢?请同学们看:(师捏住一头系着螺丝帽的线,用力甩出一个圆)象这个圆你能用绕线法或滚动法量出圆的周长吗?当然不能,因为只要老师的手一停,圆就消失了,那么我们能不能找出一条求圆周长的普遍规律呢?

  (三)引导发现圆的周长与直径的关系:

  1、圆的周长与什么有关系?

  启发思考:正方形的周长与它的边长有什么关系?(周长是边长的4倍)那么圆的周长是否也与圆内的某条线段长有关,也存在着一定的倍数关系呢?

  学生小组讨论后汇报结果。

  微机演示:用三条不同长度的线段为直径,分别画出三个大小不同的圆,并把这三个圆同时滚动一周,得到三条线段的长分别就是三个圆的周长。

  引导学生观察,生说出观察结果,从而得出:圆的周长与直径有关系。

  2、圆的周长与直径有什么关系?

  (1)测量计算

  小组合作,分别量出几个圆形物体的周长和直径,并计算出周长和直径的比值,结果保留两位小数,并把相应的数据填在89页的表格中。

  请同学汇报所填数据。

  观察这些数据,能发现什么呢?

  生概括出:每个圆的周长是它直径的3倍多一些。

  (2)媒体演示:

  屏幕上大小不同的三个圆及三个圆的周长(化曲为直的线段),用每个圆的直径分别去度量它的周长,得出:大小不同的三个圆,每个圆的周长还是它直径的3倍多一些。

  (3)引导概括

  其实,任何一个圆的周长都是它的直径的3倍多一些。这就是圆的周长与直径的关系。

  3、介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。

  表示这个3倍多一些的数是一个固定不变的数,我们把圆的周长与直径的比值,叫做圆周率。(板书:圆的周长和直径的比值,叫做圆周率。)用字母π表示。

  教学生读写π,介绍π在计算时如何取值。

  学生自己读书中介绍祖冲之的一段知识。

  (四)归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  ?(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd?或C=2πr

  (五)应用圆周长计算公式,解决简单的实际问题。

  小黑板出示例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)

  指名读题,自己列式解答(1生板演)

  (六)订正时教师强调说明:

  (1)解答时不必写出公式。

  (2)π取两位小数,计算时就不再看成近似的数了。

  (3)计算中取近似值的那一步要用“≈”表示。

  完成例1下的做一做,实物投影订正。

  (七)看书质疑,全课小结。

  (八)课堂练习

  1、判断正误,并说明理由。

  (1)圆的周长是直径的3.14倍。?()

  (2)大圆的圆周率比小圆的圆周率大。()

  (3)π=3.14?()

  2、求下面各图的周长(只列式不计算)

  3、求下面各圆的周长

  (1)d=2米?(2)d=1。5厘米(3)d=4分米

  r=6分米r=3米r=1。5厘米

  分三组进行解答,订正时强调单位名称。

  4、解答简单应用题

  (1)一个圆形花池,直径是4。2米,周长是多少?

  (2)一个圆形牛栏的半径是12米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计)

  (3)一种压路机的前轮直径是1。32米,前轮的周长是多少米?如果前轮每分转6周,它每分钟前进多少米?(得数保留整米数)。

  (九)课后练习

  量一量家中自行车轮胎的外直径,计算它滚动一周前进多少米?

圆的周长教学设计8

  课题

  圆的周长

  例题

  教学 目标

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能解决简单的实际问题。

  2、使学生通过操作、计算,发现规律,培养抽象、概括的能力和探索意识。

  3、通过介绍圆周率的史料,使学生受到中国古代在数学方面的成就。

  手 记

  我在设计圆的周长这节课时,对

  圆周长概念的教学做了淡化处理,新教材对概念和老教材比已经大大弱化了。目标是让学生知晓,不必死抠字眼。我的设计,力图在已有知识和新知识之间找到衔接点,故而在正方形内接圆这一点上,为探究直径和圆周长的关系做了新的尝试。之后的教学,希望在自主探索中培养学生的动手操作能力。先让学生独立思考,然后小组合作,大胆猜想圆的周长可能与什么有关,再引导学生通过实际计算几个大小不等的圆形物体的周长与直径的比值,使学生明确自己的猜想是否正确,再让学生在动手操作、测量、观察和讨论中经历探索圆的周长公式的全过程,充分发挥学生学习的主体性,激发学生学习数学的兴趣。

  重难点

  教学重点:圆周长公式的推导。

  教学难点:圆周率的意义。

  教学过程

  资源

  目标

  学与教

  一、开门见山,直奔主题

  二、渗透“转化”,激发兴趣

  三、合作探究,发现规律

  四、运用新知,解决问题。

  五、知识回首,概括总结

  师生谈话,生活中的周长概念,教具。

  教具、学具,学生已有的生活经验

  学具、计算器、

  实验报告单

  习题

  实物感知,触摸圆的周长,既激发学生的学习兴趣同时,也形象的让学生建立圆周长的概念。

  让学生探索测量圆的周长的方法,渗透“化曲为直”的数学思想

  测量的局限性引出寻找计算方法的必要性。

  从猜想与观察中初步探寻周长与直径的关系。

  通过操作,收集数据,计算比对后发现规律。

  从周长与直径的比值引出圆周率的概念

  从圆周率概念中演变出圆周长的计算公式

  巩固运用、深化知识

  学生对整节课所学知识进行梳理

  (一)谈话引入,揭示课题。

  上节课,我们一起学习了“圆的认识”,今天我们一起来研究圆的周长。(板书课题)

  1、拿出一个圆片问:什么是圆的周长?请你指出老师手上圆的周长?再指出自己准备的圆形物体的周长。

  2、提问:圆的周长和我们以前学过的长方形和正方形的周长有什么相同的地方?又有什么不同?

  (出示长方形、正方形、圆的图,让学生进行比较)

  3、用一句话概括一下什么是圆的周长。

  4、归纳:围成圆的曲线的长叫做圆的周长。

  (二)探索测量圆的周长的方法

  (1)教师接着问:长方形和正方形的周长,我们能直接用尺子测量出来,但是圆的周长能直接测量出来吗?比如这样的一个圆(铁丝围成的圆形)

  生:拉直了再量一量。

  师:为什么要拉直呢?(引出化曲为直的思想)

  师再出示圆片问,这个能拉直吗?可以怎样得到它的周长?

  你有什么好的方法? (同桌讨论)

  汇报:(学生演示)

  a、可以把圆在直尺上滚动一周,测出周长。

  b、还可以先用绳子绕圆一周,测出绳子的长度,就是圆的周长。

  教师评价:同学们想出的方法很好。刚才的方法有一个共同的特点是什么?

  生:是把弯曲的线段转化为直的线段来测量。

  师:做校服量你的腰围是不是跟这个差不多呢?

  师板书:绕线法、滚动法------化曲为直

  (3)教师问:这样的方法有局限性吗?举几个例。

  生:比如说在操场上画的大圆的周长、广场上的圆形喷泉的周长、溜球绕在手指上旋转一周,形成了圆,它的周长不便用上面的方法。

  师:用图片展示嫦娥二号绕月飞行的圆形轨迹,引发学生的感慨:测量的方法有局限性,那么我们就要找出求圆的周长的普遍方法。

  (1) 观察并猜想:圆的周长会和什么有关?有怎样的关系呢?

  ,圆的周长 教学设计

  (三个直径不同的圆提示周长与直径有密切的联系。)

  (2)观察并思考:正方形与圆有何共同之处,圆的周长会超过直径的4倍吗?至少应大于直径的( )倍。

  (三)圆周长的推导。

  (1)探索圆周长与直径的关系。

  下面我们就来测一测,算一算,看看圆的周长和它的直径有什么关系?

  让4人小组的同学进行合作,分别测量出3个圆形物体的周长和直径,并把结果记录在表格中。最后观察数据,有什么发现?

  圆

  直径(厘米或毫米)

  周长(厘米或毫米)

  周长/直径(保留两位小数)

  圆1

  圆2

  圆3

  我们的发现

  (2)反馈。

  请学生上台来展示,并且说说发现。

  小结:同学们都发现了虽然我们测量的圆的大小不一样,但是圆的周长和直径的比值总是3倍多一点。

  (3)教师用软尺绕学具圆一周,再将软尺沿直径绕三次演示3倍多一些,加深3倍多一些的.印象。

  3、教学圆周率。

  师:其实任何一个圆的周长和直径的比值都是一个固定的数。我们把它叫做圆周率。(板书)用希腊字母π表示。

  师:什么是圆周率呢?也就是说周长是直径的多少倍?

  说到圆周率,老师不得不提起一位我们的祖先。(看63页你知道吗?)

  上面的介绍,你有什么感受?

  圆周率是一个无限不循环小数,在计算时,一般保留两位小数,π≈3.14。

  4、圆周长的计算公式。

  师:刚才,我们圆周率是怎样求出来的?(周长÷直径=圆周率)

  师:根据圆周率你能求出圆的周长吗?

  周长=直径×圆周率

  (c=πd)

  师:如果用半径求呢?

  (c=2πr)

  5、从最后的公式中可以看出,什么决定了圆的周长?

  (四)解决问题

  1、算一算。

  求下面各圆的周长。

  (1)d=4厘米 (2)r=1.5米

  师:求圆的周长必须知道什么条件?

  2、判断。

  (1)、任何一个圆的周长总是直径的π倍。( )

  (2)、圆周率是任何圆的周长和直径的比的比值。( )

  (3)、大圆的圆周率比小圆的圆周率大。( )

  (五)、谈学习收获:

  师:哪位同学能谈谈这节课你的收获与感想?

  板书 设计

  圆的周长

  圆的周长测量: 滚动法、绳测法---------------化曲为直

  规律: 圆的周长总是它的直径的3倍多一些。

  圆的周长÷直径=圆周率

  公式:圆的周长=直径×圆周率

  C=πd C=2πr

  教学 准备

  每小组学生准备:一条绳子、剪刀、一把直尺、3个大小不同的圆。

圆的周长教学设计9

  设计理念:

  本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  教学内容:

  《义务教育课程标准实验教科书 数学》人教版六年级上册第89-91页《圆的周长》

  学情与教材分析

  本节课是在学生学习长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识:它们的周长就是围成它一周的长度,这为学生认识、概括、归纳圆的周长提供知识技能基础。在教法上,以“铺垫孕状——新知探究——新知运用”为主线,又在各个环节中设置由浅入深,由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。

  教学目的

  1、理解圆的周长和圆周率的意义,推导圆的周长公式,并能正确计算圆的周长。

  2、通过动手实践,自计探索与合作交流等活动发现和理解圆的周长的计算方法。

  3、在探究中体验成功,增强信心。

  4、结合圆周率的教学,激发学生的爱国热情。

  教学准备

  老师:课件、直尺、纸剪的圆、系有小球的绳子两具啤酒瓶、绳子。

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  教学过程:

  一、创设情境,导入新课

  1、课件播放:机器人轿车和跑车在两个赛道上比赛,轿车沿着正方形路线跑,跑车沿着圆形路线跑。

  2、想一想

  (1)要求轿车所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量了它的什么就可以?能说出你的依据吗?

  (2)要求跑车所跑的路程,实际就是求圆的什么呢?板书课题:圆的周长。

  3、从图上可以看出,圆的周长是一条什么线?谁来说说什么圆的周长?

  【设计意图:利用课件演示,引导学生逐步认识圆的周长,归纳圆的周长的意义,突出正方形周长与它的边长的关系,加深学生对圆的周长的理解,为后继教学“圆的周长与直径的关系”作学习策略上的铺垫。】

  二、引导探索,展开新课。

  1、感知、测量:用手摸圆的一周<纸剪的圆>

  (1)师演示用直尺测量圆的周长,你觉得怎样?能不能想出一个好办法来测量圆的的周长呢?

  (2)利用学具操作,用不同方法测量圆的周长。

  (3)想一想:用这些方法测量圆的周长有什么共同特点?

  [设计意图:本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系。”]

  2、合作研究:圆的周长与直径有什么关系?

  (1)猜一猜:(老师拿出一个一端系有小球的绳子,手执另一端并不停地转动形成一个“圆”),你们还能利用刚才的方法测量出这个圆的周长吗?圆的周长可能与它们有关?

  (2)比一比:同桌合作,用绕圆一周的彩带跟学具的圆的直径比一比,看它们有什么关系?

  (3)算一算:小组合作,量出圆的周长和直径,算出圆的周长和直径的比值。

  【学情预设:由于测量有些误差,其结果有所不同,可让学生通过争辩来统一认识】

  (4)、议一议:计算结果有不同,你发现了什么?

  (5)、得出结论:通过以上活动,你发现圆的周长和直径之间有什么关系?

  【设计意图:本设计从学生实际出发,通过量一量、想一想、猜一猜、比一比、算一算、议一议等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的关非纯粹的知识本身,更主要的是态度、思想方法,是一种探究的品质】

  3、认识圆周率

  (1)揭示圆周率的概念

  这个3倍多一些的数,是个固定不变的数,称之为圆周率。圆周率一般用字母∏表示。

  指导读写

  (2)指导阅读第90页方框中的文字,了解让中国人引以为自豪的历史,介绍近代大于圆周率的研究成果。

  4、推导圆的周长的计算方式

  (1)问:已知一个圆的直径,该怎样计算它的'周长?板书:C=∏d,学生任意挑选一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?

  (2)问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:C=2∏r

  (3)问:转动木条形成的圆的周长你会求吗?

  (4)小结:要求圆的周长,一般需要知道它的直径或半径。

  【设计意图:本设计通过学习自主的“探究—发现”,进一步理解周长与直径的关系,理解圆周率的意义。通过问题的层层深入,圆的周长公式就推导而出。】

  三、初步运用,巩固新知

  1、辨析、判断<课件>

  (1)圆的周长是它直径的3倍多一些 ( )

  (2)圆的周长是它直径的3.14倍 ( )

  (3)圆的周长是它直径的∏倍 ( )

  2、教学例1 <课件>

  (1)在生读题后,问:求这张圆桌的周长是多少米?实际上是求什么?

  (2)学生尝试,反馈评价。

  3、完成第91页中间的“做一做”。

  【设计意图;通过判断题的判断,加深了学生对圆的周长和直径间关系深刻认识,并有一个正确的认识。对桌面周长的计算,培养了学生对知识运用的能力,了解了数学与生活的联系业务,让学生获得不同程度的成功体验】

  四、全课总结、

  1、请学生说说收获。

  2、回放两车比赛的课件;算一算,哪辆车跑的路程长?

  3、生活中的数学

  师演示;把两个啤酒瓶捆扎在一起。啤酒瓶的直径是T厘米,如果只扎一圈,至少要多少厘米绳子?(接头处不算)

  设计思路

  着名教育学家布鲁纳指出“探索是数学的生命线”。本设计求为学生创设“探究——发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华。

  一、在操作中感悟。

  教学过程是教师引导学生把人类的知识成果转为个体认识的过程,

  是一种“再创造”的过程,在这个过程中,实践操作是最基本、最重要的手段和方法之一。本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。

  二、在探究中发现

  儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过量一量、想一想、猜一猜等活动,让学生在亲身经历数学知识的操究过程中发现知识、理解知识、应用知识。这样学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。

  三、在经历圆周率的研究历史中,渗透数学文化和数学思想。

  在教学设计中,学生通过动手实验,得出圆的周长和直径的比值,进而介绍祖冲之的研究成果,最后,介绍看守代关于圆周率的研究成果。在这个过程中,使学生经历了圆周率的研究史,渗透数学文化和数学思想方法。同时,使学生产生情感的共鸣、丰富学生的情感体验,发展学生的情感、态度和价值观。

  四、在实践中体会到知识的价值

  在教学设计中,让学生用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  作者简介:

  郑蓉,现任教于浦城县新华小学,1971年出生,大专学历,小学高级教师,担任校数学教研组组长,县学科带头人。

圆的周长教学设计10

  【教学内容】

  新课标人教版六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。

  2.能利用圆的周长的计算公式解决一些简单的数学问题。

  3.培养学生的观察、比较、分析、综合及动手操作能力。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。

  难点:理解圆周率的意义。

  【教具、学具】

  课件、软尺、直尺、绳子、圆形。

  【教学过程】

  课前交流:请同学们唱一首歌。

  (设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)

  一、创设情景,生成问题

  国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。

  (设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。

  (设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)

  二、探索交流,解决问题。

  师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。

  师:同桌想一想圆的周长怎样测量?

  师:把你的好方法在小组内交流一下。

  (设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

  师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?

  (设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。

  师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。

  师演示(线绕圆一周,然后量出线的长度。)

  师:还有其他的方法吗?

  生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。

  师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。

  生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。

  师:这个办法也很妙!其他同学还有要补充的吗?

  生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。

  师:你的想法可真不简单!

  师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。

  师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?

  生:能!

  师:正方形的周长和什么有关?

  生:周长是边长的4倍,

  师:那么圆的周长和什么有关系呢?

  生:圆的直径越长圆越大,所以周长就越长。

  师:那周长和直径有怎样的关系呢?

  (设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的`求知欲。)

  师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。

  师:现在大家通过填写表格发现了什么?

  生:在测量中发现,大小不同的圆的周长是不同的。

  师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?

  生:是由半径(或直径)唯一决定的。

  师:圆的周长与直径或半径之间到底存在着怎样的关系?

  生:每组算的结果不大一样,但都是3点多。

  师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?

  生:一样。

  师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。

  师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?

  我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)

  师:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  师:从表中我们可以看出圆的周长÷直径=圆周率

  (板书:圆的周长=π×直径)。

  如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。

  生读:c=πd c=2πr

  师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?

  生:圆的直径或半径。

  (设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)

  三、回顾整理,反思提升。

  这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?

  (1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。

  (2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。

圆的周长教学设计11

  教学目标:

  1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

  2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

  3.初步学会透过现象看本质的辨证思想方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  学重点:正确计算圆的周长。

  教学难点:理解圆周率的意义,推导圆周长的计算公式。

  教具准备:多媒体课件、系绳的小球。

  学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳

  一、以旧引新,导入新课

  1.复习正方形的周长。

  ①复习周长的意义。什么叫周长?(学生汇报后,课件演示周长的意义)。

  ②复习正方形周长的意义。(课件演示小花狗围着正方形跑一圈正方形的周长闪动红色)要求小花狗所跑路程,实际上就是求这个正方形的什么?

  2.揭示圆的周长。

  (1)(课件演示小白狗围绕圆形跑一圈圆形的周长闪动黄色)要求这只小白狗所跑的路程实际上又是求这个圆的什么?(圆的周长,揭示课题)你能说说什么叫圆的周长吗? (教师完成板书,学生读书)

  (2)同位用自己带来的圆形实物互相口述圆的周长。

  二、探索圆周长与直径的关系

  1、动手操作,合作交流。

  师问:我们知道了什么叫圆的周长,那么怎样测量圆的周长呢? 可以用什么工具来测量?

  ①请同学们拿出你们带来的测量工具,以四人小组为单位,想办法测量你手中圆的周长并做好填表记录,(边量边交流测量方法)让我看哪个小组做得最棒。(教师巡视操作过程)

  周长(C)直径(d)周长与直径的关系( )

  ②请四人小组上台演示操作过程,边操作边说方法。

  2、探索圆周长与直径的关系(课件演示填表)

  (1)请同学们看屏幕的表格,认真观察比较一下,想一想圆的周长跟什么有关系?

  (2)讨论:究竟圆的周长与它的直径有什么关系呢?

  (小组汇报)引出圆周率

  任何圆的周长总是它的直径长度的3倍多一些。(板书)

  3、揭示圆周率的概念。

  (1)师:科学家的大量准确测量和精确计算得出,表示这个3倍多一些的数,是一个固定不变的数,这个固定不变的数叫什么?请自学99页第二自然段。(叫做圆周率)什么叫圆周率呢?用哪个字母表示。谁能说一说(指导读写π。)

  (2)了解圆周率的历史。(课件演示圆周率的历史,对学生进行思想教育和爱国主义教育。)

  关于圆周率还有一段历史呢。请同学们打开书看99页下面小的方字,想:通过看书你知道了什么? 我国古代著名数学家祖冲之在计算圆周率方面做出了什么贡献?这个结果比外国数学家得到这个结果整整早了一千多年,可见我国古代人民的智慧和力量。但随着科学技术发展,外国数学家利用计算机已经计算到小数点后一亿多位,我国现在又落后了。哪我们还有机会超过外国人吗?没错只要我们努力学习将来一定会让中国走在世界前列。

  (3)推导圆周长的计算公式。

  (1)师:通过刚才的探索,我们已经知道圆的周长与直径的关系了,你能推导出圆周长的计算公式吗?(小组讨论)

  (2)学生汇报讨论结果,板书:圆的周长=直径×圆周率

  那么要求圆的周长,你必须知道什么?(直径或半径)你会求吗?

  4. 应用圆的周长公式,解决简单的应际问题。

  出示例1(学生自学并独立完成)。教师检查自学情况,请一名同学上台板演。教师评点。

  5看书、质疑

  (1)若将例1的直径改为半径,会求它的周长吗?

  (2)及时反馈,完成第100页(练一练1、2)。

  三、运用新知,解决问题

  1.下面的说法对吗?并说明理由。

  (1)圆的`周长是它直径的π倍。()

  (2)大圆的圆周率大于小圆的圆周率。()

  (3)π=3.14()

  2.解答练习二十一第2题(课件演示)

  3.测量一圆形实物直径,计算它的周长。

  4、扣展练习

  (1)画一个周长12.56厘米的圆

  (2)思考题。(课件出示两只蜜蜂分别在一个大圆和两个小圆上走一圈)大圆的周长和两个小圆的周长之和同样长吗?为什么?

  四、总结全课,学生互评。

  这节课你学到了什么?谁的表现最佳?

  板书设计:

  圆 的周长

  围成圆的曲线的长叫做圆的周长

  任何圆的周长总是直径的3倍多一些(圆周率)

  例1、一块圆形铝片的直径是5厘米,它的周长是多少?

圆的周长教学设计12

  教材分析:

  《圆的周长》是六年级数学上册第一单元的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

  学情分析:

  本节课是在学生掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,知道半径,直径的关系并且会画圆,能测量出圆的直径的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,应从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。

  教学目标:

  1、知识与技能目标:使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。

  2、过程与方法目标:通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法。

  3、情感、态度与价值观目标:通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。

  教学重点:推导圆的周长的计算公式。

  教学难点:理解圆周率的意义。

  教学过程:

  一、创设情境 导入新课

  在动物王国里,两只小蚂蚁正在进行赛跑,甲乙连只蚂蚁分别沿着正方形和圆形跑一圈,谁跑的路程长?为什么?

  圆的知识系列微课(四)《圆的周长》教学设计

  甲蚂蚁跑的路程:4×2=8(厘米)

  要求乙蚂蚁跑的路程,就要求出圆的周长。

  从图上可以看出:圆的周长就是圆一周曲线的长度。这节课我们就来研究圆的`周长。

  二、实践操作 探究新知

  1、测量圆的周长

  怎样测量圆的周长呢?

  方法一 绳测法:用绳子绕圆一周,测出绳子的长度。

  方法二 滚测法:把圆在直尺上滚动一周,做上记号,量出圆的周长。

  利用课件展示两种测量方法。

  小结;无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。

  2、探究周长与直径的关系:

  (1)猜想:圆的周长与什么有关呢?

  (2)测量圆的周长与直径,并填表

  周长

  直径

  周长与直径的比值(保留两位小数)

  1号圆片

  2号圆片

  3号圆片

  (3)观察表格:你发现了什么?

  圆的周长总是直径的三倍多一些。

  (4)介绍圆周率:圆的周长与直径的比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)

  (5)渗透数学文化

  师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】

  3、推倒圆的周长计算公式:

  刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?

  生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)

  用字母表示圆的周长为; C=π或 C=2πr

  三、实际应用 解决问题

  乙蚂蚁爬过的路程为:3.14 ×2=6.28(cm)

  8cm﹥6.28

  甲蚂蚁爬过的路程长。

  四、回顾全课 归纳总结

  这节课你有什么收获?

  五、板书设计:

  圆的周长

  化曲为直

  圆的周长=直径×圆周率 π≈3.14

  C=πd或C=2πr

圆的周长教学设计13

  教学内容:小学数学实验教材十一册第107~108页“圆的周长”

  教学目标:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2、培养学生的观察、比较、分析、综合及动手操作能力;

  3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:推导并总结出圆周长的计算公式。

  教学难点:深入理解圆周率的意义。

  教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,

  以及直尺、绸带,测量结果记录表,计算器,投影资料等

  教学过程:

  一、创设情境,引起猜想:

  (一)激发兴趣

  播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1、回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2、认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  [评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿

  (三)讨论正方形周长与其边长的关系

  1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  2、怎样才能知道这个正方形的周长?说说你是怎么想的?

  3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  [评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

  (四)讨论圆周长的测量方法

  1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  2、反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (4)初步明确运用各种方法进行测量时应该注意的问题。

  3、小结各种测量方法:(板书)转化

  曲直

  4、创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  5、明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

  [评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。

  (五)合理猜想,强化主体:

  1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩

  2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

  向大家说一说你是怎么想的。

  3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的`几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  4、小结并继续设疑:

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  [评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。

  二、实际动手,发现规律:

  (一)分组合作测算

  1、明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

  提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

  测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。

  (二)发现规律,初步认识圆周率

  1、看了几组同学的测算结果,你有什么发现?

  2、虽然倍数不大一样,但周长大多是直径的几倍?

  3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)

  板书:圆的周长总是直径的三倍多一些。

  (三)介绍祖冲之,认识圆周率

  1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

  3、这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4、理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  5、解答开始的问题

  现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

  (四)总结圆周长的计算公式

  1、如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长=直径×圆周率

  C=πd

  2、如果知道圆的半径,又该怎样计算圆的周长呢

  板书:C=2πr

  追问:那也就是说,圆的周长总是半径的多少倍

  [评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

  三、引导质疑,深入领会(略)

  四、巩固练习,形成能力

  1、判断并说明理由:π=3。14()

  2、选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

  a、大圆的圆周率大于小圆的圆周率;

  b、大圆的圆周率小于小圆的圆周率;

  c、大圆的圆周率等于小圆的圆周率。

  3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  五、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  [评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

  六、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

  绕8字跑,谁跑的路程近

  [总评]

  纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。

圆的周长教学设计14

  教学内容:圆的周长

  教学重点:理解圆周率的意义。

  教学难点:探究圆的周长的计算方法。

  教学过程:

  一、导入新课

  故事导入,观看后提问:

  1.谁获胜呢?

  2.它们对自己跑的距离产生了怀疑,都说自己跑的远……

  3.拿起一个圆用手模一摸感知什么是圆的周长。

  二、新课

  (一)介绍测量方法:

  1.绳测法。

  2.滚动法。

  3.教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的局限性

  (二)猜想。(三)实验。

  1.小组协作。

  周长c (厘米)

  直径d (厘米)

  周长与直径的比值 (保留两位小数)

  ……

  ……

  ……

  2.汇报测量和计算结果。

  提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?

  学生:发现每个圆的周长总是直径的3倍多一些。

  (四)验证结论。

  (五)阅读理解有关圆周率的知识。

  三、练习

  计算方法:

  1.能说出圆周长的计算方法吗?

  c=∏d c=2∏r(板书)

  2.根据条件,求下面各圆的周长。

  d=10cm r=10cm

  3.(略)

  4.现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?

  5.拓展练习。

  四、总结。

  你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。

  附:教学设想

  一、选择与新知识最佳关系的生长点,巧制课件,导入新课。

  “周长”是已学过的概念,但以前讲的长、正方形的周长是指封闭折线的长度,而圆的周长是指封闭曲线的长度。一“直”一“曲”既有联系亦有区别。我抓住这一新知识的连接点导入新课。激发学生的求知欲。

  二、调动学生积极主动参与,给学生充分的探索空间。

  整个教学过程中,我设计灵活多样的教学方法。例:课件演示与实验相结合,个别实验和小组实验相结合,讲与练相结合,计算与测量相结合,谈话与板书相结合,讲与练相结合,计算与测量相结合。充分调动学生学习的主动性,给学生充分的探索时空,并且探究的题材对学生也具有一定的挑战性。学生的角色由知识的接受者转变为知识的构建者。

  三、在研究性学习中培养学生合作意识和数学交流能力。

  小组探索通过测、剪、量、算一系列操作认识圆的周长与直径有一定的倍数关系,巧用课件,概括出圆周长的计算公式。

  附:教后感:

  这次“三新一整合”的活动促使我重温《新教材标准》,改进自己教学观念,学习有关信息技术整合的新模式。本节课体现了我教学观念的一些改变。主要体现在:

  一、把课堂的主动权交给了学生,给学生充分的探索时空。

  课堂教学是“教”与“学”的统一,随着素质教育的不断深化,越来越偏重于“学”的研究(三新活动中的“新学法”)。教师不再是知识的提供者和传授者,而是数学学习的组织者、引导者、参与者;学生不再是知识的接受者,而是数学知识的建构者。师生角色的的变化,使学生在学习方式上有了质的飞跃。动手实践,自主探索、合作交流成为学生重要的学习方式。圆的周长计算方法的探索,这题材对学生有一定的挑战性,也就是和学生的现有认知状态有一个适度距离(潜在距离),学生在这种状态下的探究学习才是有意义的学习。本节课给予学生充分的时间探索出圆的周长总是直径的3倍多一些。

  二、利用课件,激发探究兴趣、提高探究效率和培养探究能力。

  课件动感的龟兔赛跑把全体学生引入课堂,理解了课题的含义、明确了学习的目的性,激发了探索的兴趣。课件的几次龟兔赛跑的介入,并逐级演示,再加上老师的启发引导和学生的观察思考有机结合,化抽象为具体,使学生进一步理解了圆周长的含义,明确学习目的性,激发了学生的探究兴趣。

  运用课件设计自学内容,大大节省了板书所用的时间,使学生探究数学问题的效率得以提高。正方形周长和圆周长比较,大圆周长和几个内切小圆的周长和比较。通过课件的演示,对于引导学生说理,理解疑难问题,培养学生解决新问题的探究能力有着极为重要的作用。

  三、巧妙设计练习,照顾全体,培养学生的创造能力。

  本节课的练习全部是要利用课堂所学的内容解决生活中的问题。特别是通过小组学习形式让学生利用圆周长的知识举出能解决生活中哪些有关圆周长的知识这一开放性题型。激发了学生的兴趣,也照顾了不同层面的学生。学生所举的例子充分体现了学生的创造性和运用知识的能力。

  运用了探究式课堂教学。上课后,也有许多地方值得我进一步深思。例如怎样设问、问题开放到什么程度、信息技术怎样完美地和课堂整合、教学理念的进一步改变……

  探究式课堂是否取得实效,归根到底是以学生是否参与、怎样参与、参与多少来决定的同时只有让学生主动参与教学,才能让课堂充满生机。

  附:评析意见:

  对于刘老师上的《圆的周长》一节课,我们可以用九个字来概括,“观念新,意识强,效果好”。从教学设计中和教学过程中,我们深切地感受到刘老师的教学理念很先进,对“新课程标准中的数学学习和数学教学”有深刻的认识,也体现出较好的效果。

  一、教学观念上,刘老师的“个性教育意识”强

  刘老师的.“个性教育意识”强,可以从刘老师的课堂设计、课堂结构上都可以体现出来。课堂上学生的学习过程都是以小组的形式来开展的,学生之间通过协作、交流来共同实现学习目标。这种组织形式就能保证了每一个学生都能得到许多的学习机会,在这样的学习环境中,人人都能得到发展,不同的人得到了不同的发展。

  二、教学关系上,刘老师的“学生的主体意识”强

  刘老师的“学生的主体意识”强,这一点不仅可以从教师的角色的转变中可以看出来,还可以从教学时间的分配上得到体现。首先教师的角色在课堂上有很大的变化。教师不再一个人主导课堂,她把教学主阵地让位给学生,从而使学生真正成为学习的主体。在课堂上,老师是不仅一个引导者,通过“龟兔赛跑”的故事,配合课件动画的演示,一下子就把学生带到探究问题的学习环境之中来。老师还是一个组织者,给学生分工,给学生目标和任务,其余工作都让学生自己去完成。学生都很好地利用这些时间和空间,动手操作,通过操作去探究和发现圆的周长和直径的关系。老师不只是注重结论的学习,更是让学生去经历学习活动的全过程,从而使学生体验到探究问题的乐趣。老师更是一位与学生平等的合作者,老师适时的点拨与启发“正方形的周长与边长有关,大胆地让学生猜一猜圆的周长与什么有关”。再如,老师艺术地把自己的测量结果与学生平等地呈现在一起,没有一点强加给学生的味道。另外,为了真正体现以学生为主体,而不流于形式。刘老师给学生提供充分的学习时间和空间,如探究和发现圆的周长与直径的关系,学生用了12分钟。这就保证学生有充分的时间参与学习活动,尽可能地让全体学生参与学习活动,使学生人人动脑、动口、动手,从而真正确立学生学习的主体地位,还学生学习的主人地位。

  三、教学模式上,刘老师的“创新意识”强

  在教学活动中,刘老师很注重学生创造力的培养。其中练习的设计很有新意,对培养学生的创造力起着很大的作用。小组之间互相提出问题,或独立解答,或讨论交流。从学生提出的问题我们可以感觉到学生的创造力很强。如有的提钟的时针转一圈的长度、单车的车轮的周长、呼啦圈的周长等,还有地球的周长,大树干的周长等。这些问题都是我们生活当中所常见的现象。学生就可以利用今天所掌握的知识去解决这些问题。学生的收获真的很大。从而让学生体会到什么是有价值的数学,生活当中的数学就是有价值的数学,有趣的数学,有利于学生发展的数学就是有价值的数学。

  四、建议

  课件整合方面,为了让学生从更深层次上接触科学的真理,培养科学的态度和科学精神。可以在学生操作得到圆的周长是直径的3倍多一些的关系以后,设计一个较精确的计算圆周率的课件,让学生对圆周率有一个更加清楚的认识。

圆的周长教学设计15

  教学目标:

  1、通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

  2、通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

  3、在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:能正确、熟练地进行圆周长和面积的计算。

  教学难点:从探究活动过程中去发现圆与正方形之间的关系。

  教学准备:课件,学具。

  教学过程:

  一、复习旧知,梳理体系

  直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

  教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

  小组合作,让同学们把所学的知识整理一下,然后进行汇报。

  汇报交流,课件出示相关内容。

  (1)圆的认识:

  圆心O:决定圆的位置;

  直径d:决定圆的大小;

  半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

  圆是轴对称图形,有无数条对称轴。

  (2)圆的周长:

  围成圆的曲线的长度叫圆的周长。

  圆周率:周长与直径的比,是个无限不循环小数。

  圆周长的计算: 。

  (3)圆的面积:

  由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

  圆面积计算: 。

  圆环的面积: 。

  【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的'掌握和理解,通过梳理形成知识体系。

  二、基本练习,整合知识

  教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

  1、说说下面各题的最简整数比:

  (1)一个圆的半径和直径的比是多少?(1:2)

  (2)一个圆的周长和直径的比是多少?(:1)

  (3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)

  周长的比是多少?(2:3)

  面积的比是多少?(4:9)

  【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

  2、一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)

  (1)这个公园的围墙有多长?

  教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)

  (2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)

  (3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

  (4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

  【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

  三、探究学习,培养能力

  1、用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

  (1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

  (2)剪完圆后,哪张白铁皮剩下的废料多些?

  教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

  (3)根据以上的计算,你发现了什么?

  【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

  四、回顾总结,交流收获

  教师:说说这节课我们学习了什么?你有什么收获或问题?

  【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

【圆的周长教学设计】相关文章:

圆的周长教学设计01-25

《圆的周长》教学设计03-07

《圆的周长》数学教学设计05-07

人教版《圆的周长》教学设计06-10

圆的周长教学设计15篇04-01

圆的周长教学设计(15篇)04-09

《圆的周长》教学设计15篇04-16

《圆的周长》教学设计(15篇)04-16

圆的周长教学设计18篇04-29

《圆的周长》教学设计精选15篇06-07