长方体和正方体教学设计

时间:2023-06-28 14:56:12 教学资源 投诉 投稿

长方体和正方体教学设计(15篇)

  作为一名教职工,就不得不需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。教学设计应该怎么写呢?下面是小编为大家整理的长方体和正方体教学设计,仅供参考,大家一起来看看吧。

长方体和正方体教学设计(15篇)

长方体和正方体教学设计1

  教学内容:

  《义务教育教科书·数学》(青岛版)六年制五年级下册第七单元信息窗4。教学目标:

  1、给合具体情境探索、掌握长方体和正方体的体积计算方法,会计算长方体和正方体的体积。

  2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。 3.在解决简单的实际问题中,体会数学与生活的密切联系,增强应用意识。

  教学重点:长方体和正方体体积(容积)的计算。

  教学难点:计算方法的探究和理解。

  教具准备:课件。

  学具准备:长方体实物模型(萝卜或土豆)、小正方体数个。

  教学过程:

  一、情境导入

  课件出示教材中的情境图。

  师:同学们,请看屏幕,生活中见过这样的盒子吗?仔细观察,从图中你知道了哪些数学信息?

  学生回答,教师适时评价。

  师:根据这些数学信息,谁能提出什么数学问题?(出示课件)

  学生可能提出:

  (1)可乐箱的体积是多少?

  (2)桃汁饮料盒的体积是多少?

  (3)啤酒箱的体积是多少?

  【设计意图:直接出示情境图,以学生生活中常见的这些盒子直接切入主题,既适合五年级的学生,又和学生的生活紧密联系在一起,让学生体会到数学来源于生活。】

  二、合作探索

  1.怎样求饮料箱的体积呢?

  师引导学生由问题入手,引起学生思考:要求饮料箱的体积,我们就要知道体积的计算方法。那怎样计算体积呢?这些物体的形状是长方体和正方体,那我们就可以借助长方体或正方体学具来研究怎样求长方体和正方体的体积。

  (1)切割学具,自主探究。

  师:那长方体的体积怎样求呢?

  让学生将课前准备的萝卜或土豆切成一个长6厘米、宽2厘米、高3厘米的长方体模型。引导学生先动手切一切,把长方体切成棱长是1厘米的小正方体,也就是1立方厘米的小正方体,切完后再数一数共包含多少个小正方体。

  学生动手操作,最后交流小正方体的个数是36个。

  师:那刚才这个长6厘米、宽2厘米、高3厘米的长方体的'体积是多少呢?引导学生明晰:长方体中含有多少个1立方厘米,体积就是多少立方厘米。这个长方体一共含有36个小正方体,它的体积就是36立方厘米。(出示课件展示切割过程)

  (2)拼摆学具,感悟算理。

  师:除了切割,我们也可以用学具来摆一摆。请同学们拿出准备好的小正方体,摆出长是6厘米、宽是2厘米、高是3厘米的长方体。同桌交流你是怎样拼摆出来的?体积又是多少?

  引导学生交流出:长摆了6个小正方体,摆了这样的2排,摆了这样的3层。体积是36立方厘米。

  师:为什么长摆了6个小正方体?为什么摆这样的2排?又为什么摆这样的3层呢?体积为什么是36立方厘米?

  引导学生交流出:因为长是6厘米,所以一排可以摆6个。宽2厘米,一层可以摆2排,高3厘米,就可以摆这样的3层。摆完后发现一共用了36个小正方体,所以体积就是36立方厘米。(出示课件:摆的过程)

  师:你能列式求出小正方体的个数吗?体积呢?

  生:个数:6×2×3=36(个)所以长方体的体积就是36(立方厘米)(出示课件)师:再用小正方体拼摆长5厘米、宽4厘米、高2厘米的长方体和棱长是3厘米的正方体。并且同位互相交流是怎样摆的,体积是多少,并用算式表示求小正方体的个数。

  汇报交流,并且课件出示过程。

  (3)组间交流,理解算理。

  师:(课件呈现三个拼摆的形体及算式)同学们仔细观察这三个算式,你有什么发现?小组交流。

  引导学生交流:

  长方体所含“体积单位”的数量,就是长方体的体积。

  长方体所含“体积单位”的数量,等于长、宽、高的乘积。

  (4)提升方法,沟通联系。

  师:根据我们刚才的研究,我们得出长方体和正方体的体积怎样进行计算?学生回答,课件呈现体积计算公式和字母表示式。

  师:同学们仔细观察,你们知道什么叫底面积吗?如果知道了长方体或正方体的底面积,又怎样求长方体或正方体的体积呢?为什么呢?(课件闪烁底面)

  学生回答,课件呈现底面积乘高及字母表示式。

  (5)解决情境图中的问题:(课件呈现情境图)

  ①长方体可乐箱的体积是多少?7×3×2=42(dm3)

  ②正方体啤酒箱的体积是多少?3×3×3=27(dm3)

  2.教学容积的计算方法。

  师:(课件呈现桃汁饮料盒及问题)同学们,还记得我们上节课学的容积吗?如果要求桃汁饮料盒可盛饮料多少升,应该知道什么条件?如果盒壁厚度不计的话,你又有什么发现?容积应该怎样求呢?同位讨论。

  引导学生交流得出:(课件呈现)长方体或正方体容器容积的计算方法与体积的计算方法相同,但要从容器里面量长、宽、高,这样才能更准确地算出容器的容积。 10720=1400(立方厘米)1400立方厘米=1.4升

  答:桃汁饮料盒可盛饮料1.4升。

  【设计意图:在问题的引领下,让学生切割学具、拼摆学具,在这种动手操作的过程中,感悟算理,在互相讨论中理解算理。在这种互动中,培养了学生合作交流和探索的能力。由学具操作提升算法并进行沟通,突出算理的教学,渗透数形结合和转化的思想。】

  三、自主练习

  1、基本练习:第1题和第2题(课件呈现)

  2、扩展练习:10题(课件呈现)

  【设计意图:练习设计的层次性,不仅让学生重温和巩固了长方体和正方体体积计算

  方法的探索过程,还让学生用所学到的知识解决生活中的实际问题,让学生更加深切的体会到数学源于生活,用于生活,提高了学生解决实际问题的能力。】

  四、回顾反思

  师:同学们,这节课马上就要结束了,回想一下,你有什么收获?(课件出示教材丰收园图)

  学生可能回答:我会积极学习了。教师适时追问:你哪个环节最积极?(课件“积极”绿苹果图片飞出果篮,同时出示问题:你哪个环节最积极?)

  学生回答。(课件将绿苹果变成红苹果)

  学生也可能回答:我学会提问了。教师适时追问:你都问什么问题了?(课件“会问”绿苹果图片飞出果篮,同时出示问题:你都问什么问题了?)

  学生回答。(课件将“会问”绿苹果变成红苹果)

  师:让我们满载着收获,下课休息一下吧。(课件将红苹果装入果篮)

  【设计意图:以具体的问题引领学生从“积极”“合作”“会问”“会想”“会用”几个方面全面回顾梳理,帮助学生积累一些基本的活动经验,养成全面回顾的习惯,培养自我反思、全面概括的能力。】

长方体和正方体教学设计2

  教学目标

  (一)理解并掌握长方体和正方体体积的计算方法。

  (二)能运用长、正方体的体积计算解决一些简单的实际问题。

  (三)培养学生归纳推理,抽象概括的能力。

  教学重点和难点

  长方体和正方体体积的计算方法,以及其体积公式的推导。

  教学用具

  教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

  学具:1厘米3的立方体20块。

  教学过程设计

  (一)复习准备

  1.提问:什么是体积?

  2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)教师:如果再拼上一个1厘米3的正方体呢?

  教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

  (二)学习新课

  1.长方体的体积。

  (1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

  教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

  同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:

  教师:这些长方体有什么共同点?不同点?

  问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?(因为它们都含有同样多的体积单位——12个1厘米3。)

  教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?学生讨论后,师生共同归纳:

  表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。

  同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。

  (2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

  学生说出摆法和体积后。请看电脑动画图像:一排摆出4个1厘米3的.正方体→一共摆了三排→摆两层。

  教师板书:

  同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。学生操作,看电脑动画图像。

  教师板书:

  3(厘米)

  3(厘米)

  2(厘米)

  18(厘米3)

  教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?

  学生口答后,老师用电脑图演示。然后板书:5(厘米)4(厘米)3(厘米)60(厘米3)

  教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

  学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:板书:V=abh。

  出示投影图:

  (3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。答:它的体积是84厘米3。练习:(投影出题,学生口答。)一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)

  2.正方体体积。

  (1)请学生看电脑动画录像:长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?问:这个正方体的体积可以求出来吗?

  学生口答,老师板书:3×3×3=27(厘米3)。

  投影出一个正方体图。(可以用翻页变换它的棱长。)问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?

  学生口答,老师板书:2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。用V表体积,a表示棱长,公式可写成:V=aaa或者V=a3。

  (2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  学生口答,老师板书:53=5×5×5=125(分米3)。答:体积是125分米3。

  做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。

  (3)说一说长方体和正方体的体积计算方法和字母公式。教师:请讨论长方体和正方体的体积计算方法相同还是不相同。

  学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

  (三)巩固反馈

  1.口答填空。课本P35练习七:2,3。

  2.口答填表:

  3.判断正误并说明理由。

  ①0.23= 0.2×0.2×0.2;

  ②5x2=10x;

  ③一个正方体棱长4分米,它的体积是:43=12(分米3);

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。

  (四)课堂总结及课后作业

  1.长方体的体积计算方法及公式。正方体的体积计算方法及公式。

  2.作业:课本P35练习七:4,6。

  课堂教学设计说明

  本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作,观看动画录像等多种方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,设计通过动画录像引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。练习中针对乘方运算和单位不统一的易错点,设置题目进行训练,这样可以提高学生运用所学知识解决实际问题的准确性。新课教学共分两个部分:

  第一部分教学长方体体积计算方法。分为三个层次。通过摆长方体,使学生认识到长方体形状不同但只要含有同样多的体积单位,它们的体积就相等;通过操作和动画图,帮助学生发现体积与长、宽、高之间的数量关系,即体积公式;运用体积计算解决实际问题。

  第二部分学习正方体体积计算方法。也分三层。通过图像推出正方体体积计算公式;解决简单的实际问题;沟通长、正方体体积公式的区别与联系。

长方体和正方体教学设计3

  一、教学构思

  长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料,《长方体和正方体的表面积》教学设计及反思。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。

  二、教学目标:

  1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。

  2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

  三、教学活动过程:

  (一)引导学生学习正方体表面积的计算方法:

  1、回忆:上节课我们学习了长方体表面积的`概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?

  2、联想:拿起(一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?

  3、归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)

  4、教学例2:提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?

  (有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)

  师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。

  二、说明:

  我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算,教学反思《《长方体和正方体的表面积》教学设计及反思》。如例3。

  三、鱼缸的制作问题:

  1、帮助学生回忆鱼缸的形状(长方体,但是没有上面)

  2、如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)

  3、教学例3

  四、(出示长方体模型,把它看成鱼缸的模型)

  1、鱼缸缺少哪个面的玻璃?(上面)

  2、要求需要多少平方分米玻璃,要算几个面的面积和?哪几个面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高底面=长*宽)

  3、指名学生板演,集体订正。

  4、改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?

  学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。

  学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。

  学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同

  说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。

  五、练习

  书P42页练习二的第一、二题。

  (要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)

  六、课后反思

长方体和正方体教学设计4

  教学基本

  内容六年制小学数学第十一册P25—26。

  教学目的和要求

  1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

  2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

  3、培养学生初步的归纳推理、抽象概括的能力。

  教学重点

  及难点探索并掌握长方体和正方体体积的计算方法。

  长方体和正方体体积公式的推导。

  教学方法

  及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

  学法指导

  讨论交流,并认真听讲思考。

  集体备课个性化修改

  预习阅读书本25、26页,并初步理解解

  教学环节设计

  一、以旧引新

  师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

  要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

  二、探究新知

  1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

  师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

  师:将摆出的长方体放在桌上,并编号。

  请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

  引导学生依次去数每个长方体中包含的'小长方体的个数,并记录在表格中。

  问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

  师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?

  依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

  师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

  2、验证、交流后归纳出长方体的体积计算公式及字母公式。

  通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

  通过交流得出公式:长方体的体积=长×宽×高。

  问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

  交流得出:V=abh.

  3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

  师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

  交流得出:正方体的体积=棱长×棱长×棱长。

  重点理解的含义,进一步明确的读法、写法。

  做“试一试”。

  作业做“练一练”。

  做练习六第2题

  课堂作业:做练习六第1、2题

  板书设计

  执行情况与课后小结

长方体和正方体教学设计5

  您现在正在阅读的《长方体和正方体的表面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《长方体和正方体的表面积》教学设计及反思苏教版小学数学六年级上册 长方体和正方体的表面积 教学设计

  教学目标:

  1、建立表面积概念。

  2、小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。

  3、运用公式实际应用,并提升学生的数学思维能力。

  教学重点:

  1、长方体表面积公式的求法探究。

  2、公式的实际应用。

  教学难点:

  长方体表面积公式中长宽,长高,宽高呈现后,能够清晰的知道它们分别求的是哪些面的面积。

  教具、学具的准备:长方体盒、正方体盒、桔子、长方体展开图、课件

  教学研究过程:

  一、回忆长方体、正方体特征,重建表象

  1、师:我们已经初步认识了长方体和正方体,谁来说说长方体、正方体有哪些特征?

  2、生:汇报

  (长方体有6个面,每个面都是长方形或有两个相对面是正方形;长方体相对的面面积相等;长方体有8个顶点,12条棱,每平行的四条棱长度相等)

  (正方体6个面都是完全相等的正方形,正方体是特殊的长方体,它的12条棱都相等)

  3、师小结并引出课题

  同学们对长方体、正方体认识的很好,今天我们一起共同来研究长方体、正方体的表面积。(板书课题)

  二、建立表面积概念,认识表面积

  1、师:看到这个课题,你最想知道或最想了解什么?

  2、生交流:什么是表面积?

  怎样求表面积?

  求表面积在生活中有什么用途?

  表面积和以前所学的面积有什么不同?

  3、师拿一桔子;提出:你知道桔子的表面积指的是哪里吗?

  生摸一摸,说一说。

  4、师:物体表面的总面积叫做物体的表面积,长方体的表面积指的是哪里,那正方体呢?

  5、生指一指,摸一摸,说一说。

  三、探求长方体表面积计算方法、正方体表面积计算方法

  1、师:我们知道什么是表面积,如何来求它们的表面积呢?

  小组内两两合作,把你如何求长方体表面积的思路与你的同桌进行交流。

  (师在小组间巡视)

  2、生交流汇报各种求长方体表面积的方法。

  3、交流比较各种求法,继而得出长方体表面积计算方法(汉字与字母公式表示)

  长方体表面积=(长宽+长高+宽高)2

  S= 2(ab+ah+bh)

  4、课件展示:通过课件的展示,让学生直观感受长方体

  表面积方法的研究过程。

  5、生总结:正方体表面积计算方法(含字母)

  正方体表面积=棱长棱长6

  S=6a2

  四、基本反馈练习

  1、计算一香皂盒的表面积

  师:老师手里这个盒子的长为10cm,宽为7cm,高为3cm,

  请你计算这个盒的表面积。

  生试做,并指生上台板演

  2、课件出示(三个立体图形),分别计算它们的表面积。

  3、生在实物投影仪前讲解交流。

  五、解释应用(课件出示题目)

  您现在正在阅读的《长方体和正方体的表面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《长方体和正方体的表面积》教学设计及反思1、一长方体铁盒长18厘米,宽15厘米,高12厘米,做这个铁盒至少要用多少平方厘米的铁皮?

  a、生交流思路

  b、列式。

  2、一正方体无盖木箱,棱长5分米,这一箱子的表面积是多少?

  a、生试做

  b、交流思路

  3、一间长8米,宽6米,高4米教室,门窗面积是15平方米,要粉刷四壁和房顶面,粉刷面积是多少平方米?

  a、小组内交流思路

  b、全班交流解题策略

  c、生计算

  3、谈收获或体会

  通过这节课的研究与交流,你的收获或体会是什么?

  反思:本着让学生的主体性得到充分体现,实施学生主体参与教学的理念,在课堂教学中体现主体实验的两条基本原则,即诚心诚意的让学生做主人,严肃严格的基本训练。通过老师提供的材料,创设一切有利于学生主体参与的环境氛围,在教师的引领及点拨下,让孩子们自己去认知、去概括归纳总结,亲历知识形成的.过程,在建构知识的过程中让更多的孩子体验成功的快乐,使孩子们真正成为课堂学习中幸福的主人,使孩子们获得有效的数学学习,学习质量得到提高。本着这一教学理念,这节课设计了以下几个大的框架。

  框架一:从回忆长方体、正方体特征,重建长方体、正方体表象,为解决本解决本节课的知识搭建一个前台。

  框架二:建立表面积概念

  在提供实物这一材料下,通过看一看、指一指、摸一摸、说一说,调动多个感官来很好的认识、理解表面积这一概念。

  框架三:探求表面积计算方法

  在深刻建立表面积概念的基础上,通过小组的两两合作,由已建立的知识经验通过合作交流很快得到长方体表面积不同的求法,并从中比较,选择出较简捷的方法,继而得到公式,由于正方体是特殊的长方体,在长方体研究透彻后,轻松的得出求正方体表面积的计算方法。

  框架四:巩固练习

  公式得出后的基本应用,通过老师手中香皂包装盒表面积的计算,及时对知识进行反馈。

  框架五:解释应用

  把所学的数学知识用来解决生活中的实际问题,会加深对数学知识的理解,使孩子们体会到学习数学的巨大作用,并在应用中提升对数学理解的质量,由基本练习到变式练习,再到提升练习的设计,在交流思路的过程中,还渗透了审题意识及习惯的养成,并使孩子们体悟到遇到具体情况进行具体的分析,灵活而又准确的找到解题方法。

  框架六:谈本节课的收获

  孩子们从知识目标上谈,同时从情感态度价值观方面谈自身的体会与收获,对数学这一许多人认为枯燥的学科中产生丰富的情感,激发起孩子们热爱数学的美好情感。

  在这节课中,每一个孩子学习数学的主动性被极大的调动了起来,从问题的提出到交流,整个过程可以看到孩子们都在主动热烈的参与,特别是在探求长方体表面积不同的求法时,孩子们智慧的火花不时的在课堂上迸发,有的从长方体两个相对的面为一组去分析,得到求法;有的把长方体的上面、前面和左面分为一组去求;还有的孩子从长方体展开的平面图去求,更可贵的是有的孩子能够想到用底面周长乘以高再加上、下两面面积的方法得到长方体的表面积。对问题的思考具有创新性与独特性,思维的深度得以发展。另外,孩子们语言的表述清晰、准确,声音洪亮,手拿学具示范时动作落落大方,谈体会与收获时精彩的发言给老师留下了深刻而美好的印象。从这节课上,可以看出孩子们对数学的情感是积极的,参与是主动的,同时,在达到完成教学目标的同时,数学思维得到了较好的发展,获得了有效学习。

  这节课存在着一些遗憾的地方,例如:在探求长方体表面积方法的交流过程中,由于课堂上的生成情况较多,在处理时由于教学艺术的欠缺,耗时太长,以至于最后的几道提升练习来不及在课堂上完成,更多的精彩没有展现出来,留下了较大的遗憾。从这节课上,我收获了很多,同时,认识到自己在教学中还存在着较多的不足与问题。做为教师,课堂上当孩子们在热烈交流的过程中,要学会调控与把握,与教学目标关系不大时,要适时的把学生拉回来,一节课的时间是有限的。因此,教师要在钻研教材的基础上,要合理安排好时间,使孩子们在每一节课上的数学思维都得以发展与提升。这是一项长期而又艰巨的过程,它需要经验的积累,特别需要教师的教育智慧,教育机智,这需要历练与功夫,在今后的教学中,更要对教材深钻,准确的把握,因为这正是教学艺术的来源。

长方体和正方体教学设计6

  教学目标:

  1、使学生通过观察、操作等活动认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。

  2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

  重点难点:认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。

  教学准备:

  1、这节课是在学生已经直观认识长方体和正方体的基础上,引导学生进一步探索成方体和正方体的特征。教学第10-11页的例

  1、例2,完成随后的练一练及练习三1-5题。

  2、光盘

  3、长方体模型、框架,课件、长方体形状的纸盒等

  教学过程:

  一、导入新课:

  师:我们已经学习了一些平面图形、长方形、正方形、三角形、平行四边形和梯形,都是平面图形。

  今天我们学习立体图形。

  像墨水瓶、罐头盒、魔方玩具、牙膏盒、排球、肥皂盒、台灯罩,这些物体的形状都是立体图形,(出示这组物体的课件)今天我们就来研究这里面的——长方体和正方体。

  二、探究新知:

  1、说说你见过的哪些物体的形状是长方体?

  2、出示例1:

  拿一个长方体的纸盒来观察:

  ⑴长方体有几个面?每个面是什么形状?哪些面完全相同?从不同角度看一个长方体,最多能同时看到几个面? 指导学生观察学具,直观地回答上面的问题。

  得出: 长方体是由6个长方形(也可能有两个相对的面是正方形)围成的立体图形。

  在一个长方体中,相对的面完全相同。

  ⑵两个面相交的边叫做棱。长方体有多少条棱?量出每条棱的长度,哪些棱的`长度相等?

  指导学生观察、测量。

  得出: 相对的棱的长度相等

  ⑶三条棱相交的点叫做顶点,长方体有多少个顶点? 学生在小组里观察交流,指名回答。

  师:因为最多可以看到三个面,所以我们可以这样来画长方体。教师板演画法。

  3、请学生对照着长方体说说长方体的特征。

  4、出示铁丝做棱,的长方体框架,

  观察一下:

  ⑴它的12条棱可以分成几组?怎样分?

  ⑵相交于同一顶点的三条棱长度相等吗? 通过观察得出:

  相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。 它的12条棱可以分成4组 。

  引导学生总结出上面的两个问题,并回答。

  5、选择一个长方体实物,说说长方体的特征有哪些,量出它的长、宽、高。

  6、出示例2 正方体有几个面、几条棱、几个顶点?它的面和棱各有什么特征? 师:长方体和正方体有哪些相同点,有哪些不同点呢? 同桌互相说一说,指名汇报。

  7、选择一个正方体实物,量出它的棱长。

  三、巩固练习

  完成练习三1-4题。 第1题引导学生说说第三个图形有什么特别之处。你是怎样知道的? 第4题可先让学生判断出摆出的是长方体还是正方体,互相指一下长、宽、高(或棱长)的位置,再说说分别是多少厘米。

  四、全课小结

  通过这节课的学习你有哪些收获?

  五、作业

  完成练习三第5题。 尝试自己做一个长方体

长方体和正方体教学设计7

  一、教学目标:

  1、经历观察、交流、归纳等认识长方体和正方体特征的过程。

  2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

  3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。

  二、教学重点:掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高及长方体和正方体之间的关系。

  三、教学难点:形成长方体和正方体的概念,发展学生的空间观念。

  四、教学准备:每个学生准备一个长方体、一个正方体实物,教师准备长方体、正方体模型,长方体、正方体特征表格,课件。

  五、教学过程:

  (一)、创设情境

  师:同学们,老师手中拿的这个盒子,谁知道它是什么形状的?(长方体)那么这个盒子的形状谁知道呢?(正方体)

  师:真不错,老师还为大家准备了一张图片,你能从中找出长方体或正方体的物体吗?(出示图片,指生回答)

  师;同学们说得很好,在我们的生活中,你还见过哪些物体的形状是长方体或正方体?

  生自由回答:大部分药盒是长方体,香皂包装盒是长方体,骰子是正方体,粉笔盒是正方体、讲台是长方体。

  师;看来同学们都是生活中的有心人,我们已经认识了长方体和正方体,这节课我们就来共同研究长方体和正方体有什么特征。(板书课题:长方体和正方体的特征)

  (二)、认识特征

  1、师出示长方体模型。

  师:(师拿模型)关于长方体,你还知道些什么?

  生:我知道长方体有平平的面。(师在黑板上课前画好长方体和正方体)(板书:面)

  师:再看一看两个面相交处有什么?

  生:有一条边。

  师:我们把两个面相交的这条边叫做棱。(板书:棱)

  师:请同学们看一看三条棱相交处有什么?

  生:尖。(或点)

  师:三条棱相交的点叫做顶点。(板书:顶点)

  师:请同学们拿起自己准备的长方体,摸一摸它的面、棱、顶点。

  学生按要求摸一摸。

  2、师:下面我们就从面、棱、顶点这三个方面来研究长方体的特征。自己数一数你手中的长方体有几个面?

  生:长方体有6个面。

  师:你们同意吗?谁来说一说你是怎样数的?

  生1:我是转圈数,再数左、右两边的两个面,共6个面。

  (边说边演示)

  生2:我是按上面、下面、前面、后面、左面、右面的顺序数的,共6个面。

  (边说边演示)

  师:她按上、下、前、后、左、右的顺序数,这样既不重复,也不容易漏数,这个方法不错,你们认为这些面有什么特征?

  生可能回答:

  生1:这6个面都是长方形。

  生2:上、下两个面大小相等。

  生3:左、右两个面大小相等。

  生4:前、后两个面大小相等。

  生5:老师,我和某某有不同的意见,我手中的长方体不是6个面都是长方形的,有2个面是正方形的.(师拿着展示)

  师:也就是说长方体的6个面不一定都是长方形,也有可能有两个面是正方形的,刚才同学们提到的上下面,前后面,左右面都是分别相对的,我们称它们为相对的面。那么上下面、前后面、左右面的大小是否真的相等呢?请同学们以同桌为单位,共同验证一下这些相对的面的大小是否真的相等呢?

  学生同桌合作交流并集体汇报:

  生1:我们是用尺子测量的,通过测量我们发现相对的面的长、宽、都相等,所以面积就相等。

  生2:我们先在纸上描出底面的长方形,再把上面的长方形放在上面,发现两个长方形一样大。

  师:同学们真善于动脑筋,用不同的方法验证了长方体相对的面是否相等。

  师:我们也可以用剪的方法,就像这样(指课件)将各个面分开,然后看相对的面能否完全重合,由于时间关系,我们就不在课上完成了,

  下面我们来看一下大屏幕,(师用课件演示)

  通过我们的共同验证,得出结论:长方体有6个面,相对的面完全相等。(课件出示)

  师:(师拿物体说)这是一种比较特殊的长方体,它有两个面是正方形的,那么其他的四个长方形的面积就完全相等。也就是说一个长方体最少要有4个面是长方形的。

  3、师:我们再来看这个长方体,它是用细棒和珠子做成的,数一数几颗珠子?

  生:8颗珠子。

  师:这些珠子就是长方体的(顶点)

  师:那么长方体有几个顶点?

  生:长方体有8个顶点。

  师:(课件)长方体三条棱相交于一个顶点,一共有8个顶点。

  师:再数一数这个长方体用了几根小棒?

  生:用了12根小棒。

  师:这些小棒就是长方体的(棱)

  师:谁来说一下长方体有几条棱?

  生:长方体有12条棱。

  师:长方体的棱有什么特点?

  生1:这12条棱可以分成3组,相对的棱长度相等。

  生2:这12条棱可以分成3组,每组4条棱长度相等。

  师指名一生到前面演示

  (师用课件演示说明)

  师:(结合课件),请同学们仔细观察,同一颜色的小棒方向都是一致的,为了方便记忆,我们也可以把同一方向的棱归为一组,共有3个不同的方向,分为3组,每组4条棱的长度相等。

  4、师:现在请大家思考一个问题,当长方体所有棱的长度都相等时,它会变成什么图形?(正方体)(课件)下面请同学们拿出自己准备的正方体,认真观察,根据长方体的特征,结合大屏幕上的问题,同桌合作研究正方体的特征。(师出示课件)

  学生观察,讨论。

  5、师:谁来说一说正方体有哪些特征?

  生1:正方体也有6个面,6个面都是正方形的。

  生2:正方体所有的面完全相等,

  生3:它有12条棱,所有的棱的长度都相等。

  生4:有8个顶点。

  师:同学们真聪明,下面咱们一起来看大屏幕。

长方体和正方体教学设计8

  【教学内容】西师版第十册第39页例1。

  【教学目标】1结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。

  2培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3让学生感受知识的形成过程,从而激发学生学习数学的兴趣。

  4让学生体会所学知识在实际中的应用价值。

  【教学重点】

  长方体、正方体表面积的计算方法。

  【教学难点】

  确定长方体每一个面的长和宽。

  【教具学具】

  教具:长方体、正方体纸盒(可展开)。

  学具:长方体、正方体纸盒、剪刀。

  【教学过程】

  一、复习引入

  师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?

  出示一个长方体,指名摸它的表面。

  师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。

  二、探究学习

  1探索长方体表面积的.计算方法

  出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?

  4人小组合作完成这个长方体表面积的计算。

  汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。

  生1:我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面

  师:你能把这种求表面积的方法归纳一下吗?

  生:长×宽×2+长×高×2+宽×高×2。

  生2:我们组是把6个面的面积分别算出来后再相加。

  生3:我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。

  师:为什么求出这3个面的面积和,再乘2就可以了?

  生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。

  师:你能把这种求表面积的方法归纳一下吗?

  生:(长×宽+长×高+宽×高)×2。(师板书)

  师:观察真仔细,归纳能力真强。

  师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。

  2探索正方体表面积的计算方法

  师:通过大家的积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?

  出示一个正方体,让学生自主探索方法。

  汇报交流。

  生1:我是把6个面的面积加起来。

  生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。

  生3:我觉得只要求出一个面的面积再乘6就可以了。

  师:能给大家讲讲你的想法吗?

  生:正方体6个面的面积都是相同的。

  师:你能把这种求表面积的方法归纳一下吗?

  生:正方体的表面积=棱长×棱长×6。(师板书)

  三、巩固练习

  1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。

  2练习十第3题。先独立完成,再与同桌交流自己的算法。

  四、课堂小结

  通过这节课的讨论学习,你有什么收获和体会?

长方体和正方体教学设计9

  教学目标:

  1、通过观察、分类、操作、讨论等活动,进一步认识长方体、正方体,了解长方体、正方体各部分的名称。

  2、经历观察、操作和归纳过程,发现长方体和正方体特点,理解他们之间的关系。

  3、通过具体的操作活动,发展空间观念,增强数学学习的兴趣和学好数学的自信心。

  重难点:

通过观察、操作等活动概括出长方体、正方体的特征。掌握长方体、正方体的特征,以及长方体和正方体之间的关系。让学生理解长方体棱的关系和建立初步的空间观念。

  教学过程:

  本课我设计了四个环节。

  第一环节创设情境,激发学生的兴趣。让学生联系已知、观察实物、建立表象,导入新课:

  首先,课件显示已经学过的平面图形,强调“平面图形是由线段围成的”,为下面讲“体是由平面围成的”埋下伏笔。接着,老师出示长方体并引导学生观察:“它是由什么围成的?生活中哪些物体的形状是这样的?”在学生作答的基础上,课件出示生活中见到的各种长方体物体,告诉学生这些物体的形状是长方体,让学生初步感性认识长方体。然后老师适时提问:“怎样判断一个物体的形状是不是长方体呢?我们研究了长方体的特征,就能够准确地判断了。”这种利用直观图形复习旧知,提问题导课的方式能够激发学生的学习兴趣,使学生明确本节课的学习目标,并激起了求知欲,自觉、有意识地投入到新知识的学习中去。

  第二环节动手实践,探索新知。

  在这个环节中我抓住目标,让学生合作学习,概括出长方体和正方体的特征,抽象图形。

  (一)探究长方体的特征。

  在这个重点环节中,我设计了四个教学层次。

  1、观察实物或模型,认识长方体的面、棱、顶点,初步感知面、棱、顶点的含义。让学生仔细观察,并用手摸一摸,通过视觉、触觉等多种感官共同参与大脑的分析活动,鼓励学生交流讨论。在学生观察的时候,教师要深入到学生当中,引导他们观察,概括定义时,引导学生用自己的话来描述长方体的外部构成。在学生充分感知的基础上,课件进行演示,然后用下定义的方式揭示概念,(课件出示长方体的面、棱、顶点及定义——长方体上平平的部分是长方体的面;两个面相交的边叫长方体的棱;三条棱相交的点叫长方体的顶点。)对于顶点的认识,让学生观察,用手摸一摸长方体三条棱相交的地方有什么?学生可能说有一个角。如果出现这种情况,教师可以引导学生回忆什么叫角,并画角研究它的构成,使学生知道刚才看到的不是角而是顶点。课件演示:先闪动三条棱,再闪动三条棱相交的点,指出顶点的含义:我们把三条棱相交的点叫做顶点。这样使学生对长方体各部分的名称留下深刻的印象,为展开研究长方体的特征铺平道路。

  2、师生共同探究长方体的特征,解决重点。

  这部分重点教学我采用分组讨论、合作学习的方式,让学生动手操作,用数一数、比一比、量一量、剪一剪等方法,并动脑想一想,长方体有哪些特征,给学生留出广阔的探究空间。在学生充分讨论的基础上,组织学生汇报交流。如果学生回答得不够充分或条理不太清晰时,我预设了这样一些铺垫性的问题:

  (1)长方体有几个面?你是怎样数的?每个面是什么形状?相对的面有什么关系?

  (2)长方体有多少条棱?你是怎样数的?哪些棱的长度相等?

  (3)长方体有多少个顶点?

  学生汇报交流,教师借助课件动态显示验证:大家请看。

  (1)这是演示让学生数面,并验证相对的面完全相同。鼓励学生用多种方式进行探索,如把长方体剪开,用重叠的方法比较面的特点;也可以把面拓印在纸上,通过比较发现相对的面完全相同。让学生知道根据长方体面的位置,我们分别把它们叫做前面、后面、上面、下面、左面、右面。

  关于面的形状让学生观察发现有两种情况:一种是6个面都是长方形,另一种情况是有4个面是长方形,另外两个相对的面是正方形。

  (2)这是演示把棱分成四组,有规律地数出有12条棱,并验证相对的4条棱的长度相等。

  探讨棱的特征时,可以问问学生是怎样数的,怎样数才能既不重复又不会遗漏,让学生直观感受数棱时把棱分成三组,每组4条,然后按顺序数。通过量每条棱的长度,发现规律:相对的棱的长度是相等的。通过课件的演示发现这四条棱是平行的。在与学生交流中通过观察、数一数来突破教学的难点。

  (3)这是显示有8个顶点。

  让学生结合课件体会按照一定的顺序数一数,长方体有几个顶点,学生说出数的结果。

  探究出面、棱、顶点的特点之后,让学生看课件再简单回顾一下,指名让学生把长方体的特征完整的总结。(课件出示:依次隐去6个面,再分组闪动12条棱,最后一次闪动8个顶点。)学生回答以后教师指出,我们要判断一个物体是不是长方体,要根据长方体的特征去分析。

  观察、发现、总结长方体的特征是本课的重点和难点。在这个过程中,老师要适当引导,循序渐进。比如在数面和棱的多少时,通过先让学生自已数,过渡到老师指导下的有规律地数,不仅教知识而且教方法,对培养学生的能力大有益处。预设:学生在数面、棱、顶点时可能重复或遗漏,所以在此引导学生按一定的顺序数,同时数的时候不要随意翻转手中的学具。此外,学生可能会认为相对的棱只有两条,教师要再次给学生观察的时间,使学生发现长方体相对的棱有四条。让学生分组讨论、合作学习,使学生充分参与到知识的形成过程,体现了教师为主导、学生为主体的教学原则,培养了学生团结协作解决问题的精神。

  3、认识长方体的立体图。

  由实物到几何图形,是认识的又一次飞跃,是培养和发展学生空间观念的主要凭借,也是本节课的教学难点。所以在和学生一起观察、发现、归纳出了长方体的特征后让学生认识长方体立体图,完善对长方体的整体认识。(过渡语)刚才我们认识了这些长方体,如果把它们画下来该是什么样的呢?下面我们就来研究如何画图表示长方体。

  让学生拿自己的长方体,从不同角度进行观察,看最多能看到几个面。学生观察后发现,最多能看到它的三个面。然后让学生把自己的长方体放在桌子的左上角进一步观察,你看到了哪三个面,哪三个面看不到?学生实践后用课件演示,如果把这个长方体放在左前方观察,所看到的图形就是这样的。(课件演示)在这个图形中,你看到了哪几个面?哪几个面看不到?结合课件告诉学生,看不到的面用虚线表示。这叫长方体的`立体图,看图的时候,同学们要注意,上、下、左、右这四个面画的是平行四边形,但实际上表示的却是长方形。然后让学生指一指书上立体图形的6个面、12条棱、8个顶点加以巩固。

  这样设计的原因是实物与图形之间的相互成像是空间观念的主要表现。经过这样一个过程就能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。并运用多媒体的动画功能,从实物中隐化、抽象出长方体物体的图形。并与前面学习的长方体的特征,在学生头脑中共同构建,由实物特征、图形,形成长方体的概念,突破了本节课的教学难点!

  4、抽象图形,并认识长方体的长、宽、高

  在认识长方体图形的基础上,课件演示并讲解长、宽、高的概念,(我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。)突出强调由于长方体放置的方式不同,其长、宽、高也随之变化,(结合立体图说明,习惯上,长方体的位置固定以后,把底面中较长的棱叫做长,较短的中棱叫做宽,和地面垂直的棱叫做高。)然后,教师将长方体横放、竖放、侧放,让学生分别说出长方体的长、宽、高。接着让学生指出自己手中长方体的长、宽、高,再量一量手中这个长方体框架的长宽高分别是多少?根据学生交流的结果可能不同的情况,说明长方体摆放位置不同,长宽高的说法可能不一样。这样做的意图是在空间观念的形成过程中,视觉、触觉可以为大脑思维提供直接的、丰富的素材,因此我设计让学生的手、眼、脑协同发挥作用,以形成长方体的表象。

  (二)探究正方体的特征。

  有了研究长方体特征的基础,在探究正方体的特征时,可以通过长方体变成正方体的动画,把正方体的特征化难为易,让学生初步体会到正方体与长方体的关系,迁移学习方法,较好的达到学习目标。

  用课件出示动画图像:长方体转换为正方体,学生观察后讨论新得到的长方体与原来长方体比较有什么变化?归纳得出结论:长、宽、高变为相等,我们把它的长、宽、高都叫做棱长,六个面都变成了正方形,长方体变为正方体。然后让学生观察自己带来的正方体,如魔方、积木等,用刚才研究长方体特征的方法研究正方体的特征。通过学生的研究可以得到:正方体的6个面是完全相同的正方形,正方体12条棱长相等。

  通过观察、实践学生概括出了长方体和正方体的特征,此时需要对新课进行归纳总结。

  引导学生按照面、棱、顶点的次序,找出长方体和正方体的相同点和不同点,并整理出表格。然后分组讨论:正方体在具有长方体这些特征的前提下,它的独特之处是什么?归纳出结论:正方体是特殊的长方体。课件出示长方体、正方体的集合图。

  通过对长方体及正方体的特征比较,从而渗透事物是相互联系的辩证思想,以图文结合的形式生动形象直观地展现本节课的重点内容,让学生铭刻记忆,融会贯通。

  第三环节实践运用,巩固新知。

  1、判断。

  前3道小题为基本题,通过这样的练习使学生进一步掌握并灵活运用长方体、正方体的特征。第4小题加深了难度,培养学生的空间想象力,当学生有困难时,可让学生利用手中的小正方体摆一摆,可以在本上画一画,教师则借助课件帮助学生理解。

  2、选择。

  让学生区分计算某一个面的面积时需要用到哪一条棱的长度。独立探讨长方体棱长总和的计算方法。这题的设计目的是让学生在空间想象力的基础上根据所求问题筛选出有效信息解决问题,并且及时反馈学生对前面所学知识的掌握程度。也可以为调整后续教学方案获得新的信息。

  3、拓展题。

  变式拓展练习的设计,是为了在加强基础知识训练的同时,提升学生灵活应变的能力。

  第四环节梳理知识,反思总结。

  要求学生以小组为单位进行学习汇报,整理本节课学到的知识,并说出是怎样学到的。这样做的目的是不仅关注学习的结果,更关注知识的探讨过程,把学生当作知识建构的主体,当作活生生的、富有个性的人,使数学课堂焕发出生命的活力。

  以上是我对《长方体的认识》一课的粗浅的理解和不成熟的设计,“三人行,必有我师焉。”学无止境,研无止境,在思维的碰撞中方能迸射出智慧的火花。请各位领导老师多批评指正。

  长方体的认识教学反思

  1、对于长方体长和宽如何确定

  长方体的长和宽到底如何确定?是以底面长方形的长边为长,短边为宽,还是以长方体水平放置后左右方向的棱为长,前后方向的棱为宽?这一问题在我校数学组内产生了争议。其实,如何确定长方体的长、宽、高可能只是人们的一种约定俗成。无论如何确定,它的表面积和体积的大小都不会因此发生改变。但如果按左右方向为长、前后方向为宽,垂直方向为高,那么在教学长方体的表面积时就可以帮助学生总结出如下规律:

  长方体的前、后面=长X高X2

  长方体的左、右面=宽X高X2

  长方体的上、下面|=长X宽X2

  如果按底面长方形的长边为长、短边为宽,则在长方体的表面积计算推导过程中就必须根据物体的摆放来灵活确定每个面的面积如何列式了。这一问题如何处理,将关系到后继长方体表面积的教学设计。

  在无法定夺的情况下,请教了教研员。结论如下:如果长方体是水平放置,人们习惯于将左右方向的棱称为长,前后方向的棱称为宽。如果长方体非水平方向放置,人们则一般以底面较长的边为长,较短的边为宽。

  2、纸上得来终觉浅,绝知此事必躬行。

  有人说“我听了,就忘了;我看了,记住了;我做了,才理解了。”听、看、做代表着三个不同层次,在大脑皮层留下的痕迹也有深有浅。今天的课堂教学很好地印证了上面这段话,也使我深切地感受到课堂应该成为所有学生探究的舞台,而非老师或个别学生展示的舞台。

  以往开学,每位学生都会有数学学具盒供教学操作时使用。其中本册学具盒中就有可拼成长方体、正方体框架的不同颜色、长短的小棒。可这学期由于某些原因学具盒暂时还未发到学生手中。这节课,我又只要学生准备了长方体盒子,而没要求他们带不同长短的小棒及橡皮泥。所以例2,今天只能以个别学生上台用教具操作演示,其他学生当“观众”的方式进行教学。这种学习方式,虽然学生通过观察框架也能得出长方体12条棱可以分三组,每组互相平等的4条棱长度相等的结论,但到后面巩固练习中要求棱长和时就又迷糊了。有的学生必须看实物或框架图才能正确列出算式,还有的学生不知道是将长、宽、高乘3还是乘4……

  实践证明:教师的演示或部分学生的操作不能代替大家的自主探究,只有亲身参与,才能更好地将书本知识内化为个体储备,进而运用到解决生活中的实际问题。因此在今后教学中,要注意拓展探究的时间和空间,让课堂成为学生探究的舞台。

  3、对棱长和的教学思考

  在教学完长、宽、高的认识后,我顺势补充了长方体棱长和的相关内容。原因有二:一是通过拼摆长方体框架,能够帮助学生顺利推导出棱长和的计算公式;二是教材练习中对这部分有所涉及,必须在课堂教学中有所渗透。

  作业中相应习题建议调换一下顺序,先教学第7题,再讲第6题。因为第7题是要求长方体12条棱长之和,而第6题则需要根据实际灵活处理,只求出其中8条棱长之和即可(少了两条长和两条宽)。

  4、知识点较多,时间分配上有些力不从心

  本课我既想让学生通过充分探究发现长方体的特征,又想培养他们的空间观念,能仅凭立体图就正确回答出长方体各个面的面积该如何列式,还想让他们掌握棱长和的简便求法。

  我将长方体的特征定为本课教学重点,因此在探究上给予学生充分的时间,并在方法与策略上注意引导,学生学得较扎实。但到后面两部分时,明显觉得教学时间不够,只能囫囵吞枣。总之,感觉一节课40分钟难以扎实完成教学任务。

  如果时常无法在预订时间内完成教学任务,而需要再花课外时间来补充,是否说明这样的教学设计很失败?你们认为上述三个知识点是否应该在一节课内完成?如果是,又该如何分配时间较为合理呢?

长方体和正方体教学设计10

  教学目标:

  1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

  2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

  3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

  教学重点难点:

  长方体和正方体表面积的含义及其计算方法的推导过程。

  教学准备:

  长方体、正方体模型。

  教学过程:

  一、猜测导入

  出示两个纸盒(一个长方体、一个正方体)。

  提问:长方体和正方体有哪些特征?

  谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?

  有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)

  二、探究新知

  1、引导探究长方体表面积的计算方法。

  (1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?

  追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的'表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。

  (2)学生独立列式,指名汇报,并根据学生回答进行板书。

  解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)

  解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)

  答:至少要用148平方厘米的硬纸板。

  (3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?

  2、自主探究正方体表面积的计算方法。

  (1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?

  (2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。

  (3)组织交流反馈。

  3、揭示表面积的含义。

  谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?

  揭示:长方体或正方体6个面的总面积,叫做它的表面积。

  (板书课题:长方体和正方体的表面积)

  三、练习巩固

  完成课本“练一练”以及练习四第一、二、五题。

  四、全课小结

  谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?

  五、布置作业

  1、做练习四第三、四题。

长方体和正方体教学设计11

  教学内容:

  冀教版义务教育课程标准实验教科书,六上《长方体和正方体的体积》教学目标:

  1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

  2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

  3、培养学生归纳推理、抽象概括、迁移类比等能力。

  教学重点:

  长方体、正方体体积公式的推导。

  教学难点:

  理解长方体、正方体体积公式的推导过程。教学准备:

  教师准备:1立方厘米的正方体模型12块;多媒体课件;

  学生准备:1立方厘米的正方体若干个

  教学过程:

  一、复习:

  1、什么叫做体积?

  2、常用的体积单位有哪些?

  3、填空:

  (1)棱长1厘米的正方体,体积是()。

  (2)棱长是()的正方体,体积是1立方分米。(3)棱长是()的正方体,体积是1立方米。

  二、创设问题情境,揭示课题

  1、让学生观察:这两个是什么图形?(出示两个形状不同的长方体)哪个长方体的体积大些?观察猜测。

  2、引导学生得知用肉眼估算这种方法去计算日常生活中集装箱、体育馆等长方体的`体积是不科学不可取的,引出课题并板书——长方体和正方体的体积。

  三、动手操作,探索思考。

  1、操作准备。

  ⑴提出操作要求:用1立方厘米的小正方体12个摆成长方体,按教师要求小组摆出不同的长方体。

  ⑵将摆出的长方体放在桌上,并在答题卡上登记结果。

  2、观察思考。

  ⑴提问:你能看出这些长方体的长、宽、高各是多少吗?让学生在小组内互相说一说,并说说是怎样看出来的,然后将这些长方体的长、宽、高依次记录在表格中。

  ⑵启发:怎样才能知道这些由1立方厘米的正方体摆成的长方体的体积?引导学生依次去数每个长方体中包含的小正方体的个数,并记录在表格中。 ⑶让学生在小组内互相核对填写的结果是否正确;选择一些长方体让学生说说是怎样数出它们所包含的小正方体的个数的。

  3、分析推想。

  (1)提问:观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你能从中发现什么?

  引导学生提出猜想:长方体的体积是它的长、宽、高的乘积。

  四、出示教学例题,发现规律:

  1、谈话:通过刚才的操作和讨论,我们提出了一个猜想。那么长方体的体积是不是它的长、宽、高的乘积呢?这个问题还需要进一步研究。

  2、依次出示例题中的三个长方体,提问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

  启发:看着图想一想,你能根据每个长方体的长、宽、高来思考上面的问题吗?

  3、组织交流:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

  追问:如果再给你一个长5厘米、宽4厘米、高3厘米的长方体,你以想像出怎样用1立方厘米的正方体摆出来吗?摆出这个长方体一共要用多少个1立方厘米的小正方体?

  五、概括公式:

  1、提问:根据刚才操作过程中的发现,你能说说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

  通过交流得出公式:长方体的体积=长×宽×高。

  2、继续提问:如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?学生尝试后,交流得出:V=abh。

  3、长5厘米,宽4厘米,高3厘米的长方体,长缩短1厘米(图上从右边去掉一排),高增加1厘米(图上在上边增加一排),此时的长、宽、高各是多少?变成了什麽图形?

  启发:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?交流得出:正方体的体积=棱长×棱长×棱长。

  进一步启发:正方体的体积公式也可以用字母来表示。请你打开课本看一看。

  33aa让学生阅读后说说正方体体积的字母公式,并重点追问的含义,进一步明确的读、写方法。

  六、应用拓展:

  1、做“试一试”。

  先让学生说说长方体的长、宽、高分别是多少,正方体的棱长是多少,再让学生独立计算。交流时,注意让学生先说说长方体和正方体的体积公式,再说说分别是怎样列式的。

  2、做“练一练”第1题。

  先让学生分别说说每个图形的长、宽、高或棱长,再让学生独立完成。交流时关注学生是怎样得到每个几何体的体积的。如果有学生仍旧是用数小正方体个数的方法,要引导学生与用公式计算的方法相比较,强调用公式计算更简便。

  3、做“练一练”第2题。

  选择几个式子让学生说说其表示的意思,再让学生计算出每个式子的得数。

长方体和正方体教学设计12

  教学内容:

  第二单元《长方体和正方体》的整理复习,第十单元第20—24题及第30题。

  教学设想:

  组织学生根据提供的表格,自己整理、复习长方体和正方体的相关知识,掌握长、正方体的基本特征;正确计算长方体、正方体的棱长总和、底面积、表面积、不完全表面积和体积、容积;解决生活中的实际问题。进一步认识长方体和正方体之间的联系,会用底面积乘高计算体积,认识侧面积,会用侧面积加底面积计算表面积,并适当延伸推广到常见的圆柱体、多面柱体等。通过媒体演示,让学生感受点的运动形成线、线的运动形成面、面的运动形成体,初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。

  教学目标:

  1、学生应用表格法整理长方体正方体相关知识,掌握长正方体的基本特征。

  2、正确进行长正方体的有关面积和体积的计算。

  3、沟通长正方体之间的联系,适当延伸推广到各种柱体。

  4、初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。

  教学重点:

  整理掌握长正方体的特征,正确应用。

  教学难点:

  沟通长正方体的联系及推广延伸。

  课前准备:

  ppt课件

  教学过程:

  一、激趣导课

  1、出示:“xxx”一个点,问:同学们猜猜,这个“点”运动以后会留下什么?

  2、动画演示:点运动的过程和留下的痕迹。(直线、曲线、折线等)点运动成线。想象生活中点动成线的例子。(看到的喷气式飞机飞过留下的痕迹,流星、礼炮等的痕迹。)

  3、问:点运动成线,线运动成什么呢?请看动画演示:线运动的过程和留下的痕迹。(长方形、正方形、平行四边形、梯形、圆形等)线运动成面。想象生活中线动成面的例子。(用粉笔擦擦黑板就是线运动形成面、甩动竹杆、甩动系着球的短线)小球这个点运动得到一条曲线—圆周,这条短线运动得到一个面——圆面。(动画演示)

  问:面的运动又该成什么呢?猜猜看。

  生猜,师说,(长方体、正方体、圆柱体、圆锥体等)动画演示:面运动的过程和留下的痕迹。面运动成体。想象生活中面动成体的例子。(一枚硬币在桌子上竖起旋转形成一个球等)

  4、师:点动成线,线动成面,面动成体,这就是数学知识之间的联系。我们要善于发现知识之间的联系,融会贯通地学习掌握知识。这学期我们主要学习了长方体、正方体的有关知识,今天我们一起来复习一下,(板书:长方体正方体的复习)。希望大家能把这部分知识和前面学习过的相关知识联系,也能和我们虽然没学过但生活中见到过的现象联系起来,梳理知识,把握联系,解决实际问题。

  二、梳理知识

  师:前面大家学的都不错,你能按照下面的表格把长方体正方体的知识梳理一下吗?(出示表格)

  学生可独立完成或者分组完成,小组交流,核对答案。

  指名汇报,自由订正。

  师:看得出来,同学们掌握的很好,我想运用这些知识解决生活中的一些应用也一定是小菜一碟吧。

  三、解决问题

  第一层次:练习课本第117页第20—22题

  学生独立完成,指名说出算式。核对答案。有错订正。

  第二层次:讨论

  提问:刚才这2个同学做得非常好,你能告诉大家在计算表面积和体积的时候有什么需要提醒大家的吗?可以结合我们当时学习时的具体题目对大家说说。

  讨论1:分清楚是计算表面积还是体积。

  提问:你认为怎么分清楚?根据题目意思或者问题单位来分清楚。(举例见前面第二单元中第32页第8、9题和第34页第5—7题。)

  讨论2:是计算底面积还是计算表面积。

  讨论3:如果是计算表面积还要注意是算几个面及计算哪几个面。

  教师小结:是的,计算表面积有时是算6个面的,我们通常称为计算表面积;对于没有6个面的`,我们通常说不完全表面积,在计算的时候要注意是哪几个面,分别该怎样算。(第二单元第17 页第6题和第P18页第7、8题。)

  第三层次:分析

  谈话:看来很多同学关于长方体和正方体表面积计算掌握得不错,对下面这个实际问题你准备怎么解决呢?第118页第23、24题。

  学生先独立思考,写出方案或者算式,组内交流。

  加强联系。

  提问:现在再回头看这张表格,从这份表格你还能发现长方体正方体之间有什么联系吗?

  学生交流:正方体是特殊的长方体。(增加一行,填写在特征栏目)体积等于底面积乘高。(写在体积栏目)

  四、拓展练习

  1、出示第120页第30题。

  如果学生有困难,可以找一张硬纸照题中的要求做一做,然后思考:剪去的每个正方形的边长应该是几厘米?做成的长方体纸盒的长、宽、高分别是多少?

  2、一根长方体木料,它的长、宽、高分别是8分米、5分米和4分米。如果把它加工成一个最大的正方体木块,木料的利用率是多少?

  引导学生思考并理解“利用率”后再解答。

  3、把8个棱长都相等的正方体木块黏合到一起,成为一个大正方体木块。这个大正方体的表面积是96平方厘米,原来每个小正方体的体积是多少立方厘米?

  引导学生分析要求小正方体的体积必须先求出它的棱长,要求小正方体的棱长又可以根据大正方体的表面积来求。

  4、一个正方体玻璃缸,棱长6分米,用它装满水再把它倒入一个底面积为30平方分米的长方体水槽中。水槽里的水面高多少分米?

  引导学生分析根据正方体的棱长可以先求出水的体积,再求水面的高度。

  五、布置作业

  1、课内作业:第117、118页第23、24题、第120页第30题。

  2、课外作业:补充相关练习

长方体和正方体教学设计13

  长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:

  一、重视引导学生经历知识的探究过程。

  究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。

  二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。

  三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的'体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。

  四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。

  总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?

  可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。

长方体和正方体教学设计14

  〔教学内容〕

  教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。

  〔教材简析〕

  〔教学目标〕

  1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。

  2、让学生掌握并会运用所学知识解决实际问题。

  3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。

  〔教学重点〕

  根据实际情况判断出应该求出长方体或正方体的哪几个面之和。

  一、复习铺垫,导入新课:

  1、谈话:上节课我们学习了表面积,谁还记得?

  2、计算下面物体的表面积。

  (1)一个长方体长5厘米、宽6厘米、高12厘米。

  (2)一个正方体的棱长5分米。

  指名板演,集体订正。

  二、探索领悟,总结方法:

  谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。

  出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?

  1、 谈话:请同学们说一说鱼缸的样子。

  提问:求需要多少玻璃,就是求什么?

  使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。

  启发学生思考:

  根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?

  学生交流,指名口答。

  明确:分别求出前、后、左、右和下面的`面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。

  2、列式解答:

  请学生独立完成。

  谈话:你能说说你列式的根据吗?让学生明确算式的含义。

  相机出示:

  5×3.5+5×3+3×3.5+3×3.5+5×3

  (5×3+5×3.5+3×3.5)×2-5×3

  3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。

  4、练一练:

  第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。

  第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。

  完成后,集体订正,指名说出列式根据。

  三、巩固练习:

  练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。

  四、课堂作业:

  1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。

  2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。

  3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。

  4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。

  五、思考题:

  提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。

长方体和正方体教学设计15

  教学内容:九年义务教育小学数学第二册第23页教学内容。

  教学目的:

  1.让学生直观认识长方体和正方体,初步掌握它们的特征,会辨认这两种图形。

  2.培养学生动手操作能力、观察能力和初步的归纳概括能力。

  3.精心组织学生活动,激发学生兴趣,培养学生主动探索的欲望和创新精神。

  教学过程:

  一、创设情境,激发兴趣

  上课尹始,教师出示灯片:由若于长方形和正方形组成的童话式的图形王国城门图。然后教师谈话:"小朋友,在这里你能找出我们的老朋友长方形和正方形吗?"

  [评析:活泼的画面,生动的语言,能很快地集中学生的注意,激发学习兴趣,既让学生回顾了旧知,又唤起了学生参与学习的欲望。]

  二、直观导入,初步感知

  教师拉开灯片的覆盖片,显示出长方体和正方体,并提出两个问题,(1)老师给大家介绍两个新朋友,它们是谁呢?有谁认识它们?(2)长方体、正方体跟我们的老朋友长方形、正方形相同吗?为什么?

  [评析:运用恰当的电教媒体,引导学生在比较中直观感知长方体、正方体与长方形、正方形的区别,从而将面和体区别开来,使学生从整体上初步感知新知识。并且,恰当的电教媒体,生动的问题情境,能进一步激发学生的学习兴趣,唤起学生主动探索的欲望。]

  三、引导探究,理解新知

  1.认识长方体。

  (1)动手操作,直观感知。

  ①教师依次出现两个长方体(一般的和特殊的)。问:谁认识它?小朋友想不想对自己动手做一个长方体呢?

  ②教师指导学生用长方体展开图自制长方体,让学生在做一做中,初步感知长方体的特征。

  (2)小组研讨,建立表象。学生在做一做中,初步感知长方体以后,教师适时组织学生开展小组讨论:在制作长方体过程中,你发现了长方体的什么秘密?先小组讨论,再请小组代表汇报发言。

  (3)验证认识,形成概念。

  ①当学生通过小组讨论,能用自己的语言归纳出长方体特征后,教师播放电视录相:一个长方体匀速转动,清晰、布序地显示长方体六个面,按着六个面一对一分解3排开。验证学生的认识长方体有六个面,每个面都是长方形{有时有两个面是正方形}。

  ②请小朋友一起有序地数出长方体的六个面。

  [评析:心理学研究表明,新颖的、活动的、直观形象的剌激物,最容易引起儿童大脑皮层有关部位的兴奋,形成优势兴奋灶,认识长方体这一学习环节中,教师正是利用学生的心理特点,组织学生开展形式多样的学习活动。让学生在做一做中,感知长方体;在学生互相争论、互相补充、互相启发中建立长方体清晰的表象;再通过电视录相验证学生的认识,促使学生形成新的认知结构,这样,多种感官参与活动,有利学生掌握新知,发展能力,培养创新意识。]

  2.认识正方体。

  (1)出示正方体模型,问:小朋友认识它吗?正方体有什么特征呢?请朋友带着这一个问题看电视录相。

  (2)观看电视画面,指名回答:正方体什么特征?

  [评析:在学生已经认识了长方体的基础上学习正方体就比较容易了。因此,这个环节直接采用看录相,充分利用电教媒体的优势,让学生在看一看、说一说的?活动中,归纳、表述正方体的特征。这样,有利于培养学生自学能力及初步逻辑思维能力。]

  四、引导辨析,掌握本质

  1.让学生分别找出学具中的长方体和正方体。

  2.组织学生开展小组讨论:怎样辨别长方体和正方体呢?(先小组合作学习,再请小组代表汇报小组合作学习结果。

  3.小结长方体和正方体的特征。

  [评析:学生认识了长方体和正方体之后,教师及时组织学生开展讨论:你是怎样来区别长方体和正方体的?这一问题的提出,引发了学习思考。学生在思考过程中必须对长方体和正方体的有关知识进行搜索、归纳、整理,让学生在比较中进一步认识长方体和正方体,掌握学习方法,发展学生思维能力。

  五、巧设练习,拓展新知

  1.数一数。如图,

  ①图A中有几个小正方体?②至少补上几个小正方体就可以成为一个大正方体?(学生回答后,教师用电脑操作,图A→B,添加部分闪烁。)

  2.想一想。如图:

  (1)这些图片中哪些可以做成一个长方体?哪些不能?为什么?

  (2)折长方体比赛。

  (3)用12个小正方体摆成一个长方体,你有几种摆法?(在实物投影仪上操作展示)

  [评析:这三组练习的设计,层次分明,学生在数一数、想一想、摆一摆的练习中巩固新知,发展学生空间观念。并且,恰当的.电教媒体的应用,形象直观,简洁省时,让学生在一次次的成功体验中,主动参与知识的构建过程。]

  4.做一做。让学生用橡皮泥做一个长方体或正方体,自由上台展示作品,并介绍制作经验。)

  [评析:这一练习的设计,让学生在做长方体或正方体中,复习长方体或正方体的特征,了解长方体或正方体面与面之间的关系,渗透事物是相互联系的辨证唯物主义思想,培养学生动手操作能力,发展空间观念,激发创新意识。学生自由上台展示自己的作品并介绍制作经验将本课教学推向高潮,让学生在轻松、愉快的学习情境中,完成本课的学习。这样,学生掌握了知识,又培养了能力,发展了个性。]

  [总评:长方体、正方体的初步认识,是在学生已初步认识了长方形和正方形的基础上学习的,是学生初次接触立体图形。教学中,教师根据低年级学生活泼好动,对新鲜事物感兴趣,但注意力不能长时间集中的心理特点,很好地贯彻了活动促发展的教学思想,为学生创设了一种愉悦、和谐、自主的课堂氛围,让学生在做一做、玩一玩、看一看、想一想的活动中,主动参与新知识的构建过程,从而激发了创新意识,掌握了知识,发展了能力。]

【长方体和正方体教学设计】相关文章:

长方体和正方体的教学设计01-28

长方体和正方体教学设计05-02

长方体和正方体的认识教学设计02-13

长方体和正方体教学设计15篇05-13

长方体和正方体的教学设计15篇03-17

长方体和正方体的认识教学设计11篇02-13

长方体和正方体的认识教学设计(11篇)04-11

《长方体和正方体表面积》教学设计05-10

长方体和正方体教案设计09-04