三角形教学设计

时间:2023-09-20 18:38:05 教学资源 投诉 投稿

【精华】三角形教学设计

  作为一名专为他人授业解惑的人民教师,时常需要准备好教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计应该怎么写呢?下面是小编精心整理的三角形教学设计,欢迎阅读与收藏。

【精华】三角形教学设计

三角形教学设计1

  教学内容:

  四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。

  教学目标:

  1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。

  2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。

  3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。

  教学重点:

  让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。

  教学难点:

  探究和验证“三角形内角和等于180°”。

  教学准备:

  学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。

  教学过程:

  一、创设情境,产生疑问

  1、理解内角和含义。

  2、故事激趣

  提问:三兄弟围绕什么问题在争吵?你有什么看法?

  二、自主学习,合作探究

  1、提出猜想。

  (1)计算三角板的内角和。

  (2)提出猜想。

  提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?

  指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。

  引导:需用更多的三角形验证。

  2、进行验证。

  (1)验证教师提供的`三角形。

  测量:任意三角形的内角和。

  ①小组合作:用量角器量出信封里不同三角形的内角和。

  ②交流测量结果。

  ③提问:根据测量结果,你能得出什么结论?

  拼一拼:把一个三角形的三个角拼在一起。

  ①思考:除了量,还可以用什么方法验证呢?

  ②同桌合作:尝试把三个内角拼成一个平角。

  ③反馈不同的拼法。

  ④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?

  解释误差问题。

  (2)验证学生自己画的三角形。

  学生任意画一个三角形,用自己喜欢的方法去验证。

  交流:自己画的三角形验证出来内角和是1800吗?有谁验证

  出来不是1800的吗?

  提问:你又能得到什么结论?还有怀疑吗?

  3、得出结论。

  指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。

  说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。

  解决争吵:学生用三角形内角和的知识劝解三兄弟。

  三、巩固应用,深刻感悟

  1、算一算:求三角形中未知角的度数。

  2、拼一拼:用两块相同的三角尺拼成一个三角形。

  思考:拼成的三角形内角和是多少?

  3、画一画:(1)你能画出一个有两个锐角的三角形吗?

  (2)你能画出一个有两个直角的三角形吗?

  (3)你能画出一个有两个钝角的三角形吗?

  四、全课总结,课后延伸

  1、学生自主总结一节课的收获。

  2、介绍帕斯卡。

  3、用三角形拼成四边形、五边形、六边形,引发新的问题。

三角形教学设计2

  【设计理念】

  新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

  【教材内容】

  新人教版义务教育课程标准实验教科书四年级下册数学例6、“做一做”及练习十六的第1、2、3题。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

  2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

  【教学目标】

  1、通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

  2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

  3、在参与数学学习活动的过程中,获得成功的`体验,感受数学探究的严谨与乐趣。

  【教学重点】

  探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

  【教学难点】

  验证“三角形的内角和是180°”。

  【教(学)具准备】

  多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

  【教学步骤】

  一、复习旧知引出课题

  1、你已经知道有关三角形的哪些知识?

  2、出示课题:三角形的内角和

  【设计意图:也自然导入新课。】

  二、提出问题引发猜想

  1、提出问题:看到这个课题,你有什么问题想问的?

  预设:

  (1)三角形的内角指的是哪些角?

  (2)三角形的内角和是什么意思?

  (3)三角形的内角一共是多少度?

  2、引发猜想

  猜一猜:三角形的内角和是多少度?你是怎么猜的?

  【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】

  三、操作验证形成结论

  1、交流验证方法:

  (1)用什么方法证明三角形的内角和是180度呢?

  预设:①量算法②剪拼法③折拼法等

  (2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

  2、动手验证

  3、全班汇报交流

  4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

  5、方法拓展

  推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。

  6、形成结论:任意三角形的内角和是180 °。

  【设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】

  四、应用结论解决问题

  1、巩固新知:想一想,算一算。

  2、解决问题:等腰三角形风筝的顶角是多少度?

  3、辨析训练,完善结论。

  五、课堂总结,归纳研究方法

  今天这节课你学到了哪些知识?你是怎样得到这些知识的?

  六、课后延伸:

  用今天所学的方法继续研究四边形的内角和。

  七、板书设计:

  三角形的内角和

  猜测:三角形的内角和是180°?

  验证:量拼

  结论:任意三角形的内角和是180°

三角形教学设计3

  【设计理念】

  新课标重视让学生经历数学知识的构成过程,要求教师创设有效的问题情境激发学生的参与欲望,带给足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的构成过程。这样,学生不仅仅能够掌握知识,而且能够积累探究数学问题的活动经验,发展空间观念和推理潜力。

  【教材资料】

  新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习了十六的第1、2、3题。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习了多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学资料时,不但重视体现知识的构成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学带给了清晰的思路。概念的构成没有直接给出结论,而是透过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  1、在学习了本课时,学生已经有了探索三角形内角和的知识基础:明白直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,明白他们的四个角都是直角;认识了三角形,明白了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经明白了等腰三角形和正三角形。

  2、已经有一部分学生明白了三角形内角和是180°,只是知其然而不知所以然。

  【教学目标】

  1、透过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

  2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作潜力,积累基本的数学活动经验,发展空间观念和推理潜力。

  3、在参与数学学习了活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

  【教学重点】

  探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

  【教学难点】

  验证“三角形的内角和是180°”。

  【教(学)具准备】

  多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

  【教学步骤】

  一、复习了旧知引出课题

  1、你已经明白有关三角形的哪些知识?

  2、出示课题:三角形的内角和

  【设计意图:也自然导入新课。】

  二、提出问题引发猜想

  1、提出问题:看到这个课题,你有什么问题想问的?

  预设:

  (1)三角形的内角指的是哪些角?

  (2)三角形的内角和是什么意思?

  (3)三角形的内角一共是多少度?

  2、引发猜想

  猜一猜:三角形的内角和是多少度?你是怎样猜的?

  【设计意图:提出一个问题比解决一个问题更重要。课始在复习了三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习了自己想研究的资料,无疑激发了学生的学习了兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎样猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】

  三、操作验证构成结论

  1、交流验证方法:

  (1)用什么方法证明三角形的内角和是180度呢?

  预设:

  ①量算法

  ②剪拼法

  ③折拼法等

  (2)三角形的个数有无数个,验证哪些三角形能够代表所有的三角形?我们的操作过程怎样分工才会做到省时又高效?

  2、动手验证

  3、全班汇报交流

  4、小结:刚才透过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在必须的误差,我们的结论也可能存在偏差。

  5、方法拓展

  推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。

  6、构成结论:任意三角形的内角和是180°。

  【设计意图:《标准》指出:“教师应激发学生的.用心性,向学生带给充分从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习了带给了经验支撑。】

  四、应用结论解决问题

  1、巩固新知:想一想,算一算。

  2、解决问题:等腰三角形风筝的顶角是多少度?

  3、辨析训练,完善结论。

  五、课堂总结,归纳研究方法

  这天这节课你学到了哪些知识?你是怎样得到这些知识的?

  六、课后延伸:

  用这天所学的方法继续研究四边形的内角和。

  七、板书设计:

  三角形的内角和

  猜测:三角形的内角和是180°?

  验证:量拼

  结论:任意三角形的内角和是180°

三角形教学设计4

  知识与技能

  1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。

  2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。

  情感态度与价值观

  3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

  教学重点:

  1、探索和发现三角形三个内角和的度数和等于180o。

  2、已知三角形的两个角的度数,会求出第三个角的度数。

  教学难点:

  已知三角形的两个角的度数,会求出第三个角的度数。

  方法与过程

  教法:主动探究法、实验操作法。

  学法:小组合作交流法

  教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。

  教学课时:1课时

  教学过程

  一、预习检查

  说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。

  二、情景导入呈现目标

  故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。

  三、探究新知 

  自主学习

  1、活动一、比一比2、活动二、量一量

  (1)什么是内角?

  (2)如何得到一个三角形的内角和?

  (3)小组活动,每组同学分别画出大小,形状不同的`若干个三角形。分别量出三个内角的度数,并求出它们的和。

  (4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。

  3、说一说,做一做。

  (1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

  (2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。

  四、当堂训练(小黑板出示内容)

  1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。

  2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。

  3、三角形具有()性。

  4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。

  5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。

  6、交流学案第三题。 先独立做,最后组内交流。

  五、点拨升华

  任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。

  六、课堂总结

  通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

  七、拓展提高

  妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。

  板书设计:

  三角形的内角和

  测量三个角的度数求和:结论:

  教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

  当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。

三角形教学设计5

  教学目标:

  1、通过观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

  2、培养学生观察操作的能力和应用数学知识解决实际问题的能力。

  3、体验数学与生活的联系,培养学生学习数学的兴趣。

  教具、学具准备:

  学生准备:三角尺

  教师准备:多媒体投影、课件、三角板、礼物盒(内含三角形、长方形、正方形各一个)、作业单(每人2份)

  教学重点:

  1、理解三角形的特性。

  2、在三角形内画高。

  教学难点:

  理解三角形高和底的含义,会在三角形内画高。

  教学过程:

  一、联系旧知

  同学们,老师今天给大家带了一份礼物(出示盒子,摇一下)咦!里面有东西!大家想不想知道里面有什么?生答。师:那让我们来摸摸他里面的东西,好不好?生答。师:老师需要一位小助手蒙眼睛,谁愿意帮帮老师?准备就绪,宣布活动规则:将你摸到的东西大声地说出来并告诉大家你是如何判断出来的。

  活动结束后教师总结:长方形和正方形我们已经学习过了,所以大家能够根据他们的性质准确的认出他们,三角形大家也能够认出来,但是今天我们还需要更进一步地学习三角形,看看三角形有哪些特性? (板书课题)

  二、情境导入

  师:大家在生活中见过三角形吗?生答。师:那现在老师给大家出示一组图片,看看大家能不能找出图中的三角形(课件出示图片)。

  师:在我们的生活中,有一样三角形形状的东西一直陪伴着大家,你们知道吗?生答:红领巾。师:没错,是红领巾(课件出示)今天老师就把同学们的红领巾画到黑板上,我们一起来研究一下,看看它有哪些特点(黑板上画三角形)。

  三、探究新知

  1、发现三角形的特征

  师:同学们知道三角形各部分的名称吗?指名说一说。 教师根据学生的回答在黑板上画的三角形标出各部分的名称(课件展示)。

  现在请同学们继续观察这个三角形,你能看到什么?师根据学生的回答总结出三角形有三条边、三个角、三个顶点。

  2、概括三角形的定义

  师:请同学们画出一个三角形。边画边数一数你刚才画的三角形有几条线段? 师:同学们再来看看老师这的'几个三角形都是几条线段?是不是由三条线段组成的图形都是三角形呢?

  师:同学们请看老师摆成的图形是不是三角形?为什么?那什么叫三角形呢? (学生边总结,教师边板书)

  师:请你们帮助老师判断下面的图形是不是三角形?(课件出示练习题)

  3、学习三角形的命名

  师:通常我们用字母A、B、C表示三角形的三个顶点,上面这个三角形就可以表示为三角形ABC。 (出示课件)

  师:同学们看这个图形由几个三角形组成,用字母分别怎么表示? 指名说一说。

  4、认识三角形的底和高

  师;以前我们学过怎么画平形四边形的高还记得吗? 请一生上台给平行四边形作高。

  师:三角形也是有高的,我们来学习一下。(课件出示三角形的高的定义和画法)

  5、学画三角形的高。

  师:现在同学们已经认识了三角形的高,你会画三角形的高吗?

  (1)要求学生在作业单上画出三角形制定底边上的高。指名学生展示,并讲解画高的方法,教师适当给予点评。

  (2)分析强调直角三角形搞得画法。

  (3)全班集体评价,总结三角形高的画法及注意事项。

  思考:一个三角形可以画出几条高?(3条)

  四、总结评价,回顾全课

  通过这节课的学习,你对三角形有了哪些深层次的认识?还有什么有关三角形的问题?

  五、作业

  1、完成课本第65页练习十五,第1题。

  2、自选作业单上一个图形,画出它的三条高。(有能力的同学请把三个都画出来。)

三角形教学设计6

  教学目标:

  1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;

  2、能证明出“三角形内角和等于180”,能发现“直角三角形的两个锐角互余”;

  3、按角将三角形分成三类.

  教学重难点:

  三角形内角和定理推理和应用.

  教学方法:

  演示、实验法,尝试练习法.

  教学过程:

  一、复习:

  (1)当0<α<90时,α是______角;(2)当α=______时,α是直角;

  (3)当90<α<180时,α是______角;(4)当α=______时,α是平角.

  二、探索活动:

  根据自己手中的一副特殊的三角板,知道三角形的三个内角和等于180,那么是否对其他的三角形也有这样的一个结论呢?(提出问题,激发学生的兴趣)

  让学生用自己剪好的一个三角形,把三个角撕下来,拼在一块.你发现了什么?小组交流.

  结论:三角形三个内角和等于180(几何表示)

  举例(略)

  练习1:

  1、判断:

  (1)一个三角形的三个内角可以都小于60.( )

  (2)一个三角形最多只能有一个内角是钝角或直角.( )

  2、在△ABC中,

  (1)∠C=70,∠A=50,则∠B=_______度;

  (2)∠B=100,∠A=∠C,则∠C=_______度;

  (3)2∠A=∠B+∠C,则∠A=_______度.

  3、在△ABC中,∠A=3x∠=2x∠=x,求三个内角的度数.

  解:∵∠A+∠B+∠C=180,(______________________)

  ∴3x+2x+x=_______

  ∴6x=_______

  ∴x=

  从而,∠A=_______,∠B=_______,∠C=_______.

  三、猜一猜:.

  一个三角形中三个内角可以是什么角?(提醒:一个三角形中能否有两个直角?钝角呢?)小组讨论.

  按三角形内角的大小把三角形分为三类.

  锐角三角形(acute trangle):三个内角都是锐角;

  直角三角形(right triangle):有一个内角是直角.

  钝角三角形(obtuse triangle):有一个内角是钝角.

  举例(略)

  练习2:

  1、观察三角形,并把它们的标号填入相应的括号内:

  锐角三角形( );直角三角形( );

  钝角三角形( ).

  2、一个三角形两个内角的.度数分别如下,这个三角形是什么三角形?

  (1)30和60( );(2)40和70( );

  (3)50和30( );(4)45和45( ).

  四、猜想结论:

  简单介绍直角三角形,和表示方法,Rt△.

  思考:直角三角形中的两个锐角有什么关系?

  结论:直角三角形的两个锐角互余

  举例(略)

  练习3:

  1、图中的直角三角形用符号写成_________,直角边是______和______,斜边是_______.

  2、如图,在Rt△BCD,∠C和∠B的关系是______,其中∠C=55,则∠B=________度.

  3、如图,在Rt△ABC中,∠A=2∠B,则∠A=_______度,∠B=_______度;

  小结:

  1、三角形的三个内角的和等于180;

  2、三角形按角分为三类:(1)锐角三角形;(2)直角三角形;(3)钝角三角形.

  直角三角形的两个锐角互余.

  作业:课本P123习题:3,4.

  教学后记:

  能用“三角形三个内角和等于180”计算一些简单角度,能对三角形按内角的大小进行分类并判断三角形是什么三角形,也知道直角三角形的两锐角互余,但不能灵活运用

三角形教学设计7

  教学目标

  1.知道什么是全等形、全等三角形及全等三角形的对应元素;

  2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;

  3.能熟练找出两个全等三角形的对应角、对应边.

  教学重点

  全等三角形的性质.

  教学难点

  找全等三角形的对应边、对应角.

  教学过程

  一.提出问题,创设情境

  1、问题:你能发现这两个三角形有什么美妙的关系吗?

  这两个三角形是完全重合的

  2.学生自己动手(同桌两名同学配合)

  取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.

  3.获取概念

  让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.

  形状与大小都完全相同的两个图形就是全等形.

  要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.

  概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.

  二.导入新课

  将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.

  议一议:各图中的两个三角形全等吗?

  不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.

  (注意强调书写时对应顶点字母写在对应的位置上)

  启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.

  观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  得到全等三角形的性质:全等三角形的对应边相等.全等三角形的`对应角相等.

  [例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.

  问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

  将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.

  ∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.

  总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.

  [例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.

  分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.

  根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:

  (1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.

  (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

  解:对应角为∠BAE和∠CAD.

  对应边为AB与AC、AE与AD、BE与CD.

  [例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)

  借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.

  做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.

  三.课堂练习

  课本练习1.

  四.课时小结

  通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的

  找对应元素的常用方法有两种:

  (一)从运动角度看

  1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.

  2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

  3.平移法:沿某一方向推移使两三角形重合来找对应元素.

  (二)根据位置元素来推理

  1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.

  2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

  五.作业

  课本习题1

  课后作业:《新课堂》

三角形教学设计8

  活动目标:

  认识正方形与三角形。

  活动准备:

  1、儿歌《快乐小鱼》;

  2、用三角形、圆形、正方形拼成的小鱼图形;

  3、待涂色图形;

  4、蜡笔;手帕;音乐磁带。

  5、场地上划三角形、正方形、圆形区域。

  活动过程:

  一、教师拼小鱼图形,引起幼儿兴趣。

  老师变出了什么?它们是用什么形状拼出来的?

  二、出示正方形手帕,引导幼儿将其变成三角形。

  幼儿人手一块手帕,操作一下。

  三、引导幼儿重点观察三角形,说说它是什么样的。

  四、游戏《快乐小鱼》。

  1、幼儿念儿歌,做动作。

  2、老师念:“游到三角形(正方形、圆形)的池塘里”,幼儿游向相应的`区域,并做小鱼的动作。

  3、一名幼儿当小老师,来发出指令,其他幼儿和老师一起游戏。

  五、欣赏挂图,你觉得好看吗?

  引导幼儿说出没有涂色的是什么形状。老师与一名幼儿来给它打扮一下。

  幼儿分组操作,给小图中的圆形、三角形、正方形涂上自己喜欢的颜色。(配乐)。

  活动延伸:

  幼儿将自己的作品给老师或其他幼儿看,并说说自己给哪些图形涂了什么颜色。

  附:儿歌《快乐小鱼》

  小鱼小鱼游呀游,游到小小池塘里。

  捉小虫,吐泡泡,真呀真快乐。

三角形教学设计9

  教学目标:

  1、通过动手操作和观察比较,使学生认识三角形,直到三角形的特性及三角形高和底的含义,会在三角形内画高。

  2、通过实验使学生知道三角形的稳定性及其在生活中的应用。

  3、体会数学与生活的联系,培养学生学习数学的兴趣。

  重点:

  理解三角形的定义,掌握三角形的特性。

  难点:

  不同三角形的高的画法。

  教具准备:

  PPT、三角板

  学具准备:

  小棒、白纸、铁丝、三角形、稳定性学具

  教学过程:

  一、引入

  1、教师出示三角形,提问:这是什么图形?学生回答后板书课题

  2、在哪看到过这种图形?(生举例)

  二、教学三角形的定义

  1、师:想不想自己动手做一个三角形。拿出老师为你们准备的学具做一个三角形。(学生动手操作)

  展示学生的作品:

  生1:用小棒摆的一个三角形

  师:你们对他摆的三角形有什么想说的吗?

  生:他摆的三角形小棒与小棒处没有粘牢。

  师:你愿意上来让这个三角形变得更完美些吗?

  生2:用白纸折了后剪出来的一个三角形。

  生3:用铁丝折的一个三角形

  师刚展示,就有学生在下面提意见:那不是三角形?

  师:你为什么认为这个不是三角形?

  生:它没有封口。

  师:其他同学的意见呢?

  师动手捏住铁丝的两头问:这样是一个三角形了吗?

  2、师:现在我们说也说了,做也做了,那谁能说说什么样的图形式三角形呢?同桌交流

  3、学生回答,教师不断完善。得出三角形的.定义:由三条线断围成的图形叫三角形。

  4、提问:什么叫围成?学生齐读三角形的定义

  5、师:接下来让我们当一回小法官,判断一下上面的图形式不是三角形。(PPT出示)

  5、自己动手画一个三角形。教师也在黑板上画一个三角形。

  (反思:关于三角形的知识学生在三年级的时候就已经接触过,关于三角形的定义作业本中也曾以判断的形式出现过,因此备这节课的时候,一直在犹豫,是直接以提问形式出现:“关于三角形的知识,你都知道哪些?”还是先建立表象,再得出定义。最终还是采用了第二种方法。课堂中学生表现出来的问题,也都掉进了自己预设的陷阱中:如用小棒摆的三角形连接点超出了,用铁丝围的三角形连接点没围住,教师抓住了学生的这些生成进行及时的反馈,一步一步让学生理解什么是“围成”,突破了教学中的第一难点。)

  三、教学三角形

  个部分的名称、(承接上面的环节)刚才有人提到了三角形的边,谁来指指这三角形的边在哪儿?(学生上来指)

  师手指三角形的顶点问:“这叫三角形的什么”?手指角问:“这又叫三角形的什么?”

  教师边说边板书:咦,原来三角形有三个顶点、三条边、三个角。

  2、在刚才自己画的三角形中标出各部分名称,然后和同桌说一说。

  3、小游戏:师:每一个顶点都有它对应的边,现在我们来做一个小游戏,老师指定点,你们来指出它对应的边。

  4、命名:我们每个人都有自己的名字,三角形也有,数学上通常用三个连续的大写字母a、b来表示三角形的三个顶点,这个三角形就叫做三角形abc,这个顶点就叫做顶点a、定点b、定点c;这条边就叫做线段ab、线段ac、线段bc

  师:给你的三角形也起个名字吧!(学生起名)

  师:让我们认识一下你画的三角形(生手举三角形,并说这是三角形__)

  (反思:上学期教学画平行四边形和梯形的高时,发现学生顶点和对应的边很会搞错,因此这儿设计了了一个小游戏,本意就是为学生在下面一个环节画高做准备,但就像云外天所说,如果把这个环节与后面的画高结合起来进行教学,课堂就更精彩。)

  三、教学三角形的稳定性

  1、师:早我们的生活中三角形运用的很广泛,老师也采集了一些,一起来看看:(出示PPT)请学生指一指三角形在哪儿?

  2、师:为什么设计师都到用三角形而不用别的图形呢?(引出三角形的稳定性)

  3、师:真的是这样吗?想不想动手来验证一下(学生拿出学具进行操作)

  4、三角形的稳定性给我们的生活带来了很大的用处,你还能举出生活中应用三角形稳定性的例子吗?

  (反思:让学生通过动手操作理解三角形的稳定性,本是个很好的教学设计。但是学生在进行学具操作时,教师过于心急,对学生的操作有太多的指导,导致这个环节失去了原有的功效)

  四、画高

  1、老师这儿有一个三角形,从一个顶点出发向对边画了好几条线段(PPT出示)哪一条最短?为什么?引出高。

  2、那什么叫高呢?教师边在PPT上演示,边介绍:从一个顶点出发,到它的对边画一条垂直线段,这条垂直线段就是三角形的高,这条边叫三角形的底。

  3、看书,书中是怎样介绍三角形的高和底的。

  4、锐角三角形:教师演示画高,学生在自己画的三角形上画高。

  师:刚才我们是从一个顶点出发向它的对边画了一条高,如果从另外的顶点出发,你会画高吗?想想三角形的高有几条?为什么?(学生画高,投影仪上展示学生的作品)

  5、直角三角形:出示学生自己画的直角三角形:刚才有同学遇到了困难。像这样的三角形怎样画高?(学生回答并在练习纸上画出以最长的那条边为底边的三角形的高)

  6、钝角三角形:教师出示:像这样的三角形也有三条高,今天我们只画斜边上的高。学生动手画高,展示作品。

  五、应用

  1、师:今天我们又重新认识了三角形,你能说说你又了解了三角形的哪些知识?

  2、出示:小红家的椅子用了很多年了,已经摇摇晃晃,你能帮他修好吗?

  (反思:这个环节教师稍微进行了一下拓展,因为例题中只出现画锐角三角形的高,而且关于角的分类是安排在例4。但从学生的掌握程度来看,学生还是掌握的较好。画锐角三角形的高的过程中教师也发现了一个问题:很多学生画的锐角三角形的三条高没有相交于一点,因时间关系,教师只是点了一下,在画高的细节上教师还应强调。)

三角形教学设计10

  教学目标:

  1、使学生认识什么样的图形叫三角形,知道三角形的特征和按角分类的方法,掌握三角形的特性。

  2、能够识别锐角三角形、直角三角形和钝角三角形,关知道它们三者之间的关系。

  3、渗透观察比较、抽象概括和迁移推理等数学思维方法。培养学生发现欣赏的意识,感受生活中数学,激发学习兴趣。

  教学过程:

  一、认识三角形

  1、摆三角形

  (1)(课件演示)老师给大家准备了一些图片,仔细观察:看看这些事物中都有我们学过的哪些图形?(欣赏两遍)

  (三角形、圆形、梯形……)

  这节课我们来重点研究三角形

  板书:三角形的认识

  (2)(准备小棒)现在想想三角形是什么样子的?听要求:请用手中的小棒快速地摆一个三角形。(生动手摆三角形,同时老师在黑板上画三角形)

  2、三角形的特性

  (1)师拿出准备好的插接长方形,问:这是什么图形?

  师拉动长方形,问:你发现了什么?

  (长方形变化了,说明它不稳定)

  (2)拉一拉刚才的三角形,你发现了什么?

  (没有变化,说明三角形具有稳定性)

  板书:稳定性

  三角形的稳定性是三角形的特性,在实际生活中有着非常广泛的应用,谁能说说日常生活中都有哪些地方运用了三角形的稳定性?

  二、三角形的特征

  1、什么是三角形

  刚才我们动手摆了三角形,还知道了三角形具有稳定性,你认识三角形了吗?

  出示:

  手势表示哪个是三角形?

  根据刚才的学习谁能用一句话简单地说说什么是三角形?

  (重点引导学生理解“围成”)

  板书:由三条线段围成的图形叫三角形

  2、三角形的各部分名称

  猜测:围成三角形的'每条线段叫什么?(边)三角形一共有几条边?(3条边)

  每两条边线段的交点叫什么?(顶点)三角形一共有几个顶点?(3个顶点)

  仔细观察三角形除了有三条边,三个顶点之外,还有什么?(3个角)

  谁能说说三角形有什么特征?(三角形有3条边,3个顶点,3个角)

  生回答师板书。

  三、三角形的分类

  1、分类

  2、刚才大家表现非常棒,积极动脑思考,回答问题也非常积极,那现在看看大家的动手能力和大家的合作能力怎么样?

  出示六种三角形

  看要求:(课件演示)给这些三角形分类:

  要求:

  (1)给每类三角形取个名字。

  (2)小组说说为什么这样取名?

  生运用学具小组合作,老师巡回指导。

  生汇报,师总结板书:

  锐角三角形1个?3个?

  直角三角形1个

  钝角三角形1个

  3、小游戏:

  猜角游戏师只露出一个角,生猜这是什么三角形?

  说说什么是锐角三角形、直角三角形、钝角三角形。

  四、小结:

  通过这一节课的学习你学到了什么知识?

  考考你:

  选择:

  (1)由三条()围成的图形叫三角形。

  A直线B射线C线段

  (2)()的三角形叫锐角三角形。

  A有一个角是锐角B有两个角是锐角C有三个角是锐角

  判断:

  (1)有三条线段的图形一定是三角形。

  (2)任何三角形里都有两个锐角。

  (3)直角三角形中只有一个角是直角。

  (4)有位同学看到三角形中有一个锐角,就说这个三角形是锐角三角形。

三角形教学设计11

  一、教学目标

  1.知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2.过程与方法目标: 经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

  3.情感态度价值观目标: 在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

  二、教学重难点

  重点:掌握三角形内角和定理。

  难点:理解三角形内角和定理推理的过程。

  三、教学过程

  尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是三角形内角和,下面我将正式开始我的试讲。

  上课,同学们好,请坐。

  【导入】

  同学们,上课之前呢我们先来看一下大屏幕,老师给大家准备了几张照片我们来看一下,在图形的王国中,有一天,三角形家族里为“三角形内角和的.大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。

  那同学们,大家同不同意它的说法呀,老师看到同学们都很疑惑的样子,没关系,今天这位节课我们就一起来研究一下这个问题,学习一下——三角形的内角和。

  【新授】

  活动一:

  那同学们,接下来啊我们拿出尺字,画出几个三角形,然后测量并计算一下,三角形3个内角的和各是多少度呢?给大家三分钟时间同桌之间相互交流一下这个问题。

  老师看到同学们都安静了下来,第三排这位同学,你来说一说你们两个人的结论。哦,他说呀他们发现他们两人画出的直角三角形内角和都是180度,你们的思路非常清晰,请坐!后边同学有不同意见,你来说,他说呀他们两人画出的锐角三角形也是180度。也是正确的,请坐!

  活动二:

  那同学们,是不是所有的三角形的内角和都是180°呢?如何进行验证呢?

  那接下来5分钟我们前后排4个人一小组进行讨论,待会啊老师会找同学提问。

  老师看到同学们都很迷茫,给大家一点小提示,我们可以用剪拼的形式来验证一下。

  好时间到,哪位同学来告诉一下老师,你们的讨论结果呢。你们小组讨论的最激烈,你来告诉一下老师,他说呀他们小组是将三种不同类型的三角形的三个角剪下来,再拼一拼,发现都拼成一个了平角,你们的方法非常独特,请坐!那大家的方法和它们的方法是一样的吗?

  看来同学们的思路都非常的清晰,那同学们,由此我们就验证得出了,三角形的内角和就是180度。

  观察一下黑板上这些内容,以上就是本节课所要学习的三角形内角和。

  【巩固练习】

  通过本节课的学习,相信大家对平行四边形有了更深的了解。我们看向黑板,接下来给大家两分钟时间来做一下这道题巩固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度数。课代表来黑板上板书一下。老师看到同学们笔都放下了,我们一起来看一下黑板上同学的答案,∠3=15°,同学们的答案和他的是一样的吗,看来同学们对本节课知识的掌握都已经非常扎实了。

  【课堂小结】

  不知不觉本节课马上就接近了尾声,哪位同学来说一下本节课你都有哪些收获呢?(停顿2秒)第二排手举得最高这位同学你来说一下,哦,他说啊,通过本节课的学习他掌握了三角形当中一个新的特点,三角形的内角和是180度,总结的非常全面见,请坐!

  【作业布置】

  接下来老师来给大家布置个小任务,回家之后仔细观察一下家中的物体,看一看那些物品是三角形的,动手测量一下内角和,看一看是否满足180度,下节课一起来交流讨论一下,今天这节课就上到这里,同学们再见。

三角形教学设计12

  教学目标

  ⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

  ⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

  ⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

  教学重点:

  检验三角形的内角和是180°。

  教学难点:

  引导学生通过实验探究得出三角形的内角和是180度。

  教学环节:

  问题情境与

  教师活动:

  学生活动媒体应用设计意图

  目标达成

  导入新课

  一、复习旧知,导入新课。

  1、复习三角形分类的知识。

  师出示三角形,生快速说出它的名称。

  2、什么是三角形的内角?

  我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠C来表示。

  什么是三角形的内角和?

  三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠C的式子来表示应该如何写?∠A+∠B+∠C。

  3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

  由三角形的内角引出三角形的内角和,“∠A+∠B+∠C”的表示形式形象的体现出三内角求和的关系

  二、动手操作,探究新知

  1、出示三角板,猜一猜。

  师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

  把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  2、我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  3、学生测量

  4、汇报的测量结果

  除了我们这节课大家想到的方法,还有很多方法也能验证三角形的'内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

  5、巩固知识。

  一个三角形中能不能有两个直角?能不能有2个钝角?

  三、应用所学,解决问题。

  1、基础练习(课本做一做)

  在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  2、判断题

  (1)大三角形的内角和大于180度。()

  (2)三角形的内角和可能是180度。()

  (3)一个三角形中最多只能有一个直角。()

  (4)三角形的三个内角分别可能是30度,60度,70度。()

  3、求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。

  (3)我有一个锐角是40°。

  四、总结:

  这节课你有什么收获?

三角形教学设计13

  教学目标

  (一)使学生理解三角形的意义,掌握三角形的特征,学会按角的特征给三角形分类.

  (二)培养学生观察能力、识图能力和归纳概括能力.

  教学重点和难点

  使学生理解三角形的意义和特征,会按角的特征给三角形进行分类,既是教学的重点,也是学习的难点.

  教学过程设计

  (一)复习准备

  1.指出下面各是什么图形?(投影)

  说出长方形、正方形的边是直线、射线还是线段?

  2.指出下面各是什么角?

  说出什么叫直角、锐角、钝角?

  组成角的两条边是什么线?

  3.请大家在本子上画出直角(用三角板)、锐角、钝角各一个.

  小结:我们已经学习了线段和角,如果把角的两条边改为线段,把角的两个端点连起来会出现什么图形?(三角形)

  我们今天就来研究和认识三角形.(板书课题:三角形的认识)

  (二)学习新课

  1.理解三角形的意义.

  (1)我们已学过三角形,你能举例说出哪些物体的面是三角形吗?(红领巾、三角板、小红旗等)

  (2)结合复习题,思考讨论:

  ①三角形是几条线段围成的?

  ②什么样的图形叫三角形?

  在讨论的基础上,引导学生概括:三角形是由三条线段围成的,由三条线段围成的图形叫做三角形.

  (3)巩固概念.

  ①找一找,哪些是三角形?(投影)

  ②用三条线段组成的图形叫做三角形.这句话对不对?为什么?

  在学生回答的基础上,教师强调,看一个图形是不是三角形,要从两方面看:

  一是看只有三条线段

  二是要看是否围成的封闭图形.

  2.掌握三角形的特征.

  刚才大家找出这么多三角形,它们的形状各不相同,进一步观察一下,这些三角形有没有共同的地方?

  启发学生明确:它们都是三条线段围成的,它们都有三个角,都有三个顶点.

  再引导学生概括:围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点.

  3.教学三角形的特性.

  我们学习的三角形在日常生活中有很多地方要用到,像自行车的车架、房梁架等.为什么要用三角形的呢?我们来做一次实验.

  教师用事先准备好的木框,让同学们拉一拉.

  先拉五边形木框.(变形)

  再拉四边形木框.(变形)

  后拉三角形木框.(拉不动,三角形不变).

  提问:通过三角形木框拉不动,你明白了什么道理?可以得出什么结论?

  引导学生明确:三角形的三条边长度固定,三角形的形状和大小就固定不变了.因而三角形具有稳定性.这就是三角形的特征.

  你能举出生活中有哪些用到三角形的特性吗?(椅子腿松动了,可以固定一个三角形铁架)

  4.教学三角形的分类.

  三角形是多种多样的,我们可以根据三角形中角的不同进行分类.怎样分?

  (1)出示投影片,观察每个三角形内角的`度数.

  (2)比较这三个三角形的三个角,它们有什么相同点和不同点?

  引导学生明确:相同点是每个三角形都至少有两个锐角;不同点是还有一个角分别是锐角、钝角和直角.

  (3)分类.

  根据上边三个三角形三个角的特点的分析,可以把三角形分成三类.

  图①,三个角都是锐角,它就叫锐角三角形.(板书)

  提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)

  引导学生根据另一个角来区分.图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形.

  请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?

  教师板书:

  三个角都是锐角的三角形叫做锐角三角形;

  有一个角是直角的三角形叫做直角三角形;

  有一个角是钝角的三角形叫做钝角三角形.

  (4)三角形的关系.

  我们可以用集合图表示这种三角形之间的关系.把所有三角形看作一个整体,用一个圆圈表示.(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭.

  (边说边把集合图补充完整.)

  每种三角形就是这个整体的一部分.反过来说,这三种三角形正好组成了所有的三角形.

  (5)怎样判断三角形的类型呢?

  填表后观察.(投影)

  由上表可以看出,三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角.……

  (三)巩固反馈

  1.说说三角形的意义、特征.

  2.三角形有什么特性?

  3.三角形按角分,可以分为哪几类?

  4.判断题.

  (1)由三条线段组成的图形叫三角形.

  (2)锐角三角形中最大的角一定小于90°.

  (3)看到三角形中一个锐角,可以断定这是一个锐角三角形.

  (4)三角形中能有两个直角吗?为什么?

  (四)作业

  练习三十一第1~3题.

  课堂教学设计说明

  三角形是常见的一种图形,也是最基本的多边形,是学习研究其它几何图形的基础,在实践中有着广泛的应用.因此这部分内容很重要.

  本课教学既重视概念教学,又重视学生实践,不仅教知识,还要注意培养学生能力.

  新课第一部分,首先让学生理解三角形的概念.通过学生自己举例,观察,讨论后引导学生概括出什么样的图形叫做三角形.

  第二部分,让学生通过对各种形状三角形的观察、比较、找出它们的共同点,从而概括出三角形的特征,有三条边、三个角、三个顶点.

  第三部分,学习三角形的特性.让学生自己动手拉一拉五边形、四边形、三角形的木框,从而发现三角形的特性,即具有稳定性.

  第四部分,学习三角形的分类.学生在观察比较各种不同的三角形中的相同点和不同点的基础上,把三角形按角分类,可以分成锐角三角形、钝角三角形、直角三角形,概括出各种三角形的定义,并掌握它们之间的关系.

  通过不同形式的练习,让学生在思维中分辨,在观察中思维,使学生进一步理解概念,提高观察、概括能力.

  板书设计

  由三条线段围成的图形叫做三角形.

  三条边、三个角、三个顶点

  特性:稳定性

  按角分类

  三个角都是锐角的三角形叫做锐角三角形;

  有一个角是直角的三角形叫做直角三角形;

  有一个角是钝角的三角形叫做钝角三角形.

三角形教学设计14

  [设计思路]

  这节课主要运用动手实践、自主探索、合作交流的学习方式,通过操作、讨论、交流等活动,使学生主动地获得数学知识的技能,发展学生的思维能力,培养学生创新意识。教学中加强数学知识与生活实际的联系,让学生体会到数学的价值,激发学生的学习兴趣,培养学生应用意识和实践能力。设计练习时应具有一定针对性、层次性、实践性,以此巩固三角形特征的认识。

  [教学目标]

  1、使学生联系实际和利用生活经验,通过观察、操作、测量、等学习活动认识三角形的基本特征,知道三角形各部分的名称,了解三角形的两边之和大于第三边。

  2、让学生在由实物到图形的抽象过程中,在探索图形特征以及相关结论的过程中,进一步发展空间观念,锻炼思维能力。

  [教具、学具准备]

  学生准备小棒若干根(包括10cm、6cm、5cm、4cm长的小棒各一根),三角板,铁丝。

  [教学过程]

  一、创设情境,提出问题

  1、(课件出示:如下图)师:老师每天上班都要从学校先经过加油站,再从加油站到学校,有没有更近一点的路呢?(从家直接去学校)

  2、师:为什么从家直接去学校这条路最近呢?我们可以把这几个地点和路线看成什么图形呢?

  3、谈话:三角形是我们过去认识的图形,这里面还有很多数学问题,今天同学要通过动手操作,自己来探索发现。(板书:三角形的认识)

  [设计意图:创设学生熟悉的生活情境,提出问题引发学生深入思考,引起悬念,从而激起学生探索的愿望]

  二、动手操作、探索新知

  (一)感知三角形

  1、师:生活中你在哪些地方见到过三角形?课件演示生活中的一些三角形。

  2、师:同学们在生活中找出了许多三角形,你能想办法自己做个三角形吗?

  学生操作,教师巡视指导

  3、展示学生做出的各种三角形,并说说做的过程和方法(学生可能是用小棒摆,铁丝围,用纸折,用三角板画……)

  指名让一名学生用小棒摆一个三角形,师故意拨动小棒,使学生明白摆小棒时应首尾相连。

  4、师:同学们用自己的方法做出了不同的三角形,你们能自己画一个三角形吗?在课本的点子图上自己画一个三角形。

  5、师在黑板上画出三角形。

  6、师:我们已经做了三角形,又画了三角形,你们知道三角形各部分的名称吗?自学课本下面的图。

  学生找出黑板上三角形的三条边、三个角、三个顶点。(师相机板书)

  7、在自己画出的三角形上,标出各部分的名称。

  8、小结:三角形是有三条线段围成的图形,它有三条边、三个角、三个顶点。

  [设计意图:通过让学生自己动手做三角形、画三角形,并在学生摆小棒的过程中故意“捣乱”,让学生体验到三角形是由三条线段围成的图形,也为后面学生的活动打好基础;通过自学认识三角形有三条边、三个角、三个顶点,逐步形成三角形的概念。]

  (二)感受三角形三条边的关系

  1、谈话:刚才我们用小棒摆了三角形,如果任意给你们三根小棒能把他们围成三角形吗?(有的说“能”,有的说“不能”。)让我们动手实验一下吧!

  小组活动要求:

  a、从四根中任意选三根(小棒的长度分别为:10cm、6cm、5cm、4cm)

  b、记录所选三根小棒的长度,看一看能否用选定的三根小棒围成一个三角形。

  c、小组讨论有什么发现?

  学生操作,教师巡视指导

  2、展示和报告实验结果,说说选的哪三根小棒能围成三角形,哪三根小棒不能围成三角形。

  3、说说能不能围成三角形跟小棒的什么有关?(长度)课件演示不能围成三角形的.两种情况。

  4、师:通过刚才的小组活动,老师的演示,你有什么发现?

  引导学生说出:当两根小棒的长度之和等于或小于第三根时,就不能围成一个三角形。

  5、观察能围成的三角形的三条边,看看有什么发现?

  师生共同总结出:三角形两条边长度的和大于第三条边。

  [设计意图:让学生动手操作、小组合作,让学生自己在操作过程中感受三角形三条边之间的关系;在交流中升华。培养学生动手操作能力,真正体现了学生学习方式的改善,体现了以学生发展为本的新理念。]

  三、变式练习、加深理解

  1、回到课开始的关于“老师去学校”的生活情境,现在可以说说什么从家直接去学校这条路近呢?

  2、判断下面的线段能不能围成三角形?(“想想做做”第二题)

  2厘米、4厘米、6厘米

  5厘米、2厘米、5厘米

  6厘米、2厘米、5厘米

  总结窍门:只要看较短的两边之和大于第三边就能判断能否围成三角形。

  3、把一根14厘米长的吸管剪成三段,用线串成一个三角形,能做多少个?如果每小段剪成整厘米长,能剪几个?

  [设计意图:三个练习设计体现了一定的层次性,第一个练习前后呼应,让学生认识到数学知识源于生活,又用于生活;第二个练习旨在让学生学以致用,并总结出窍门;第三个练习有一定难度,拓展学生的思维,使不同的学生得到不同的发展,体现了“下要保底,上不封顶”的教学思想。

  四、总结延伸

  1、师:这节课你对三角形有了什么新的认识?你有那些收获?

  2、(课件演示)摇晃的椅子加了一根木棒就稳了,艾非尔铁塔高一千多米,这么多年依然雄伟壮观……这到底什么原因呢?其实这就跟三角形一个重要的特征有关,有兴趣的同学课后可以去查查资料研究研究。

三角形教学设计15

  一、教学内容

  义务教育课程标准实验教科书北师大版四年级下册第二单元“三角形分类”。

  二、教材分析

  “三角形分类”是小学几何知识,尤其是三角形知识学习中的一个重要内容。切实掌握三角形的分类,有利于学生更全面地理解三角形的特征,并为后续学习打下坚实的基础。在教学本课之前,学生已经学习了图形的分类知识,对分类的标准和方法并不陌生。教师要为学生提供充分的自学和活动空间,让学生通过操作、自学文本,在分类的过程中体会、归纳每类三角形的特点。

  三、学生分析

  在知识方面,学生已经了解三角形有三条边、三个角的知识,知道锐角、直角、钝角的意义,对锐角、直角、钝角能做出正确的判断。在生活经验方面,学生对立体图形、平面图形、三角形都有一定的认识,且有初步的表形概念。在学习方式方面,四年级的孩子已经具备一定的自学能力、动手操作的经验和合作学习的基础,这对他们学好《三角形分类》这一课有很大帮助。

  四、教学目标

  1.通过对三角形进行分类,认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每类三角形的特点,分辨各类三角形。

  2.在活动中,渗透分类的数学思想,培养学生的归纳概括能力。

  3.在操作、想象、思考、讨论中,培养学生的动手能力、自主学习能力和合作交流能力,逐步发展学生的空间观念。

  五、教学重点、难点

  教学重点:会按角的特征给三角形分类。

  教学难点:区别了解等边三角形、等腰三角形的特征。

  六、教学过程

  (一)激趣导疑(想、说、做三要素组合)

  1.引导学生用手势比划直角、锐角、钝角并回忆其意义。 2.出示主题图,引导学生观察三角形的特点并进行分类。 3.同桌交流:你把这些三角形分成了几类?怎么分?

  4.提供预习思考题,引导学生带着问题自学课本第

  24、25页,做好自学汇报。

  【设计意图:学生是在二年级下册认识直角、锐角、钝角的,这些知识对本课的学习具有至关重要的作用。上课伊始,引导学生复习角的知识,激活学生认知结构中的相关概念,较好地促进知识的正迁移。接着引导学生对三角形进行分类,在探索尝试中激起学生的思维冲突,然后引领学生预习,让学生在预习中自己解决疑问,在预习中自主构建知识,在预习中生发新的问题。】

  (二)探究体验(听、说、想、做四要素组合,动静转换)

  同学们在预习过程中一定有不少收获,下面请大家把自己的收获和全班同学进行分享。

  1.我们来解决第一个问题。你是怎样给这些三角形分类的?为什么这样分? 师生一起完成主题图中三角形的分类。

  根据学生回答,板书:锐角三角形、直角三角形、钝角三角形。 2.在自学过程中你还了解到哪些知识? 引导学生认识等腰三角形、等边三角形。 3.你能从学具中找出每一种三角形吗?

  通过实际操作,强化对锐角三角形、直角三角形、钝角三角形、等腰三角形、等边三角形意义的认识,使图形与意义之间产生对接。

  4.想象:各种三角形角的特点、边的特点,并用手势比划出各种图形。

  5.联系生活理解等腰三角形、等边三角形特征。在日常生活中,你见到过哪些物体的表面是等腰三角形或等边三角形的?

  6.媒体展示等腰三角形、等边三角形实例。引导学生认识等腰直角三角形。 7.你能提出一些数学问题吗?

  8.师生补充提出问题,学生通过观察、操作解决问题。

  (1)有两个角是锐角的三角形是什么三角形?有一个角是锐角的三角形呢?

  (2)等边三角形也是等腰三角形吗?以交通指示牌为特例,让学生通过量一量、折一折、议一议的活动,比较得出结论。

  【设计意图:抓住重点,引导学生观察、思考、交流,认识各种三角形的特点;抓住难点,让学生猜想、操作、比较,理解“等边三角形也是等腰三角形”。抓住关键点,让学生生疑、质疑、解疑,体会“有两个角是锐角的三角形,可能是锐角三角形、直角三角形、也可能是钝角三角形”。在学生的学习、探究过程中,既有独立思考与操作,又有相互启发、激励、补充完善等合作交流活动,实现师生之间、生生之间的'良性互动。】

  (三)应用感悟(想、说、做三要素组合) 1.找一找,填一填。(把题目补充完整再填空)

  锐角三角形

  2.判断。(对的在括号里打“√”,错的打“×” )

  (1)任意一个三角形至少有两个锐角。 (

  ) (2)等边三角形一定是锐角三角形。

  (

  ) (3)所有的等腰三角形都是锐角三角形。(

  ) (4)等腰三角形都是等边三角形。

  (

  ) 3.在点子图上画一个等腰直角三角形。

  【设计意图:练习1,教师提供一定的线索,引导学生应用知识创设练习题,突破了练习内容以教师、课本为中心的定势,充分发挥学生学习的积极性和能动性。练习2,围绕本课的重点和难点进行设计,使重难点知识在学生的思维碰撞中得到突破;练习3的操作画图旨在提高学生的动手能力和综合运用知识的能力。】

  (四)拓展延伸(想、听、说三要素组合)

  1.今天我们学习了三角形分类的知识,你得到哪些收获? 2.你还有哪些没有解决的问题?

  3.你知道举世闻名的金字塔吗?金字塔是古代埃及帝王的陵墓,它的样子像汉字的“金”字。字塔的基底是一个正方形,四个侧面是什么三角形?

  【设计意图:通过总结梳理,让学生把新知纳入到原有的认知结构中去;通过延伸拓展,让学生意识到三角形与日常生活的密切联系,从而引起学生更多的数学思考和更持久的学习探索。】

【三角形教学设计】相关文章:

三角形教学设计03-13

三角形面积的教学设计01-12

《三角形的分类》教学设计02-05

《三角形的特性》教学设计02-01

三角形的边的教学设计02-08

《三角形分类》教学设计04-28

三角形的分类教学设计04-28

三角形的认识教学设计04-23

《三角形的认识》教学设计03-06

三角形面积教学设计03-16