植树问题教学设计

时间:2023-06-27 17:22:20 教学资源 投诉 投稿

植树问题教学设计(集合15篇)

  作为一位杰出的教职工,时常需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么问题来了,教学设计应该怎么写?以下是小编整理的植树问题教学设计,欢迎阅读,希望大家能够喜欢。

植树问题教学设计(集合15篇)

植树问题教学设计1

  教学目标:

  1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵数的规律。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:

  课件、直尺、学习纸。

  教学过程:

  (一)创设情境,引入新课

  教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

  教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

  (二)充分经历,探究新知

  1、大胆猜测,引发冲突。

  (1)读一读,说一说。

  课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

  “每隔5米栽一棵”是什么意思?

  使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

  “两端要栽”是什么意思?“一边”是什么意思?

  可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

  (2)猜一猜,想一想。

  让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

  教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

  引导学生用画线段图的方法进行验证。

  (设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

  2、借助操作,探究规律。

  (1)初步体验,化繁为简。

  教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

  教师:为什么觉得很麻烦?

  学生:因为100米里面有20个5米,太多了。

  教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

  (2)教师演示,直观感知。

  教师演示课件,边演示边说明。

  教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)

  教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

  引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

  (设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

  (3)动手操作,初步体验。

  让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

  教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

  教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

  引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

  (4)合理推测,感知规律。

  教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

  学生填写表格,教师巡视,对个别学生进行指导和说明。

  学生填写完表格后,小组交流汇报结果。

  (5)归纳概括,理解规律。

  教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

  学生汇报自己的发现。

  引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

  教师:为什么两端都栽树,棵数比间隔数多1?

  学生回答后,教师借助课件演示帮助学生进一步直观理解。

  (设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

  (6)即时巩固,强化规律。

  教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

  (设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)

  3、运用规律,验证例1。

  教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

  教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

  学生尝试列式解决问题,教师巡视,有针对性地指导。

  全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

  (设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

  (三)回归生活,实际应用

  1、“做一做”第1题。

  教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

  使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

  教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

  2、练习二十四1、2、3题。

  让学生进一步感受到植树问题在生活中的广泛应用。

  3、练习二十四第4题。

  教师:这一题与例题有什么不同?

  老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

  教师:你是怎样计算的?为什么用36减1?

  (设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

  (四)课堂小结,畅谈收获。

  反思:

  通过本节课的学习,让学生了解两端都栽的`情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

  一、创设愉悦氛围,让游戏走入情境。

  从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

  二、注重自主探索,让体验走入方法。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

  三、倡导知识运用,让建模走入生活。

  “数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

  但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

植树问题教学设计2

  教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。

  教学目标:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:

  课件、表格、尺子等。

  教学过程:

  一、教学“间隔”

  1.教学“间隔”的含义。

  师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  2.引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

  二、自主探究 找出规律

  1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

  预设:学生可能大多数对得到20棵。

  师:你们的猜测正确吗?下面我们就一起想办法来验证一下。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

  师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

  全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

  师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

  生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)20÷5不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

  师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

  根据学生的回答,师填写表格:

  总

  长(米)

  每两棵树之

  间的距离

  (每段长)

  棵

  数

  间隔数

  (段 数)

  20

  全班观察表格寻找规律。

  师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

  师:对得到的这个规律有没有不同意见?

  三、巩固练习

  师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

  (1)基础练习。

  师:请看题目,谁愿意来说一说?

  A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  A2. 如果是每隔10米栽一棵呢?(口答)

  B.师:同学们真能干!其实在我们的`生活周围存在许多类似的植树问题。这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

  课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

  C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

  课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

  (2)拓展练习。

  师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?

  课件出示解放碑的大钟及题目。

  解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

  师:请同学们独立的在练习本上完成。

  小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

  四、数学文化

  介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  五、全课总结

  1.通过这节课的学习你有什么收获?

  2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

植树问题教学设计3

  教材分析

  两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。

  学情分析

  让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。

  教学目标

  1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。

  2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的实际问题。

  3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。

  教学重点和难点

  [教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。

  [教学难点]:掌握用线段图解决生活中的数学问题的方法。

  教学过程

  一、创设情境

  1、听唱歌曲《春天在哪里》,让学生感受春天的`美好。

  2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。

  二、探究新知

  (展示题目)

  (一)宝塔山下有一条长20米的小路,一边等距离植树,两端都栽,可以怎样植?用线段图表示你的方法。(小组讨论)、

  1、学生画线段图表示,教师巡视指导。

  2、指名回答。

  3、教师把学生的想法用表格出示如下:

  4、引导总结:

  5、生:手指线段图

  师:在线段图上,点数和间隔数又有怎样的关系呢?

  生:点数=间隔数+1

  6、师:总长与间距和间隔数又有怎样的等量关系呢?

  生:总长=间距×间隔数

  7、尝试应用:

  三、巩固新知

  四、小结本节内容

  五、教学作业

植树问题教学设计4

  教学目标:

  1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

  3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题。

  教学难点:

  让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

  教学准备:

  课件

  教学过程:

  一、初步感知间隔的含义

  1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

  师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)

  2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的'段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)

  二、探究规律,解决问题。

  1、找出两端都种树的规律

  植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

  假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?

  师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,

  棵数=间隔数+1”这个规律解决了两端都植树的问题。

  三、应用规律,走进生活。

  走进生活:

  (一)目标检测:

  1.排列在同一条直线上的16棵树之间有( )个间隔。 2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。

  3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?

  (二)闯关题

  1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?

  2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

  5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

  四、总结:通过这节课的学习,你们有什么收获?

  五、作业设计

  实地考察

  六、板书设计:植树问题

  两端要栽:棵数=间隔数+1;

植树问题教学设计5

  教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔 数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单 的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律, 并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

  通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的.合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

  教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):

  一、创设情景,激发兴趣

  1、猜谜导入揭题

  师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)

  师:对,我们都有一双灵巧的手,请你们伸出右手,五指张开,用数学的眼光看一看,你发现了什么?

  数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?

  师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)

  【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

  二、经历探究,发现规律

  1、激趣引入,启发探究积极性

  (课件出示)出示江口小学为绿化环境的招聘启事及设计要求

  招聘启示

  学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

  江口小学

  20xx.6

  设计要求:

  在一条长20米的小路一边等距离植树,两端要栽。

  【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

植树问题教学设计6

  教学目标:

  1.认识棵数,知道什么是间隔数、。

  2.理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。

  3.能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。

  教学重点:

  探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

  教学难点:

  灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题

  导学指要:

  1.通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。

  2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。

  3.学习植树问题在生活中的运用。

  教具:课件一套学具9套自学提示卡一张

  预设教学流程:

  一、创设情境生成学习目标

  1、教学“间隔”定义

  师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?

  生:好

  师生问好

  师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。

  师:请你伸出你的右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?

  生:……………………

  师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

  生:……手指比手指缝多1,手指缝比手指少1。

  师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。

  板书:间隔数

  2、在生活中找间隔

  师:和你的同桌说说:什么是间隔数?

  生:……

  师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?

  生:…………….

  师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?

  生:……………

  师:今天将利用数学知识来解决“植树问题”。

  板书课题:植树问题

  二、探究规律实现目标

  1、多媒体出示学校操场

  A师:这里是哪里?

  学校打算在100米的'跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?

  师:什么是两端都要栽?

  生:……………………..

  (此环节要全方位理解题意)

  师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

  师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?

  B生动笔算

  师:谁来说说你是怎样列式的?

  生:……..

  板书:100÷5=20xx+1=21(棵)

  100÷5=20xx+2=22(棵)

  100÷5=20xx+1=21(棵)

  21x2=42棵

  师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧

  请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?

  C学生小组合作,教师巡视,并有目的的选取学生

  D在实物投影上展示学生的作品

  学生展示并板演

  用画线段的方法解决的棵数与间隔数的关系

  反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?

  2、再次课件演示得出结论

  那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?

  棵数=间隔数+1

  师小结:

  你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1

  3、应用规律解决问题

  师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?

  在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?

  生:……………

  师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?

植树问题教学设计7

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。

  二、教材目标:

  1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

  2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

  3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。

  三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

  四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

  五、教学准备:学习单、多媒体课件、小树和小路模型。

  六、 教学过程:

  (一) 问题导入:

  出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

  教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

  (二)探究新知:

  1.队列问题:

  出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”

  并出示课题。

  2.植树问题:

  (1)体会“化繁为简”思想:

  问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

  突出矛盾:数字太大,不易思考,引导学生转换较小的数。

  明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

  (2)设计三种植树方案:

  引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

  ①学生活动,教师巡视。

  ②汇报、展示:

  ③小结:组织学生对不同方案进行命名,突出其主要特征。

  教师板书:两端都种、只种一端、两端不种

  (3)探究规律:

  ①求间隔数:

  教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。

  在没有植树的棵数时,探究间隔数与全长、间隔的关系。

  组织学生独立思考,借助学具、线段图等形式探究规律

  a:学生思考并摆学具或画线段或列算式。

  b:汇报:

  ②探究间隔数与棵数的关系:

  开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?

  小组合作完成探究,活动要求:

  1)自己选择适合的间隔长度,四人小组合作完成记录表。

  2)小组选择一种植树方式进行探究。

  3)可以借助摆学具、画线段、数手指或列算式的方式。

  a:学生小组活动,教师巡视。

  b:学生汇报发现规律,教师板书。

  c:升华:

  三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

  d:应用:

  老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

  (三)巩固提升:

  1.选一选:

  下面每一题相当植树问题的'哪一种情况?

  (1)音乐中的“五线谱”( )

  (2)衣服上的纽扣( )

  (3)成语“一刀两断”()

  (4)自鸣钟九点报时的钟声( )

  A.两端都种 ; B.只种一端; C.两端不种。

  2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:

  (1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )

  (2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )

  4.学校一条大路的一边共插了20面彩旗。

  (1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

  (2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

  (四)课堂总结:

  师:今天我们学习了什么?你有什么收获?

  生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

  教学反思

  通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

植树问题教学设计8

  教学目标:

  一、知识与技能性:

  1、利用学生熟悉的生活情境,透过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2、能够借助学具,利用规律来解决简单植树的问题。

  3、透过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  二、过程与方法:

  1、进一步培养学生从实际问题中发现规律,应用规律解决问题的潜力。

  2、渗透建模的思想,培养学生由具体到抽象的转化思想。

  3、培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  1、透过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  2、渗透爱绿、护绿的德育教育。

  教学重、难点:

  引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

  教学准备:教具、学具、课件

  教学过程:

  一、创设情境,导入新知:

  (出示光头强砍树的画面)

  师:孩子们,你们喜欢光头强吗?

  生:不喜欢

  师:为什么呢?

  生:因为他乱砍树,破坏森林(让学生畅所欲言,对学生进行爱绿、护绿的德育教育)

  (出示熊大、熊二抓光头强的画面)

  师:它们也不喜欢呢!瞧、

  (出示“保护森林,熊熊有责”)

  师:其实,保护森林,不仅仅仅是熊的职责,更是——

  生:人的职责

  师:那我们就应说——

  生:“保护森林,人熊有责”

  师:这天,就让我们跟熊大、熊二一齐来植树吧!

  二、建模探究,总结方法

  1、探究“两端都植”的状况

  出示:熊大、熊二要在小路的一侧植树(两端都植)

  引导孩子们认识“一侧”“两端都植”。

  在教具上,引导孩子们理解并板书“总长”“间隔长”“间隔数”和“棵数”。

  游戏:小组植树比赛

  师:听我口令,看哪个小组行动最快!

  师:两端都植,间隔长为5厘米时,间隔数和棵数分别是多少?

  师:间隔长为10厘米呢?15厘米呢?

  师:休息会儿,看看总长、间隔长、间隔数和棵数它们之间有什么关系呢?

  引导孩子,发现规律:总长÷间隔长=间隔数

  间隔数+1=棵树(强调“两端都植”)

  出示练习巩固:熊大、熊二要在长100米小路的一侧,每隔5米栽一棵树(两端要植),需要多少棵树呢?

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中

  100÷5=20(个)

  20+1=21(棵)

  2、探究“一端植”的状况

  师:突然,发现路的一端是光头强家呢!(引导学生说“只能植一端”)

  师:也是这个规律吗?赶紧在你的.60厘米小路的最左端安上光头强家,填一填学生报告表格一,并填出你们的发现。

  (小组内分工合作:栽树、填表)

  学生汇报:总长÷间隔长=间隔数

  间隔数=棵树(强调“一端植”)

  出示练习:熊大、熊二在长100米的小路的一侧栽树,每隔5米植一棵树,(一端是光头强家),需要多少棵树呢?(那两侧呢?)

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸二中

  100÷5=20;(20×2=40)

  3、探究“两端不植”的状况

  师:这时,又发现路的另一端是吉吉国王的猴山呢!

  (引导学生说“两端都不植”)

  师:那到底需要多少棵树呢?请用你喜欢的方式表示出来吧!

  学生汇报:总长÷间隔长=间隔数

  间隔数-1=棵数(强调“两端不栽”)

  出示练习:熊大、熊二在小路的一侧植树,每隔5米植一棵树,总共植了20棵(一端是光头强家,另一端是吉吉国王家),这条路多长呢?

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中

  (20+1)×5=105(米)

  师:熊大、熊二就这样一条路一条路的植树,有一天它们又想在一个圆形的池塘身旁植树。

  出示:熊大熊二要在圆形池塘周围植树。池塘的周长是120米,如果每隔10米植一棵,需要多少棵树呢?(引起孩子们思考)

  师:这种状况,又会是什么状况呢?我们下节课之后研究。

  师:这就是我们这天研究的不同状况的植树问题。(板书课题:植树问题)

  三、开放练习,应用方法。

  师:其实,生活中有很多跟植树问题类似的问题呢,比如xxx(引导孩子来说)

  马路问题、楼梯问题、钟表问题、公交站问题、队列问题、锯木头问题,

  四、小结:

  出示:“完美生活,从我做起”(播放欢快音乐)

  师:同学们,说说你们的收获吧!

植树问题教学设计9

  教学内容:

  人教版四年级下册第八单元数学广角的所有例题,以及相关习题。

  教材分析:

  现实生活中与“植树问题”类似的有很多:如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法,和策略。

  本节课是把所有类型的植树问题归纳在一起,通过观察比较,得出公式,最后能够运用所学知识解决所有和植树问题相关的实际问题。

  教学目标:

  1、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  2、理解并掌握“植树问题”几种类型的特征,以及解题方法。

  3、感受数学在日常生活中的广泛应用。

  教学重、难点:

  重点:掌握“植树问题”几种类型的特征。

  难点:解决所有和植树问题相关的实际问题。

  教学方法:

  巩固练习法。

  教具准备:

  多媒体课件。

  教学过程:

  一、创设情境,导入新课。

  1、直接揭示课题:今天我们来复习第八单元数学广角的植树问题。板书课题

  2、出示复习目标:

  (1)、理解并掌握“植树问题”几种类型的特征,以及解题方法。

  (2)、感受数学在日常生活中的广泛应用。

  3、常见类型:

  (1)、两端都栽的植树问题;

  (2)、两端都不栽的植树问题;

  (3)、一端栽、一端不栽的植树问题;

  (4)、封闭图形的植树问题。

  二、探索解决问题的方法

  1、出示例题:

  例题:在全长20米的小路上植树,每隔5米栽一棵,你能想出几种植树方案?

  2、学生自主尝试,教师巡视指导。

  3、小组合作交流。

  4、全班交流。

  特点棵树间隔数棵树与间隔数的.关系

  方案1两端都栽54棵树=间隔数+1

  方案2两端都不栽34棵树=间隔数-1

  方案3一端栽,一端不栽44棵树=间隔数

  方案4封闭图形44棵树=间隔数

  5、总结学习方法:

  植树问题有高招,做题之前先分类。

  两端都栽,棵树=间隔数+1;

  两端都不栽,棵树=间隔数-1;

  一端栽,一端不栽,棵树=间隔数;

  封闭图形,棵树=间隔数。

  三、巩固提高、发展创新。

  1、在一条长400米的道路一旁安装路灯,每隔50米安装一座(两端都要安装),一共可以安装多少座路灯?

  2、两座楼房之间相距56米,每隔4米栽雪松一棵,一行能栽多少棵?

  3、学校要在80米的跑道一旁插彩旗,每隔5米插一面。如果一端不插,一共需要多少面彩旗?

  4、一个圆形池塘,它的周长是200米,每隔10米栽一棵柳树,需要树苗多少棵?

  以上四道题为基础巩固题,下面两道为拔高题。

  5、一根木料锯成4段要12分钟,锯成10段要几分钟?

  6、祁老师要上楼去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道祁老师去几楼的教室吗?

  四、全课小结。

  你在这一节课里学习了什么知识?

  师:其实数学就在我们身边,只要我们善于观察,勤于动脑,你就会发现生活中有很多有趣的数学问题。

植树问题教学设计10

  教学目标:

  (1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。

  (2)体验复杂问题简单化的快乐。

  教学重点:应用植树问题的模型解决相关的实际问题。

  教学难点:理解棵树与间隔数之间的关系。

  教学准备:课件

  教学过程:(如下文)。

  一、课前谈话

  1.手指游戏

  师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)

  师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)

  师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?

  师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)

  [设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]

  2.导入课题

  师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)

  二、动手种树,初步感知

  1.创设情境,提出问题

  (1)课件出示例1

  同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?

  (2)理解题意

  ①指名读题,从中你了解哪些信息?

  ②理解“两端”是什么意思?

  (3)讨论交流

  师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。

  全班讨论、交流,汇报后得出结论,这种说法不对。就应是:

  100÷5=20(段)20+1=21(棵)(板书)

  2.简单验证,发现规律

  师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。

  课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)

  问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)

  20+1=21(棵)20段为什么不是20棵,而是21棵呢?

  我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1

  透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)

  师:你们真了不起,发现了植树问题中十分重要的规律,那就是:

  间隔数(段数)=全长÷段长

  植树的棵数=间隔数+1

  全长=段长×段数

  [设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]

  三、利用规律,解决问题

  师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一齐来看一看下面几个问题。

  ①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?

  ②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?

  ③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?

  师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  [设计意图:乐中求学。把生活中类似植树问题的'各种现象糅合在一齐,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]

  四、再次探究,构建模型

  1.创设情境,激趣导入

  师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。

  2.设计方案,动手操作

  师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!

  (生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)

  3.反馈交流

  师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)

  师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。

  生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。

  生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)

  生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……

  4.师小结

  同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。

  五、精彩回放,画龙点睛

  1.用手势表达植树问题的模型并考察同桌的掌握状况。

  2.透过这节课的学习,你们有什么收获?

  六、穿越时空,展望未来

  有20棵树,若每行4棵,问怎样种植,才能使行数更多?

  七、板书设计

  植树问题:

  两端都种:棵数=间隔数+1

  100÷5=20(个)……(间隔数)

  20+1=21(棵)……(棵数)

  10-1=9(个)……(间隔数)

  9+1=10(棵)……(棵数)

植树问题教学设计11

  教学目标:

  1、感受“植树问题”在生活中的广泛应用,并能用此方法解决简单的实际问题。

  2、学会从实际问题中探索规律,找出有效解决问题方法的潜力。

  3、透过生活的事例,初步体会“植树问题”的思想方法。

  教学难点:运用“植树问题”的解题思想解决实际问题。

  教学重点:参与探索并发现“植树问题”的解题规律。

  教学准备:练习纸、课件

  教学过程:

  一、谈话引入,揭示课题

  师:同学们,你明白我们这天要学习什么资料吗?

  生:植树问题

  师:你们是怎样明白的哦?

  好,这天我们就来研究植树中的问题。植树问题中蕴涵着许多搞笑的数学问题。你们喜不喜欢?

  板书课题:植树问题

  出示学习目标:

  二、操作感悟,探究规律

  1、请看大屏幕:

  (1)想一想:

  那里有一条线段,我们把它看作一条路,这条路长20米,如果要在这条路上种树,请同学们想一想,你们还要了解什么信息?

  ①每棵树之间相隔几米?(间隔)②是不是两端都种呢?……看来同学们思考问题还很全面呢!

  (2)猜一猜:

  如果告诉你每隔5米种一棵,种几棵比较适宜?

  生1:5生2:4生3:3

  (3)画一画:

  师:那么,有什么办法验证你的想法?(画图)

  哦,你能不能用简单的示意图把你的想法简单地画出来呢?

  (教师先介绍画树的方法,学生画图,教师巡视)看谁画得又对又快。

  2、展示、汇报

  ①选一学生的示意图展示、汇报。

  两端都种:电脑展示,学生说出自己的`想法,教师把学生画的示意图画在黑板上

  ②选另一学生的示意图展示、汇报。

  只种一端:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  ③选另一学生的示意图展示、汇报。

  两端都不种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  3、写算式

  师:我们刚才用图来表示的思维过程能不能用个算式来表示?

  ①只种一端:你是怎样想的呢?谁能来说一说。

  20÷5=4(段)=4(棵)

  棵数和段数一一对应。

  ②两端都种:20÷5+1=5(棵)

  20÷5表示什么?加“1”是什么意思?

  ③两端都不种:最后一种用算式怎样表示呢?20÷5-1=3(棵)

  每间隔5米是这样的,假如每间隔是2米,分别能种几棵呢,列出算式(不要画图了,要画就画在脑子里)

  20÷2+1=11(棵)20÷2=10(棵)20÷2-1=9(棵)

  4、小组讨论:

  我们刚才在这条20米的路上,每间隔5米和每间隔是2米分别种多少棵树都做了,仔细看看,你们有什么想说的?先独立思考,想好后再和同学交流,然后向老师汇报。(告诉你总长度、间隔长,要你求种多少棵树,是否有简单的方法?)

  5、教师引导学生总结:

  ①只种一端:棵数=段数

  ②两端都种:棵数=段数+1③两端都不种:棵数=段数—1

  那么段数(间隔数)怎样求呢?

  所以解决植树问题,首先要确定它是怎样种的?是两端都种、只种一端还是两端都不种,再分别根据以上数量关系来解决就能够了。

  6、象这样,这天用植树问题这样的思考方式来思考的,平时生活当中的问题还是否有?(摆花、锯木头、站队……)

  师:老师也收集了一些图片,看看那里有植树问题吗?

  (根据学生的回答教师出示课件,并说明为什么属植树问题)

  三、活学活用,解决问题

  师:我们刚才透过猜测、验证、推理,摸索了植树问题中的一些规律,我们能不能应用这些规律来解决生活中的实际问题呢?

  (一)基本练习:我能行!

  1.从头至尾栽了10棵树,那么有个间隔。

  2.一根木头长8米,每2米锯一段。一共要锯次。

  好,两道题都做对的对老师笑一笑。哇!我从同学们灿烂的笑脸中读出了自信,读出了自信!老师为你们加油!

  (二)综合练习:我挑战!

  1、林木工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  ①6×36=216(米)

  ②6×(36-1)=210(米)

  ③6×(36+1)=222(米)

  2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  ①10÷5=2(米)2×8=16(分钟)

  ②5×8=40(分钟)

  ③(5-1)×8=32(分钟)

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  ①12÷1=12(个)

  ②12÷1+1=13(个)

  ③12÷1-1=11(个)

  (三)拓展练习:我智慧!

  四、再次梳理,总结提高

  这天我们学习了什么资料?你有什么收获?你有什么感受?

植树问题教学设计12

  教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  一、谈话引入,明确课题

  母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

  大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  ①课件出示图片。

  介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

  出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a.指名读题,从题中你了解到了哪些信息?

  b.理解“两端”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

  说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  方法一:1000÷5=200(棵)

  方法二:1000÷5=200(棵)200 +2=202(棵)

  方法三:1000÷5=200(棵)200 +1=201(棵)

  师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

  2.简单验证,发现规律。

  ①画图实际种一种。

  课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……

  师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

  师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

  ②画一画,简单验证,发现规律。

  a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

  b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

  c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

  (板书:2段3棵;7段8棵;10段11棵。)

  d.你发现了什么?

  小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

  (板书:两端要种:棵树=段数+1)

  ③应用规律,解决问题。

  a.课件出示:前面例题

  问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

  1000÷5=200这里的200指什么?

  200 +1=201为什么还要+1?

  师:这个“秘方”好不好?

  通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

  b.解决实际问题

  运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

  问:这道题是不是应用植树问题的规律解决的?

  师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

  三、合作探究,“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测结果是:两端不种:棵树=段数-1

  师:到底同学们的猜测是不是正确呢?我们还是用前面学习的.方法,举简单的例子画一画,种一种。

  要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

  2.独立探究,合作交流。

  3.展示小组研究成果,发现规律,验证前面的猜测。

  小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

  4.做一做。

  ①在一条长20xx米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

  ②师:同学们注意看,这道题发生了什么变化?

  课件闪烁:将“一侧”改为“两侧”

  问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  四、回归生活,实际应用

  1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

  8÷2=4(段)

  4—1=3(次)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.我们身边类似的数学问题。

  ①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

  ②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

  3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

  五、全课总结

  通过今天的学习,你有哪些收获?

  师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

  “植树问题”说课

  “植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  本课教学分四大环节:

  一、谈话导入,明确课题

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)

  2.简单验证,发现规律。

  在举简单例子画一画这个环节,安排了两个小层次:

  ①按老师要求画。

  ②学生任意画。

  通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。

  3.应用规律,解决问题。

  ①应用规律,验证前面例题哪个答案是正确的。

  ②应用规律,解决插多少面小旗的问题。

  这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

  三、合作探究“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。

  2.独立操作,探究规律。

  有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

  四、回归生活,实际应用

  设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。

植树问题教学设计13

  【教学目标】

  1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与间隔数之间的关系。

  2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。

  3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  【教学重难点】

  引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律。并能运用规律解决实际的问题。

  【教学准备】课件,纸条。

  【教学过程】

  一、谈话引入,明确课题

  在我国的北方经常出现沙尘暴天气,它给我们的生活带来了很大的危害,今天老师也给大家带来了几张有关沙尘天气的图片新闻。(课件出示沙尘暴的图片)同学们知道吗?实际呀沙尘天气是大自然对人类的惩罚,正因为以前人们的乱砍乱伐,破坏了大自然的生态环境,才会出现今天的沙尘天气。最近呀咱们这个城市也经常出现雾霾天气,雾霾比沙尘暴天气危害更大,那雾霾给我们的生活带来了什么不便呀?那你们知道治理沙尘和雾霾天气最好的办法是什么?(植树造林)。那么今天这节课我们就来研究植树中的数学问题。(板书课题)

  二、探索交流,解决问题

  (一)设计植树方案

  为了改善我们的校园环境,让大家呼吸到更新鲜的空气,学校准备在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案。(你能设计出几种方案)

  你们认为应该怎么种树?只让学生口答方案,追问有哪三种方案?(两端种树、一端种树、两端不种)。

  (二)、两端都种

  出示方案一:学校在一条长20米的`小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)学生齐读题,理解题意:强调“一边”和“两端”,理解每隔5米栽一棵的意思。

  (2)理解示意图展示。

  那我们就一起来试着种一下吧!用一条线段来表示20米长的小路的一边,我们应该怎么种呢?开头为什么要种?(因为是两端植树)也就是说路的开头先要种一棵,那下棵怎么种呢?要和头一棵树隔5米,也说是隔5米种一棵,一直种到小路的末端。

  (3)理解株距。

  看示例图,大家发现没有每两棵树之间的距离相等吗?都是多少?(5米)这里的5米就表示株距,株距指的就是每两棵树间的距离。实际上株距表示的就是一个间隔的长度。

  (4)发现规律

  谁能说说棵数和间隔数之间是什么关系?

  板书:两端都栽:棵数=间隔数+1

  间隔数棵数-1

  (5)教学画线段图

  这个公式短时间记住没问题,但时间长了,三个月、半年、一年忘了怎么办?可以借助画线图,带着学生在黑板上画线段图。

  (6)引导学生列式:

  20÷5=4(个)(这里的4指什么?)

  4+1=5(棵)(这个算式求的是什么?为什么要加1?)

  答:一共需要5棵树苗

  (三)、两端都不种

  出示方案二:学校在一条长20米的小路一边植树,每隔5米栽一棵(两端都不栽)。一共需要多少棵树苗?

  (1)指生读题后,说说这道题和上一题的不同点。

  (2)两端都不栽什么意思?指生比划一下,出示示例图让学生判断画的对吗?

  (3)发现规律并板书。

  (4)同桌之间互相列算式。

  (5)指生交流并点评。

  (四)、一端种树

  出示方案三:学校在一条长20米的小路一边植树,每隔5米栽一棵(只栽一端)。一共需要多少棵树苗?

  (1)生齐读题后,说说这道题和上一题的不同点。

  (2)只栽一端什么意思?

  (3)指生交流,发现规律并板书。

  小结:通过这三种植树情况,大家发现没有要想算出棵数,必须知道什么?(只要知道间隔数,就可以算出棵数。)引导学生说出:间隔数=总长÷株距。

  你们真是学校的智多星,不仅帮学校解决了难题,还探究出了植树的规律,真是太棒了!你们幸福吗?拍拍手吧!

  (五)强化规律

  课件出示种树的三种情况,学生抢答,记忆种树的规律。

  其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)数学上我们把这些现象统称为植树树问题,我们一起来看一下生活中的植树现象。(课件展示图片。)

  三、回归生活,实际应用。

  我们都知道数学离不开生活,要解决生活中的植树问题,我们首先要确定它是三种情况中的哪一种。老师收集了一些生活实例,同学们能不能运用我们刚探究的这些规律来解决这些问题呢?对自己有没有信心?那就让我们一起走进数学,走进生活吧!(课件逐一出示练习)

  1、为迎接六一儿童节,学校准备在教学楼前60米的道路一旁摆放鲜花(靠墙一端不放),相邻两盆花之间的距离3米。一共需要几盆花? 属于( )

  ①两端摆 ②一端摆 ③两端不摆

  答:一共需要( )盆花。

  2、小学生广播操队列中,其中一列纵队26米,相邻两个学生之间的距离是2米。这列纵队一共有几个学生?

  属于( )

  ①两端都站 ②一端站 ③两端不站

  答:这列纵队共有( )个学生。

  3、一根木头长8米,每2米锯一段。一共要锯几次?属于( )植树现象?

  ①两端种 ②一端种 ③两端不种

  答:一共要锯( )次。

  4、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  (1)先判断属于哪种情况,独立解决。

  (2)小组交流。

  (3)汇报。

  四、回顾整理,反思提升。

  学习永远是件快乐而有趣的事情,这节课老师感到很快乐,我收获了幸福,你们收获了什么?

  【板书设计】 植树问题

  两端都栽: 两端都不栽: 只栽一端:

  棵数=间隔数﹢1 棵数=间隔数-1 棵数=间隔数

  间隔数=棵数-1 间隔数=棵数+1

植树问题教学设计14

  一、教学目标:

  1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。

  2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。

  3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  二、教学重点:理解植树问题棵树与间隔数之间的关系。

  教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。

  三、教具准备:多媒体课件和未完成的表格。

  四、教学过程:

  课前准备:(多媒体放映牛顿和苹果的故事)

  师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)

  谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?

  (一)、提出问题、引发思考、探究规律。

  1、手引发的`思考。

  师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

  师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

  2、整体感知、确定研究方向。

  课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?

  展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)

  理解:“间隔”、“间隔数”、“棵数”。

  (二)、小组合作,探究规律

  1、提出问题。

  课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?

  学生的猜测可能有不同的结果:1000;1001;1002)

  2、自主探究。

  棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

  课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

  引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

  让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

  3、发现规律。

  学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

  师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

  课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?

  师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

  4、总结归纳。

  归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

  5、总结规律。

  师:你们能用一个式子把规律表示出来吗?

  【板书】间隔数+1=棵数 棵数-1=间隔数

  6、联系生活

  在我们生活中存在着很多类似植树问题的现象,你发现了吗?

  让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

  (三)、点击生活

  ①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )

  ②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?

  ③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?

  ④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?

  (四)、拓展延伸。

  (课件出示世界著名数学问题)

  师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?

  早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)

  十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)

  进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)

  (结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!

植树问题教学设计15

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,透过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、透过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的潜力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、透过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:理解“间距数+1=棵数,棵数-1=间距数”

  教学准备:课件

  教学过程:

  一、创设原型

  1、教学“间隔”的'含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着搞笑的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、根据生活实景信息回答问题。

  (1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

  (2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

  (3)河边的护栏有5根铁链,需要几根柱子?(6根)

  4、引入课题

  师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)

  二、构建模型

  1、用图象语言描述“植树棵数与间隔数”之间的关系。

  师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

  2、构建植树问题的数学模型

  (1)我们一齐来看一下这几位同学画的图,你能说说你是怎样画的吗?

  (2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是阿,用线段图的方法最简便,因此它也是我们最常用的。)

  (3)透过画图,我们发现这条路的两端都栽了树,这就是我们这天研究的植树问题的一种类型。(板书:两端都栽)

  (4)在线段图上,我们用点表示栽的树,几个点就是几棵树,透过画图,我们明白6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

  植树棵数间隔数67

  (板书:棵数-1=间隔数间隔数+1=棵数)

  师:这天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

  三、利用模型解决问题

  1、教学例1

  师:此刻老师要考考你们了,谁敢理解检查?既然大家都想来,那么我们一齐来。

  课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)谁能大声清楚朗读这个题目?

  (2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

  (3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

  (3)这题也能够用画线段图的方法来解答,你能试着画线段图吗?

  (4)展示学生线段图,你能说说你是怎样画的吗?

  (5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你能够了解些什么信息?谁也明白了也想来说给大家听一听的?

  (6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

  (7)汇报:说说你的想法。

  ①出示学生各种答案,板书在黑板上。

  ②对于这几种方法,你们有什么看法吗?(生:我认为……)

  ③擦去错误答案,留下正确答案:100÷5=10(个)10+1=11(棵)

  ④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

  ⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

  2、试一试

  师:如果老师把题目改一改,看看谁还会?

  课件出示:“六一”儿童节快到了,校园决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

  (1)生轻轻读题,说说从这个题目中你了解了些什么信息?

  (2)和刚才这题比较,你想说什么?

  (3)学生独立列式并汇报。

  3、巩固新知

  师:恭喜大家,顺利透过检查!你们还想理解新一轮的挑战吗?

  课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们就应先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

  (6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

【植树问题教学设计】相关文章:

植树问题教学设计06-10

《植树问题》教学设计04-11

人教版《植树问题》教学设计05-23

植树问题教学设计15篇06-16

植树问题教学设计(15篇)06-16

《植树问题》教学设计15篇05-13

植树问题教学设计集合15篇06-16

植树问题教学设计(汇编15篇)06-27

植树问题教学设计汇编15篇06-27