圆的周长教学设计

时间:2023-06-11 17:32:15 教学资源 投诉 投稿

圆的周长教学设计(通用15篇)

  作为一名教学工作者,总归要编写教学设计,借助教学设计可以让教学工作更加有效地进行。写教学设计需要注意哪些格式呢?以下是小编帮大家整理的圆的周长教学设计,欢迎阅读,希望大家能够喜欢。

圆的周长教学设计(通用15篇)

圆的周长教学设计1

  一、教学目标

  1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2.培养学生的观察、比较、分析、综合及动手操作能力;

  3.结合圆周率的学习,对学生进行爱国主义教育。

  二、教学准备

  一元硬币、圆形纸片等实物以及直尺,测量结果记录表

  三、教学过程:

  <一>、创设情境,引起猜想:

  (一)激发兴趣

  小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1.回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币,互相指一指这些圆的周长。

  (三)讨论正方形周长与其边长的关系

  1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  2.怎样才能知道这个正方形的周长?说说你是怎么想的?

  3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  (四)讨论圆周长的测量方法

  1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的'周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  2.反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)初步明确运用各种方法进行测量时应该注意的问题。

  3.小结各种测量方法:(板书)

  化曲为直

  4.创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?

  5.明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

  (五)合理猜想,强化主体:

  1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答

  2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

  向大家说一说你是怎么想的。

  3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  4.小结并继续设疑:

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  <二>、实际动手,发现规律:

  (一)分组合作测算

  1.明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

  提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

  测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。

  2.生利用学具动手操作,师巡视指导、收集信息。

  3.集体反馈数据(选取3~4组实验结果,黑板板书展示)

  (二)发现规律,初步认识圆周率

  1.看了几组同学的测算结果,你有什么发现?

  2.虽然倍数不大一样,但周长大多是直径的几倍?

  板书:圆的周长总是直径的三倍多一些。

  (三)介绍祖冲之,认识圆周率

  1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

  3.这个倍数究竟是多少呢?我们来看一段资料。

  (祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4.理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  5.解答开始的问题

  现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

  (四)总结圆周长的计算公式

  1.如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长=直径×圆周率

  C =πd

  2.如果知道圆的半径,又该怎样计算圆的周长呢

  板书:C =2πr

  追问:那也就是说,圆的周长总是半径的多少倍

  <三>、巩固练习,形成能力

  1.判断并说明理由:π = 3.14()

  2.选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确是:()

  a.大圆的圆周率大于小圆的圆周率;

  b.大圆的圆周率小于小圆的圆周率;

  c.大圆的圆周率等于小圆的圆周率。

  3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  <四>、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

  绕8字跑,谁跑的路程近

圆的周长教学设计2

  教学目标:

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点:推导圆的周长的计算公式,准确计算圆的周长。

  教学难点:理解圆周率的意义。

  教具准备:圆片、铁圈、绳子、直尺。

  教学方法:观察、演示、小组合作交流

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

  (3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  二、经历探究全程,验证猜想发现。

  一圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的'直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  二圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

  三、感受数学文化,激发情感教育。

  1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  2、介绍计算机计算圆周率的情况。

  3、教学圆周率:π≈3.14。

  四、归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd或C=2πr

圆的周长教学设计3

  教材版本:《义务教育课程标准实验教科书 数学》

  教学内容:六年级上册第四单元第57页

  教材分析:圆的周长是学生在学习直线图形的周长、面积基础上第一次学习曲线图形的周长。教材关于“圆的周长”这一内容,安排在六年级上册第四单元。教材创设了一个“天坛”的简单情景,帮助学生认识圆的周长,并用“绕线”“滚动”等常用方法测量圆的周长,然后安排了探究活动:“圆的周长与什么有关?有什么关系?”通过研究发现圆的周长与直径的关系,从而推导出圆的周长计算公式。

  学情分析:学生是学习的主体,是知识建构的主动者。高年级学生能运用已有的知识经验通过顺迁移探索发现新的知识,并运用新知解决实际问题。他们在小组合作的学习环境下,利用自主探索的学习方式,学习的积极性较高,他们善于探索,敢于质疑,敢于创新,敢于发表自己的主张和看法。学生在第一学段已经直观的认识了圆,建立了周长的概念,并会求直线段围成的图形的周长,对圆的周长有丰富的感性经验。在此基础上,通过本节课的学习让学生经历圆周率的产生与形成过程,探究发现圆的周长计算公式,并能利用公式解答实际问题。

  教学目标:

  1、使学生经历圆周率的探究过程,推导出圆周长的计算公式,并能正确地计算圆的周长。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、初步学会透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学要点分析:

  教学重点:学生已经建立了周长的概念,对圆的周长也积累了丰富的感性经验。因此,关于什么是圆的周长,学生比较容易理解。圆作为一种曲线围成的图形与学生头脑中熟悉的直线段围成的图形差别比较大,因此探究圆的周长计算公式是本节课的教学重点。

  教学难点:在探究圆的周长计算公式时,最有价值的、最具有思维含量的地方是让学生经历圆周率的产生过程,因此本节课充分放手让学生经历圆周率的探究过程,是本节课的教学难点。

  教学过程:

  一、开门见山,揭示课题

  师:大家请看,这是什么图形?(课件出示课本57页天坛情景图)

  生:圆形。

  师:我们已经认识了圆,今天这节课我们一起来学习圆的周长。(板书课题:圆的周长)

  (评析:学生已储备了较丰富的圆形物体的表象,对周长的概念也较容易理解;再者,本节课学生探究的时间较长,四十分钟的课堂学生要经历前人历尽艰辛推导圆周长计算公式的历程;为保证把过程性目标落实到位,在课的起始阶段,开门见山,迅速集中学生的注意力,把他们的思维带进特定的学习情境中。)

  二、探索交流,解决问题

  1、圆的周长含义

  师:请大家想一想,什么是圆的周长?谁能指着圆说一说。

  生:圆一周的长就是圆的周长。

  师:(指圆)我们把围成圆的曲线的长叫做圆的周长。

  2、自主探究求圆的周长的方法

  师:怎样求圆的周长呢?下面我们借助学具圆片来研究。

  大家请看,这是一个圆形纸片,你有办法知道它的周长吗?请小组同学商量好方法后,合作求出每个圆片的周长,并把结果记录在表格中。

  (小组活动,教师巡视。)

  师:哪个小组先来介绍你们的方法?

  生1:我们是用绳子绕圆片一周,然后量出绳子的长度,就得到了圆片的周长。

  师:还有那个小组也用到了这个方法?

  (全体学生都举手)

  师:噢,都用到了,看来是个不错的方法。还有不同的方法吗?

  生2:我们先在圆片上作个记号,然后把圆片沿着直尺滚动一周,就量出了圆片的周长。

  师:这个办法怎么样?

  生:很好。

  师:同学们都是用测量的方法得到了圆片的周长,归纳起来大家用了两种测量方法,一起来看:

  多媒体演示,师生共同描述:可以先在圆片上作个记号,然后把圆片沿直尺滚动一周,就得到了这个圆片的周长。

  还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,也就是圆片的周长。

  师:这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?

  生:直线。

  师:是直直的线段。在数学学习中,我们经常会用到转化的方法。(板书:转化)

  (评析:根据学生的学习经验和已有的知识,引导学生自主探究方法,合作测量圆的周长,既强化了学生对圆的周长意义的理解,又为后面探索圆周率打下基础。在测量交流的过程中,体会了“化曲为直”的数学思想,经历了用数学思想方法解决数学问题的过程,学生思维能力、动手操作能力和合作意识得到培养。)

  师:同学们已经会用测量的方法求圆片的周长,真棒!大家请看,(课件出示)这是北京天坛公园的回音壁(图),它有一道圆形围墙;这是被称为“天津之眼”的摩天轮(图),它的框架也是圆形的,你能用刚才的方法测量出这些圆的周长吗?

  生:不能。

  师:为什么呢?

  生1:我们没有那么长的绳子,更不可能用滚动的方法。

  生2:就算我们有足够长的绳子,可是量起来太困难。

  师:看来用测量的方法也能解决,可是太麻烦,那有没有简便的方法呢?

  生:计算。

  (评析:创设情境,感悟“围”“滚”测量圆的周长的局限性,切实体会计算圆的周长的必要性,使下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。)

  3.探究圆的周长计算公式

  (1)探究发现圆周率的取值范围

  师:怎样计算圆的周长呢?

  师:大家回想一下,以前我们学过长方形、正方形的周长计算,计算长方形的周长需要知道它的长和宽,计算正方形的周长需要知道它的边长,那么大家想一想,计算圆的周长需要知道什么呢?也就是说圆的周长和谁有关呢?

  生:直径和半径。

  师:能说说你的理由吗?

  生:因为圆的直径和半径决定圆的大小。

  师:我们知道圆的直径和半径越长圆越大,那圆的周长就越长,圆的直径和半径越短圆越小,那圆的周长就越短。看来圆的周长和直径或半径的关系确实很密切,那大家来观察,你认为圆的周长与直径会有怎样的关系呢?

  (大多数学生茫然,教师加以引导)

  师:我们知道长方形的周长是它长、宽之和的2倍,正方形的周长是边长的4倍,那么圆的周长和直径是怎样的关系呢?

  生:倍数关系。

  师:请大家观察,你认为圆的周长是直径的几倍?

  生:圆的周长是直径的2倍多。

  师:能说说你是怎样想的?

  师指图继续让生说。

  生:直径把圆平均分成了2份,半个圆周的长比直径长,圆的周长是直径的2倍多。

  师:通过刚才的交流,我们达成共识,圆的周长一定比直径的2倍多,(板书:2倍多)那会比几倍少呢?或者接近几倍呢?

  (评析:借助已有的知识获取新知,是最高的教学技巧所在。当老师提出“怎样计算圆的周长?”这一问题时,学生感到茫然。老师引导学生回忆长、正方形的周长计算,让学生类比猜想并形成了假设:计算圆的周长需要知道什么?周长和直径有什么关系?沟通了知识间的'联系,促成了迁移。)

  生猜并说理由。

  师:看来同学们找不到合理的依据,为了研究方便,老师给每小组提供一个圆形图片,小组同学一起来想一想、画一画、比一比,共同研究这个问题,好吗?

  (老师为每组发一张画有一条直径的圆的图片,各小组进行充分的操作研究,老师参与小组活动。)

  师:我发现每个小组都有自己的想法了,哪个小组先来说一说?

  生1:(拿着自己研究的成果介绍)我们小组又画了一条直径,把圆等分成了四份,发现圆的周长应该是直径的四倍左右。

  生2:我们小组在圆的外面画一个正方形,我们发现正方形的边长和圆的直径相等,正方形的周长是直径的4倍,圆的周长比正方形的周长短,所以圆的周长比直径的4倍少。

  师:同学们真聪明,知道用以前学过的图形帮助研究新问题。圆的周长比直径的2倍多,4倍少,那你想不想知道更接近几倍呢?

  生:想。

  师:大家看,刚才这小组把圆等分成四份,发现圆的周长是直径的4倍左右,我们借助这种思路,再继续等分下去看能发现什么?大家看(多媒体演示:把圆等分六份)现在把圆等分成了几份?

  生:六份

  师:圆周角平均分成了6份,那这一个角是多少度呢?

  生:60度。

  师:这一个三角形是什么三角形?(课件闪烁一个三角形)

  生:等边三角形。

  师:那么这一条边就等于圆的半径,这一段弧和这一条边比,谁长?(课件闪烁一段弧和对应的一条边)

  生:弧长。

  师:也就说这一段弧比圆半径长,那圆的周长比圆半径的几倍多?

  ,《圆的周长》教学实录与评析

  生:6倍多。

  师:比圆直径的几倍多?

  生:3倍多。

  师:圆的周长比直径的3倍多一些,到底是几倍呢?有什么办法知道?

  生:我们可以量出圆的周长和直径,用周长除以直径,算一算。

  (评析:使学生经历知识的产生与形成的过程非常重要,以上外切正方形、分割圆等方法正是阿基米德、刘徽等数学家研究圆周率时所使用的,学生萌生并运用这些方法进行研究,正是我们所追求的“大数学观”。在提出问题—形成假设—猜想推理—形成结论的过程中,学生对知识的理解更加透彻,情感、态度、价值观的培养更加有效。借助课件演示,使学生感受到了极限思想。)

  (2)计算圆周率的近似值

  师:刚才每个小组已经测量出几个圆片的周长,下面请各小组再拿出表格,找到每个圆的直径,填在第三栏,并用计算器算出周长除以直径的商,把结果记录在表格第四栏中,除不尽的得数保留两位小数。

  (小组活动,教师巡视。)

  (各小组完成后,老师把各组的表格依次放在展台上。)

  师:我们测量的圆的直径都不一样,周长也不一样,请同学们来观察这些周长除以直径的商,你又有什么发现?

  生:都比3大。

  生:圆的周长除以直径的商都是3点几。

  生:都在3.2左右。(板书:3.2倍左右)

  师:也就是说圆的周长总是直径的3倍多一些,这也证明我们刚才推理的结果是正确的,其实,在古今中外,有许多数学家研究过这个问题,他们经过大量的实验,已经证明圆的周长除以直径的商是一个固定的无限不循环小数,它是3.1415926……,我们把它叫做圆周率,(板书:圆周率)用一个希腊字母π来表示。(板书:π)。

  师:一起读。(板书pài)

  师:我们看,刚才同学们计算的圆的周长除以直径的商为什么都不是固定的数呢?

  生:测量不准确,有误差。

  师:很会分析问题。我们计算的商都不一样,是因为测量有误差造成的。只要测量方法正确,测量过程仔细,是可以减小误差的。

  (3)介绍圆周率的历史

  师:有关圆周率的历史,你想了解一下吗?

  (多媒体演示,教师介绍。)

  师:在我国,有关圆周率的最早记载是20xx多年前的周髀算经,当时的解决方案是测量,人们发现圆的周长总是直径的3倍多。和我们刚才测量计算的结果是一样的。

  魏晋时期伟大的数学家刘徽首先采用“割圆术”得出了较精确的圆周率的值。我们刚才把圆周等分成了2份,发现圆的周长是直径的2倍多,等分成4份,发现周长是直径的4倍左右,等分成6份,发现周长比直径的3倍多一些,刘徽一直把圆等分成192份,得到了圆周率的近似值3.14。

  继刘徽之后,我国南北朝时期有一位伟大的数学家和天文学家,他继续研究圆周率,并做出了杰出的贡献,你知道他是谁吗?

  生:祖冲之。

  师:对,祖冲之。他计算出π的值在3.1415926和3.1415927之间,是世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。你有什么感想?

  生:祖冲之很伟大。

  师:是啊,我们确实该为我们的祖先能有这样的伟大成就感到骄傲和自豪。

  师:虽然如此,人们对圆周率的研究远没有结束。随着数学技术的发展,现在人们已经用计算机将圆周率计算到小数点后12411亿位。

  师:有关圆周率的历史资料还有很多,有兴趣的同学课下继续搜集、查阅。

  (评析:让学生了解自古以来人类对圆周率的研究历程,领略与计算圆周率有关的方法,从而了解数学的悠久历史和人类对数学知识的不断探索过程,感受数学的魅力,激发研究数学的兴趣。同时,结合刘徽、祖冲之研究圆周率取得的伟大成就,激发学生的民族自豪感。)

  (4)推导圆周长的计算公式

  师:现在我们知道了圆的周长总是直径的π倍。π是一个固定的数,知道了直径,怎样计算圆的周长。

  生:圆的周长等于圆周率乘直径。

  师:如果用字母C表示,那么C=?

  (板书:C=πd)

  师:知道了圆的直径,你会计算圆的周长,知道了圆的半径,怎样计算圆的周长?

  (板书:C=2πr)

  师:要计算圆的周长,只要知道什么就可以了?

  生:直径或半径。

  师:由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:3.14)

  (评析:通过前面的探究,学生明确了圆的周长与直径的关系,进而引导学生推导圆的周长计算公式,水到渠成,深化了学生的思维。)

  三、实践应用,内化提高

  师:现在老师告诉你天坛回音壁的圆形围墙的直径是65米,这个摩天轮的圆形框架的半径是55米,现在你能求出它们的周长吗?

  (学生独立尝试,教师巡视。)

  师:谁来介绍你的计算方法?

  生读题,集体订正。

  (评析:利用探究得出的公式解决前面提出的实际问题,使学生体会到计算公式的简洁、实用,培养了学生解决问题的能力。)

  四、回顾整理,反思提升

  师:今天这节课你有什么收获?

  生1:我学会了计算圆的周长。

  生2:我了解了圆周率的历史。

  师:这些都是大家知识上的收获,我们在获取这些知识时,通过观察圆的图形,做辅助线、等分圆等方法,首先确定了圆周率的取值范围,又通过测量计算找到了圆周率的近似值,我们还自己推导出了圆周长的计算公式,同学们真是太棒了。

  (评析:数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后,不仅引导学生回顾了本节课学到的知识,还与学生一起回顾了解决问题的策略、方法,并对学生所做出的成绩给予情感上的激励。)

  创新特色:

  1、把基本活动经验和基本数学思想方法纳入本节课的重要教学目标。

  数学教学不仅要重视“双基”,即基础知识和基本技能,而且要重视获得适应社会生活和进一步发展所必须的数学基本思想和基本活动经验。圆的周长这节课的设计充分体现了这一理念。本节课设计了三次探究活动。第一次探究,在“怎样求圆形纸片的周长?”这一问题的引领下,让学生利用手中的学具自主探究方法,学生根据已有的知识经验,联想到“用线围”和“在直尺上滚”的测量方法。然后教师用问题“这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?”启发学生体会“化曲为直”的数学思想。第二次探究,学生已观察得出圆的周长是它直径的2倍多之后,启动问题“那会比几倍少或接近几倍呢?”学生独立思考却找不到合理的依据,感到困惑的时候,老师为每小组提供一个圆的图片,让各小组发挥集体的智慧,共同研究。第三次探究,学生已经通过观察、讨论等方法发现了圆的周长比直径的3倍多,4倍少,老师再问“那究竟是几倍呢?用什么方法才能知道?”启发学生想到计算的方法,然后请各小组在前面测量的基础上,算出圆的周长除以直径的商并观察有什么发现,得到圆周率的近似值,同时也验证了前面的推理。在三次探究活动中,学生利用已有的知识经验,基于对知识探求的欲望,主动进行操作、猜想、验证、思考与交流,经历了知识的产生与形成的过程,积累了解决数学问题的经验,获得了解决数学问题的方法。

  2、促进知识的迁移

  “为迁移而教”。迁移的前提是知识间存在着联系,我们要善于研究知识间的联系,促进知识的迁移,使原有的知识同化新知识。圆的周长与长、正方形的周长计算存在着联系,计算都需要一定的条件,周长与条件之间都存在倍数关系。本节课在设计时,采取了并列结合的学习方式,步步深入,使学生借助已有的知识经验,探求新的知识。

  3、把数学教学看作一个整体。

  本节课增加了学生猜想计算圆的周长需要什么条件,及探究圆的周长与直径倍数的取值范围,探究占用了较多的时间。四十分钟的课堂,要做到面面俱到是很困难的,让学生经历探究圆周率的过程,推导出圆的周长计算公式,这对学生来说是个了不起的收获。本节课把“使学生经历圆周率的探究过程,推导出圆周长的计算公式,”作为主要目标,因此压缩了练习的时间,把练习放在下一节,让练习课成为新授课的延伸。

  3、充实、完善了教学目标。

  把数学看作大数学,本节课的教学,学生不是在别人提示下通过测量计算得到的圆周率,而是引导学生借助已有的知识经验,调动学生的智慧,使学生经历前人研究圆周率的过程、所运用的方法,培养了学生的研究意识、探究能力以及数学学习的情感,而这一切,比单纯获得一个公式更为重要。因此本节课的教学目标中我们增加了“使学生经历圆周率的产生与形成过程”这一重要内容。

圆的周长教学设计4

  一、教材分析

  “圆的周长”是人教版第十一册第四单元的教学内容。它是研究曲线图形的开始,也是今后学习圆面积及圆柱、圆锥等几何知识的基础。

  教材从生活情境入手,先让学生思考自行车绕圆形花坛骑一圈大约有多少米,从而引出圆的周长的概念。接着引导学生思考怎样用不同的方法测量圆的周长,在实践中逐渐体会到有些圆不能测量出周长,怎么办?在此基础上,探索圆周率,并归纳总结计算公式、运用公式解题。为了有效内化计算公式,教材安排了相应的变式应用练习。

  笔者以为,本教材有以下特点:一是层次分明、思路清晰、逻辑性较强;二是特别重视实验操作,突出直观教学,让学生在丰富的感性认识的基础上学习新知;三是注重培养学生的实验探究、归纳总结和发现规律的能力;四是通过圆周率的.介绍,渗透了爱国主义教育。

  二、学生分析

  学生在三年级上册已经学习了周长的一般概念,熟练掌握了长(正)方形周长的计算方法。教材直观的情境导入,让学生理解圆周长的概念会很容易。学生已具备测量圆周长的基本技能,关键是圆的周长与什么有关,有什么样关系学生难以想到;或者容易受长方形、正方形周长公式影响,以为圆周长与直(半)径也一定成整数倍关系。这就需要教师适当引导、点拨,通过组织学生进行测量、计算、比较分析等探究活动,找出规律,总结特征。

  三、学习目标

  知识与技能:理解圆周率的意义,掌握圆的周长的计算公式。

  过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

  情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育

  其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。

  四、教学过程:

  (一)复习铺垫

  1.复习圆的认识。

  2.出示长方形、正方形及几个不规则图形,让学生指一指它们的周长,明确其计算结果用的是长度单位。

  以上两步同时进行,为理解圆周长的含义做好铺垫。

  (二)教学新知

  1.在情境中内化概念

  (1)具体感知圆周长的概念。

  出示情境图(小蚂蚁在正方形和圆形路口爬行),谁能说说小蚂蚁走哪条路近一些?

  说明,小蚂蚁走过的路程实际上就是圆的的周长。

  师生共同小结:围成圆的曲线的长是圆的周长。

  (2)板书课题。

  2.在探究中理解公式

  (1)设疑激思

  鼓励学生用不同的方式测量圆的周长。

  用绳测和滚动测量法,测量自己的学具圆获圆形实物的周长。

  学生测量了这些圆的周长以后,教师进一步提问:“要是有一个很大的圆,怎么测量它的周长呢?如学校的圆形花坛。”如果学生说用卷尺绕花坛一周进行测量,教师可以举出更多的圆的例子,如空中划出的圆形,引导学生寻求更为一般化的方法。

  学生猜想圆的周长是否也有计算公式时?

  激思:圆的周长与什么有关?与直径到底有什么关系?

  (2)操作填表

  同桌两人一组,正确测量学具圆(实物)的周长和直径。并逐一汇总填表。

  再次操作:修正自己的测量结果。

  (3)比较发现

  分别引导学生竖向和横向看表格,比较找规律,计算圆周长和直径的比值,最后比较、分析、归纳出圆周长是直径的3倍多。

  (4)归纳总结

  介绍圆周率和祖冲之的故事。

  推导公式:圆周率=圆周长/直径;推出圆周长=圆周率×直径,圆周长=2×圆周率×半径。

  几下字母公式。

  3.在运用中强化公式

  教学例1独立解题。

  练习:口头列式并讲算理,巩固公式。

  (三)巩固练习(图略)

  基本练习。判断题,直接求周长。

  变式练习。在边长4分米的正方形内化画一个最大的圆,再求周长。

  综合练习。求阴影部分的周长。

  五教学反思

  1课前预设的学生活动太少,数学上没有从活动中探究新知;

  2课前对学生原有任职的单位太简单,没有具体到学生。

圆的周长教学设计5

  教学内容:苏教版小学数学第十册第98—99页。

  教学目标:1、理解圆周率的意义,掌握圆的周长的计算公式。

  2、通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

  3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。

  教学重点:理解和掌握求圆的周长的计算公式,能计算圆的周长。

  教学难点:动手操作,探索圆的周长与直径的关系。

  教学具准备:教师准备多媒体课件、学生实验报告表。学生准备直尺、直角三角尺两把、一角、五角、一元硬币名一枚、绳子。

  教学过程:

  一、联系生活,激活内需

  同学们,为了倡导低碳生活、共建绿色家园,重庆一支自行车队伍头戴钢盔,身穿印有“环保、低碳”字样的文化衫,人手一辆自行车,从奥体中心出发,驶向主城各个方向,庞大的阵容吸引了不少市民关注。(课件出示图片)但是,他们选择的自行车却是不一样的,请同学们看两张图片。(课件出示自行车的两张图片及议一议的内容)

  议一议:(1)车轮转动一周,谁的车走得远呢?为什么?什么是车轮的周长?

  (2)车轮的周长和什么有关系?圆的周长与什么有关系?圆的周长与直径有怎样的关系呢?

  揭示课题:圆的周长

  【评析:从现代生活理念出发,也是从学生已有的.知识经验出发,感知车轮转动一周的远近与车轮的周长有关,车轮周长的大小就是圆的周长的大小,圆的周长与直径的长短有关。一方面让学生受到了环保教育,另一方面也让学生自我发现研究圆的周长要从研究周长与直径的关系入手,也产生了进一步探究的必要性。】

  二、实验操作,探究新知

  1、在情境中内化概念

  同学们已经知道圆的周长指的那部分,那你们拿出自己准备的硬币,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?

  师生共同小结:围成圆的曲线的长是圆的周长。

  2、测量圆的周长

  (1)既然圆的周长是曲线那能不能用直尺直接测量呢?怎么测量呢?(让学生独立思考10秒左右)

  (2)四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)

  (3)小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(结合学生的方法配以课件演示)

  课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)

  (板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。

  3、探索规律

  圆的周长与直径到底有怎样的关系呢?利用你手中的硬币及工具来测量一下圆的周长与直径。下面请同学们选用自己喜欢的方式以小组为单位进行测量,记录测量数据,并通过计算寻找周长与直径的关系,看看你们组发现了什么。把结论填在表的下面。(课件出示实验报告表,并让每组拿出课前发的表格。)

  物品名称

  周长

  直径

  周长与直径的关系(计算)

  一角硬币

  五角硬币

  一元硬币

  我们发现的规律是:

  小组合作完成,全班交流实验结论。预设:圆的周长是直径的3倍多一些。

  4、老师操作,即课件演示测量圆的直径和周长的过程。

  师:老师也测量了圆的周长与直径,你们想看一看吗?演示课件。

  总结:圆的周长总是直径的3倍多一些。

  5、认识圆周率

  (1)实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。

  (2)听了这个故事,你有哪些感受?师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。

  (3)师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。

  “圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。

  根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)

  【评析:以小组学习的形式,放手让学生去探求圆的周长,目的是体现让学生进行自主探索的教学思想,同时也培养学生的合作意识与能力。这里提供三种不同的圆让学生求周长,向学生渗透“化曲为直”的数学思想及方法。通过介绍圆周率,在头脑中完善对圆的周长计算方法的认知,促进学生的自我建构,激发一定的民族自豪感和探索精神。】

  三、巩固应用,内化知识

  1、独立完成。

  (1)“试一试”。

  计算例4中三个自行车车轮的周长大约各是多少厘米。

  (2)“练一练”。

  有一种汽车车轮的半径是0.3米。它在路面上前进一周,前进了多少米?

  3、小组合作完成。

  (1)你知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程吗?要解决这个问题你想得到什么样的数据?

  (2)(出示图片)圆形花坛的直径是20米,小自行车车轮的直径是50厘米,绕花坛一周车轮大约滚动多少周?

  【评析:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程,体会到学以致用。实例计算可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为课后实践题打下很好的伏笔。】

  四、回顾反思,评价小结

  通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?

  师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!

  五、课后拓展,走进生活

  小组合作完成,应用这节课学到的知识,想办法测量一下,从学校大门口到影剧院门口的距离大约是多少米。

  【评析:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力。】

  板书设计:

  圆的周长

  圆的周长是直径的3倍多一些

  圆的周长=直径×圆周率

  C=πd

  C=2πr

圆的周长教学设计6

  教学内容:小学数学实验教材十一册第107~108页“圆的周长”

  教学目标:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2、培养学生的观察、比较、分析、综合及动手操作能力;

  3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:推导并总结出圆周长的计算公式。

  教学难点:深入理解圆周率的意义。

  教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,

  以及直尺、绸带,测量结果记录表,计算器,投影资料等

  教学过程:

  一、创设情境,引起猜想:

  (一)激发兴趣

  播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1、回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2、认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  [评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿

  (三)讨论正方形周长与其边长的关系

  1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  2、怎样才能知道这个正方形的周长?说说你是怎么想的?

  3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  [评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

  (四)讨论圆周长的测量方法

  1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  2、反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (4)初步明确运用各种方法进行测量时应该注意的问题。

  3、小结各种测量方法:(板书)转化

  曲直

  4、创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  5、明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

  [评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。

  (五)合理猜想,强化主体:

  1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩

  2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

  向大家说一说你是怎么想的。

  3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  4、小结并继续设疑:

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  [评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。

  二、实际动手,发现规律:

  (一)分组合作测算

  1、明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

  提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

  测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。

  (二)发现规律,初步认识圆周率

  1、看了几组同学的测算结果,你有什么发现?

  2、虽然倍数不大一样,但周长大多是直径的几倍?

  3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)

  板书:圆的周长总是直径的三倍多一些。

  (三)介绍祖冲之,认识圆周率

  1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

  3、这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4、理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  5、解答开始的问题

  现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

  (四)总结圆周长的计算公式

  1、如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长=直径×圆周率

  C=πd

  2、如果知道圆的'半径,又该怎样计算圆的周长呢

  板书:C=2πr

  追问:那也就是说,圆的周长总是半径的多少倍

  [评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

  三、引导质疑,深入领会(略)

  四、巩固练习,形成能力

  1、判断并说明理由:π=3。14()

  2、选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

  a、大圆的圆周率大于小圆的圆周率;

  b、大圆的圆周率小于小圆的圆周率;

  c、大圆的圆周率等于小圆的圆周率。

  3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  五、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  [评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

  六、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

  绕8字跑,谁跑的路程近

  [总评]

  纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。

圆的周长教学设计7

  教学目的

  1、理解圆周率的意义。

  2、理解周长的概念,并掌握圆周长的计算公式和推导过程。

  3、能运用公式求圆的周长或直径、半径。

  重点

  圆的周长计算公式的推导,能利用公式正确的计算。

  难点

  深入理解圆周率的意义及圆周长计算公式的推导。

  教具:两个大小不同的圆、直尺一把、绳子一根、计算器和表格

  一、复习导入(4分钟)

  (一)出示菜板和圆桌图

  师:

  1、这两个都是什么平面图形

  2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)

  3、还有什么不同?(圆的大小不同,圆的半径不同)

  4、也可以说是圆的直径不同。

  (二)出示图与对话框

  师:

  1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)

  2、问:铁皮的长度实际上就是圆的什么?

  预设:

  1、圆一周额长度(这个长度就是圆的周长)或

  2、圆的周长。

  二、新课教授

  (一)活动一:摸圆的周长(3分钟)

  师:

  1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。

  2、从哪里开始到哪里结束?

  预设:

  1、从这个地方开始,也在这里结束。

  2、小结:起点和终点是同一点。

  3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)

  4、围成圆的一周的曲线的`长是圆的周长。

  (二)活动二:周长的测量(4分钟)

  师:

  1、曲线图形的周长你会测量吗?(不会)

  2、同方谈论一下,你想要怎样测量。

  3、1生说绕绳法。他的方法听懂的举手。

  预设:

  1、听懂人多,师演示一下。

  2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。

  师:

  1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。

  2、教师观察指导。

  (三)汇报演示(4分钟)

  师:

  1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。

  2、这个办法有什么缺点?(不精确会产生误差)

  3、除了这个方法还有没有其他办法?

  预设:

  1、生能主动说出。

  2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)

  3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。

  师:

  1、生自己操作

  2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。

  3、测量中英注意什么?有误差吗?听懂的同学举手。

  4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)

  (四)动图播放绕绳法和滚动法

  1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。

  2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。

  3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)

  4、为什么?(圆的大小或圆的半径、直径不一样)

  三、猜想并探索(15分钟)

  (一)猜想(4分钟)

  1、直径不一样周长就不一样,那周长和直径有什么关系呢?

  2、你想把周长和直径怎样比?(周长除以直径、周长减直径)

  3、可以研究周长和直径吗?(不可以,每依据)

  4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)

  5、用你想用的方法研究一下周长与直径的关系。

  6、生在黑板上记录“周长÷直径”、或“周长减直径”。

  (二)探索(8分钟)

  1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。

  2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。

  3、它叫圆周率,读作π,通常计算式取3.14。

  (三)公式推导(3分钟)

  1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)

  2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?

  3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)

  四、巩固练习(10分钟)

  (一)基础题一道

  (二)能力提升两道

  (三)拓展题一道

  五、课后作业布置

圆的周长教学设计8

  【教学内容】苏教版九年义务教育六年制小学数学第十一册”圆的周长”

  【教学目的

  1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。

  2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。

  3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。

  【教学重点】掌握圆周长的计算方法

  【教学难点】理解圆周率的意义

  【教具、学具准备】

  教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。

  学具:圆、直尺、小绳。

  【教学过程】

  1、导入新课。

  (1)认识圆的周长。

  教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?

  (师出示正方形的图形。)

  学生指着图形回答上述问题。

  生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。

  教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。

  师:通过手摸正方形周长和圆的周长,你发现了什么?

  生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。

  老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?

  老师一边显示图象一边讲述:

  以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。

  圆的周长展开后变成了一条线段。

  (2)揭示课题。

  师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。

  (板书课题:圆的周长计算)

  【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】

  2、学习新知。

  (1)学生动手实验,测量圆的周长。

  全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。

  (学生测量圆的周长,并板书测量的结果。)

  师:你们是怎么测量出圆的`周长的呢?

  生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。

  师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?

  (老师边说边做手势,同学们笑了。)

  生1:不能。

  师:还有什么别的方法测量圆的周长吗?

  生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。

  教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。

  教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?

  生2:(不好意思地摇摇头)不能了。

  师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?

  【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】

  (2)根据实验结果,探索规律。

  教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。

  师:这两个圆有什么不同?

  生:两个圆的周长长短不同。

  师:圆的周长由什么决定的呢?

  生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。

  师:请认真观察,(教师再演示)这条绳子是这个圆的什么?

  生:是这个圆的半径。

  师:半径和什么有关系?圆的周长又和什么有关系呢?

  生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。

  师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。

  (学生测量圆的直径)

  随着学生报数,教师板书:

  圆的周长圆的直径

  9厘米多一些3厘米

  31厘米多一些 10厘米

  47厘米多一些 15厘米

  教师请同学们观察、计算、讨论圆的周长和直径的关系。

  (学生讨论,教师行间指导、集中发言)

  生1:我发现这个小圆的周长是它的直径的3倍。

  师:整3倍吗?

  生1:不,3倍多一些。

  生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。

  生3:我发现第三个圆的周长也是它的直径的3倍多一些

  (板书:3倍多一些)

  师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。

  滚动法验证:

  绳绕法验证:

  投影显示验证:

  直径:

  周长:

  师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?

  投影出示祖冲之的画像并配乐朗诵。

  “早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3。1415926---3。1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)

  同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”

  教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。

  (板书:圆周率)

  圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3。14。

  师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?

  (学生独立思考、讨论、看书)

  板书公式:C =πd

  C =2πr

  【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】

  3、反馈练习、加深理解。

  请同学们把开始测量的三个圆的周长用公式准确计算出来。

  (学生计算)

  师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?

  生:计算比测量要准确、方便、迅速。

  (1)根据条件,求下面各圆的周长(单位:分米)

  (学生计算,得出结果)

  师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?

  生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。

  【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】

  (2)判断正误。(出示反馈卡)

  ① 圆周长是它的直径的3。14倍()

  ② 圆周率就是圆周长除以它直径的商 ()

  ③ C =2π r =πd()

  ④ 圆周率与直径的长短无关 ()

  ⑤ π> 3。14()

  ⑥ 半圆的周长就是圆周长的一半()

  一部分同学认为第⑥题是错误的。

  教师举起了表示半圆的模型,(如图)

  请判断失误的同学们亲自指一指半圆的周长。

  在操作中,同学们恍然大悟,发现半圆的周长

  比圆的周长的一半多了一条直径的长度。

  (3)抢答。直接说出各题的结果。(单位:厘米)

  ① d =1 C =

  ② r =5 C =

  ③ C =6。28d =r =

  (同学们争先恐后地报出自己算出的答案)

  (4)运用新知识,解决实际问题。

  教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。

  同学们听了这个故事,摇摇头,表示不赞赏。

  一位同学站了起来:“张伟锯古树该罚款了。”

  教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”

  教室里热闹起来,同学们七嘴八舌地议论着……

  生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”

  (同学们笑了,鼓起掌来,表示赞赏。)

  (四)课堂小结:

  师:这节课学习了什么?请打开书----看书。

  教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”

  师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。

  (板书:变----不变)

  师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。

  画一个周长是12。56厘米的圆。怎样画?

  【简评:这节课的设计体现以下几个特点:

  1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。

  2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。

  3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。

  4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。

  5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】

圆的周长教学设计9

  教学目的:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:

  1、理解圆周率的意义。

  2、推导并总结出圆的周长的计算公式并能够正确计算。

  教学难点:

  深入理解圆周率的意义。

  教学过程:

  一、复习准备:

  (一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?

  (二)创设情境:龟兔赛跑。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  二、新授教学。

  (一)定义。

  1、小乌龟跑的路程就是正方形的什么?小白兔呢?

  2、什么是圆的`周长?请你摸一摸你手中圆的周长。

  3、今天我们就来研究圆的周长。

  (二)推导圆的周长公式。

  1、学生讨论。

  (1)正方形的周长和谁有关系?有什么关系?

  (2)你认为圆的周长和谁有关系?

  2、猜测。

  看图后讨论:圆的周长大约是直径的几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?

  3、实践操作。

  (1)目的:用不完全归纳法得出圆的周长约是直径的几倍。

  (2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。

  (3)填写表格。

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  (4)汇报小结

  看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?

  (三)认识圆周率、介绍祖冲之。

  1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。

  2、介绍祖冲之。

  (四)总结圆的周长公式。

  1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  教师板书:C=d

  2、圆的周长还可以怎样求?

  教师板书:C=2r

  3、圆的周长分别是直径与半径的几倍?

  (五)课堂反馈。

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  三、巩固练习。

  (一)判断。

  1、=3.14()

  2、计算圆的周长必须知道圆的直径。()

  3、只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1、较大的圆的圆周率()较小的圆的圆周率。

  a大于b小于c等于

  2、半圆的周长()圆周长。

  a大于b小于c等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。

  四、课堂小结:

  通过这堂课的学习,你有什么收获?你还有什么问题吗?

  五、课后作业。

  (一)求下面各圆的周长。

  1、d=2米

  2、d=1.5厘米3.d=4分米

  (二)求下面各圆的周长.

  1、r=6分米

  2、r=1.5厘米

  3、r=3米

  六、板书设计。

  圆的周长

  C=dC=2r

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  活动要求:

  1、各个组成部分面积分配合理,布局合理。

  2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。

  3、要有娱乐活动场所、休息场所、小路。

  4、算出各个部分的面积。

圆的周长教学设计10

  【教学资料】

  课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习

  【教学目标】

  1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题

  2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。

  3、培养学生创新思维潜力。

  4、透过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。

  【教学重点】

  探索圆的周长公式

  【教学难点】

  对圆周率π的理解

  【学具准备】

  每四个学生一组

  1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个

  2、直尺一把

  3、细绳一条、两根长31.4厘米的细铁丝

  4、实验表格

  5、计算器

  【教具准备】

  实物投影议、电脑

  【教学过程】

  一、设疑导入、培养创新意识

  1、电脑演示:有甲、乙两学生争论。

  甲说:“我脑袋大。”

  乙说:“我脑袋比你在大。”

  师:“如果你是裁判员应如何评判,两人才能都服气?”

  2、学生四人小组讨论

  请学生说一说自己的方法

  甲生:“看谁的脑袋大。”

  师:“如果看不出来怎样办?”

  乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”

  师:“十分好!很有创意。”

  丙生:“用绳绕头一周,测量绳的长度。”

  师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的.周长”。师板书圆的周长的定义。

  二、动手尝试操作,探求新知

  1、动手尝试操作

  (1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。

  圆的周长c(厘米)

  直径d(厘米)

  周长÷直径(c÷d)

  1

  2

  3

  4

  (2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。

  讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。

  (3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。

  2、探索规律

  (1)师将填好的实验表格在实物投影议上出示。

  学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。

  (2)思想教育

  师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约20xx年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。

  教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。

  师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”

  生:“不能”。

  师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”

  (3)推导圆周长公式

  师:“从公式看出,明白什么条件能够求出圆周长?”

  生:“直径、半径。”

  师:“如果圆的周长已知,怎样才能求出圆的半径或直径?”

  三、圆周长公式的应用(尝试练习)

  1、出示例1

  学生尝试练习,找学生板演,师生共同讲评。

  2、完成例1下面的“做一做”。

  3、出示例2

  学生尝试练习,找学生板演,师生共同讲评。

  4、完成例2下面的“做一做”题目。

  5、第8页练习二的1、2、3题。

  四、再次尝试操作、第二次创新

  1、求出人脑袋的横切面的半径

  (1)利用桌面上现有的测量工具,透过计算,怎样求出你脑袋的半径?

  (2)四人一组互相合作,动手测量,计算时可利用计算器。

  (3)将运算的结果对全班公布,并说明理由。

  2周长相等的正方形、圆,谁的面积大

  (1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?

  师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”

  (2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。

  五、全课小结

  1、这天我们学习了什么资料?

  2、经过这节课的学习,你有什么收获?

  3、师:“这天我们透过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。

  六、作业

  第9页练习二中的第9、10、11题。

  板书设计

  圆的周长

  围成圆的曲线的长叫圆的周长

  c=πdc=2πr

  例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  (生板演)3.14×0.95

  =2.983

  =2.98(米)

  答:这张圆桌面的周长约是2.98米。

  例2、一个圆形水池,周长是37.68米。它的直径是多少米?

  (生板演)解:设水池的直径是X米。

  3.14×X=37.68

  X=12

  或:37.68÷3.14=12(米)

  答:水池的直径是12米。

圆的周长教学设计11

  设计理念:

  本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  教学内容:

  《义务教育课程标准实验教科书 数学》人教版六年级上册第89-91页《圆的周长》

  学情与教材分析

  本节课是在学生学习长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识:它们的周长就是围成它一周的长度,这为学生认识、概括、归纳圆的周长提供知识技能基础。在教法上,以“铺垫孕状——新知探究——新知运用”为主线,又在各个环节中设置由浅入深,由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。

  教学目的

  1、理解圆的周长和圆周率的意义,推导圆的周长公式,并能正确计算圆的周长。

  2、通过动手实践,自计探索与合作交流等活动发现和理解圆的周长的计算方法。

  3、在探究中体验成功,增强信心。

  4、结合圆周率的教学,激发学生的爱国热情。

  教学准备

  老师:课件、直尺、纸剪的圆、系有小球的绳子两具啤酒瓶、绳子。

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  教学过程:

  一、创设情境,导入新课

  1、课件播放:机器人轿车和跑车在两个赛道上比赛,轿车沿着正方形路线跑,跑车沿着圆形路线跑。

  2、想一想

  (1)要求轿车所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量了它的什么就可以?能说出你的依据吗?

  (2)要求跑车所跑的路程,实际就是求圆的什么呢?板书课题:圆的周长。

  3、从图上可以看出,圆的周长是一条什么线?谁来说说什么圆的周长?

  【设计意图:利用课件演示,引导学生逐步认识圆的周长,归纳圆的周长的意义,突出正方形周长与它的边长的关系,加深学生对圆的周长的理解,为后继教学“圆的周长与直径的关系”作学习策略上的铺垫。】

  二、引导探索,展开新课。

  1、感知、测量:用手摸圆的一周<纸剪的圆>

  (1)师演示用直尺测量圆的周长,你觉得怎样?能不能想出一个好办法来测量圆的的周长呢?

  (2)利用学具操作,用不同方法测量圆的周长。

  (3)想一想:用这些方法测量圆的周长有什么共同特点?

  [设计意图:本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系。”]

  2、合作研究:圆的周长与直径有什么关系?

  (1)猜一猜:(老师拿出一个一端系有小球的绳子,手执另一端并不停地转动形成一个“圆”),你们还能利用刚才的方法测量出这个圆的.周长吗?圆的周长可能与它们有关?

  (2)比一比:同桌合作,用绕圆一周的彩带跟学具的圆的直径比一比,看它们有什么关系?

  (3)算一算:小组合作,量出圆的周长和直径,算出圆的周长和直径的比值。

  【学情预设:由于测量有些误差,其结果有所不同,可让学生通过争辩来统一认识】

  (4)、议一议:计算结果有不同,你发现了什么?

  (5)、得出结论:通过以上活动,你发现圆的周长和直径之间有什么关系?

  【设计意图:本设计从学生实际出发,通过量一量、想一想、猜一猜、比一比、算一算、议一议等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的关非纯粹的知识本身,更主要的是态度、思想方法,是一种探究的品质】

  3、认识圆周率

  (1)揭示圆周率的概念

  这个3倍多一些的数,是个固定不变的数,称之为圆周率。圆周率一般用字母∏表示。

  指导读写

  (2)指导阅读第90页方框中的文字,了解让中国人引以为自豪的历史,介绍近代大于圆周率的研究成果。

  4、推导圆的周长的计算方式

  (1)问:已知一个圆的直径,该怎样计算它的周长?板书:C=∏d,学生任意挑选一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?

  (2)问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:C=2∏r

  (3)问:转动木条形成的圆的周长你会求吗?

  (4)小结:要求圆的周长,一般需要知道它的直径或半径。

  【设计意图:本设计通过学习自主的“探究—发现”,进一步理解周长与直径的关系,理解圆周率的意义。通过问题的层层深入,圆的周长公式就推导而出。】

  三、初步运用,巩固新知

  1、辨析、判断<课件>

  (1)圆的周长是它直径的3倍多一些 ( )

  (2)圆的周长是它直径的3.14倍 ( )

  (3)圆的周长是它直径的∏倍 ( )

  2、教学例1 <课件>

  (1)在生读题后,问:求这张圆桌的周长是多少米?实际上是求什么?

  (2)学生尝试,反馈评价。

  3、完成第91页中间的“做一做”。

  【设计意图;通过判断题的判断,加深了学生对圆的周长和直径间关系深刻认识,并有一个正确的认识。对桌面周长的计算,培养了学生对知识运用的能力,了解了数学与生活的联系业务,让学生获得不同程度的成功体验】

  四、全课总结、

  1、请学生说说收获。

  2、回放两车比赛的课件;算一算,哪辆车跑的路程长?

  3、生活中的数学

  师演示;把两个啤酒瓶捆扎在一起。啤酒瓶的直径是T厘米,如果只扎一圈,至少要多少厘米绳子?(接头处不算)

  设计思路

  着名教育学家布鲁纳指出“探索是数学的生命线”。本设计求为学生创设“探究——发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华。

  一、在操作中感悟。

  教学过程是教师引导学生把人类的知识成果转为个体认识的过程,

  是一种“再创造”的过程,在这个过程中,实践操作是最基本、最重要的手段和方法之一。本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。

  二、在探究中发现

  儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过量一量、想一想、猜一猜等活动,让学生在亲身经历数学知识的操究过程中发现知识、理解知识、应用知识。这样学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。

  三、在经历圆周率的研究历史中,渗透数学文化和数学思想。

  在教学设计中,学生通过动手实验,得出圆的周长和直径的比值,进而介绍祖冲之的研究成果,最后,介绍看守代关于圆周率的研究成果。在这个过程中,使学生经历了圆周率的研究史,渗透数学文化和数学思想方法。同时,使学生产生情感的共鸣、丰富学生的情感体验,发展学生的情感、态度和价值观。

  四、在实践中体会到知识的价值

  在教学设计中,让学生用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。

  作者简介:

  郑蓉,现任教于浦城县新华小学,1971年出生,大专学历,小学高级教师,担任校数学教研组组长,县学科带头人。

圆的周长教学设计12

  一、教学内容:

  圆的周长计算方法与应用

  二、教学目的:

  1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。

  2.培养学生的观察、比较、分析、综合及动手操作能力。

  3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  三、教学重点:

  1.理解圆周率的意义。

  2.推导出圆的周长的计算公式并能够正确计算。

  四、教学难点:

  理解圆周率的意义。

  五、教学过程:

  (一)创设情境,引入新课

  1、用多媒体出示:龟兔赛跑路线图。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?

  b.什么是圆的周长?请你摸一摸你手中圆的周长。

  3、师:今天我们就来研究圆的周长。并出示课题。

  (二)引导探究,学习新知

  1.推导圆的'周长公式

  (1)学生讨论

  a.正方形的周长跟什么有关系?有什么关系?

  b.你认为圆的周长和什么有关系?

  (2)猜测

  看图后讨论:圆的周长大约是直径的几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?

  (3)动手操作

  a.以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

  师:看哪一组配合好,速度快,较精确。开始!

  b.汇报小结。

  师:用实物投影展示整理的表格。

  师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的三倍多一些?

  2.认识圆周率、介绍祖冲之

  (1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14

  (2)介绍祖冲之

  3.归纳圆的周长公式

  (1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  师板书:C=πd

  (2)圆的周长还可以怎样求?由于d=2r则:C=2πr。师板书:C=2πr

  师问:圆的周长分别是直径与半径的几倍?

  (三)巩固应用,强化新知

  1.求下面各圆的周长。

  1)d=2米2)d=1.5厘米

  2.求下面各圆的周长。

  1)r=6分米2)r=1.5厘米

  3.判断题

  (1)π=3.14 ( )

  (2)计算圆的周长必须知道圆的直径( )

  (3)只要知道圆的半径或直径,就可以求圆的周长。 ( )

  4.选择题

  (1)较大的圆的圆周率( )较小的圆的圆周率。

  a大于b小于c等于

  (2)半圆的周长( )圆周长。

  a大于b小于c等于

  5.课堂反馈

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  6.实践操作

  请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。

  (四)课堂总结,梳理知识

  师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

  反思:

  “圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的学习环节。

  1.动手实践,探究圆周长的测量方法。

  怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。

  当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。

  学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。

  2.探究圆周长与直径的关系,寻找圆周长的计算方法。

  在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。

  学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。

  在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。

圆的周长教学设计13

  教学目标:

  1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

  2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

  3.初步学会透过现象看本质的辨证思想方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  教学重点

  正确计算圆的周长。

  教学难点

  理解圆周率的意义,推导圆周长的计算公式。

  教具准

  多媒体课件三套、系绳的小球。

  学具准备:

  塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。

  教学过程:

  一、以旧引新,导入新课

  1.复习长方形、正方形的周长。

  我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?

  2.揭示圆的周长。

  (1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的`周长将圆剪下来。

  (2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?

  二、动手操作,引导探索

  1.测量圆周长的方法。

  (1)提问:你知道了什么是圆的周长,还想知道什么?

  我们先研究怎样测量圆的周长,请同学们分组讨论一下。

  把你们讨论的结果向大家汇报一下?学生边回答边演示。

  (2)教师甩动绳子系的小球,形成一个圆。

  提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?

  2.认识圆周率。

  (1)探讨圆的周长与直径的关系。

  ①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。

  请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?

  课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)

  提问:你们是怎么看出来的圆周长跟直径有关系?

  ②学生测量圆周长,并计算周长和直径的比值。

  圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。

  生测量、计算、填表。在黑板上出示一组结果。

  请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

  ③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)

  这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)

  (2)揭示圆周率的概念。

  通过以上的观察你发现了什么?

  任何圆的周长总是直径的3倍多一些。

  那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)

  (3)了解让中国人引以为自豪的圆周率的历史。

  关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?

  很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……

  3.推导圆周长的计算公式。

  根据刚才的探索,你能总结出圆周长的计算公式吗?

  学生推导圆周长计算公式:c=πd;c=2πr。

  要求圆的周长,你必须知道什么?(直径或半径)

  4.运用公式计算。

  (1)求下面各圆的周长,只列式不计算。

  课件演示:由第一个圆逐渐变大,分别出示第二个、第三个,提问:怎样求这个圆的周长?(生答需测量出这个圆的直径或半径,师给出直径0.8分米,学生计算它的周长。)

  (2)出示例1。

  ①在学生读题后提问:求这张圆桌面的周长是多少米,实际上就是求什么?计算这道题应注意什么?

  ②学生尝试练习,反馈评价。

  ③提问:如果告诉你的不是这张圆桌面的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成第112页“做一做”。

  (4)看书质疑。

  三、运用新知,解决问题

  1.下面的说法对吗?并说明理由。

  (1)圆的周长是它直径的π倍。()

  (2)大圆的圆周率大于小圆的圆周率。()

  (3)π=3.14()

  2.测量一圆形实物直径,计算它的周长。

  3.有一奶牛场准备用粗铁丝围成一个半径是12米的圆形牛栏(如图),请同学们帮忙算一算,至少需要买多少铁丝才能把牛栏围3圈?(接头处忽略不计。)

  四、总结全课,储存新知。

  这节课你自己运用了哪些学习方法,学到了哪些知识?

  五、思考题。

  课件演示:大圆的周长和两个小圆的周长之和同样长吗?

圆的周长教学设计14

  一、教学目标:

  1. 让学生知道什么是圆的周长,《圆的周长》教学设计及反思。

  2. 理解并掌握圆周率的意义和近似值。

  3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。

  4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。

  5. 结合圆周率的学习,对学生进行爱国主义教育

  二、教学重点:推导圆周长的计算公式,准确计算圆的周长。

  三、教学难点:理解圆周率的意义。

  四、教学准备:老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等

  学生:2个大小不同的硬纸圆片、直尺、彩带、学具。

  五、教学过程:

  (一)、认识圆的周长

  1.情境导入。

  师:同学们,看过《米老鼠和唐老鸭》吗?

  师:今天黄老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?(生齐鼓掌!)

  师:米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?

  2.迁移类推

  师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?

  (1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)

  (2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)

  师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。

  (3)师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)

  师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?(板书课题:圆的周长)

  每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。

  (完成板书:围成圆的曲线的长叫做圆的周长)

  师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。

  3.实际感知

  师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。

  (二).测量圆的周长

  1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)

  师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)

  2.小组汇报:(预设)

  (1)师:哪个小组愿意来汇报?

  【方法一:用线绕

  师:谁来与老师配合绕给同学们看看?

  (师生合作用绕线的方法去测量圆周长)

  师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)

  师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么?(圆的周长)(2)师:除此以外,还有别的方法吗?

  【方法二:把圆放在直尺上滚动一周,教学反思《《圆的周长》教学设计及反思》。

  师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么?(圆的周长)

  (3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)

  师:真的吗?谁敢来试试。

  指名一生上台测量黑板上的圆。可能用线绕。

  师:有什么感觉?(不方便!)

  师:那你可以把它搬下来滚动呀!(生齐笑)

  这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的`普遍方法。

  (三)、引导学生发现圆的周长和直径之间的关系

  1.猜测

  师:正方形的周长与它的边长有关,周长是边长的4倍,那么圆的周长跟它的什么有关呢?

  2.验证

  师:谁知道圆的大小是由什么来决定的吗?(半径或直径)

  师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)

  师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?

  师:你感觉到了吗?

  (圆的直径越长,周长越长;圆的直径越短,周长越短。)

  师:这就说明圆的周长肯定与圆的什么有关系?(圆的周长与直径有关系。)师:圆的周长与直径到底有什么关系呢?

  师:刚才,大家都对圆的周长与直径成什么关系进行猜测,下面,我们就通过动手实验来检验大家的猜测是否正确。

  ①测量计算。

  让学生拿出课前准备的4个大小不同的圆,分别测量它们的直径和周长,并按要求填写下表。

  ②汇报、展示。

  让学生汇报自己的测量结果和计算结果,教师把不同的圆的有关数据通过表格的形式呈现出来。

  ③观察、发现。

  让学生观察、比较表中的数据,想一想:通过观察和比较,你发现了什么?通过全班交流,引导学生初步发现:圆的周长总是直径的3倍多一些。(板书:圆的周长总是它的直径的3倍多一些。)

  (3)介绍圆周率和祖冲之在圆周率研究方面作出的贡献。

  ①揭示圆周率的概念:表示这个3倍多一些的数是一个固定不变的数,我们称它为圆周率。能用式子来表示吗?请试一试。(板书:圆的周长÷直径=圆周率)

  ②介绍圆周率的表示字母π及其读写法。

  ③介绍祖冲之及圆周率的有关知识,激发民族自豪感,同时指出圆周率的数值及小学阶段计算时所取的近似值π≈3.14。

  (四)总结圆周长的计算方法。

  1、根据圆周长与直径的关系,

  你能推导出圆的周长计算公式吗?指名回答,

  引导学生归纳:圆的周长=直径×圆周率(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)师:如果已知圆的半径r,可以怎样计算圆的周长呢?板书:C=2πr)2、回应新课引入的情境,即时练习。

  师:现在,你能求出谁的路程长吗?为什么?

  (五)、应用圆周长计算公式,解决简单的实际问题.

  1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  2.练习题

  板书设计

  圆的周长测量:滚动法 绳测法

  规律:圆的周长总是它的直径的3倍多一些。

  圆的周长÷直径=圆周率

  公式:圆的周长=直径×圆周率C=πdC=2πr

  教学反思:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“∏”是如何来的,都是值得学生研究的问题。因此,教学中,我着力与培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算公式。因为是自己操作的所得,再加上我在课堂中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“∏”的含义就理解得特别透彻,也学得有兴趣。在测量过程中,学生量的数据可能误差有点大,应尽可能把误差减少,课堂应培养学生的动手能力,善于思考和发现。

圆的周长教学设计15

  【教学内容】

  新课标人教版六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。

  2.能利用圆的周长的计算公式解决一些简单的数学问题。

  3.培养学生的观察、比较、分析、综合及动手操作能力。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。

  难点:理解圆周率的意义。

  【教具、学具】

  课件、软尺、直尺、绳子、圆形。

  【教学过程】

  课前交流:请同学们唱一首歌。

  (设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)

  一、创设情景,生成问题

  国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。

  (设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。

  (设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)

  二、探索交流,解决问题。

  师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。

  师:同桌想一想圆的周长怎样测量?

  师:把你的好方法在小组内交流一下。

  (设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

  师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?

  (设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。

  师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。

  师演示(线绕圆一周,然后量出线的长度。)

  师:还有其他的方法吗?

  生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。

  师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。

  生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。

  师:这个办法也很妙!其他同学还有要补充的吗?

  生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。

  师:你的想法可真不简单!

  师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。

  师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?

  生:能!

  师:正方形的周长和什么有关?

  生:周长是边长的4倍,

  师:那么圆的周长和什么有关系呢?

  生:圆的直径越长圆越大,所以周长就越长。

  师:那周长和直径有怎样的'关系呢?

  (设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)

  师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。

  师:现在大家通过填写表格发现了什么?

  生:在测量中发现,大小不同的圆的周长是不同的。

  师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?

  生:是由半径(或直径)唯一决定的。

  师:圆的周长与直径或半径之间到底存在着怎样的关系?

  生:每组算的结果不大一样,但都是3点多。

  师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?

  生:一样。

  师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。

  师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?

  我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)

  师:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  师:从表中我们可以看出圆的周长÷直径=圆周率

  (板书:圆的周长=π×直径)。

  如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。

  生读:c=πd c=2πr

  师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?

  生:圆的直径或半径。

  (设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)

  三、回顾整理,反思提升。

  这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?

  (1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。

  (2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。

【圆的周长教学设计】相关文章:

《圆的周长》教学设计03-07

圆的周长教学设计01-25

《圆的周长》数学教学设计05-07

人教版《圆的周长》教学设计06-10

圆的周长教学设计(15篇)04-09

圆的周长教学设计15篇04-01

《圆的周长》教学设计15篇04-16

《圆的周长》教学设计(15篇)04-16

圆的周长教学设计18篇04-29

圆的周长教学设计(精选15篇)06-10