《植树问题》教学设计15篇[推荐]
作为一位杰出的老师,时常需要编写教学设计,借助教学设计可以提高教学效率和教学质量。我们应该怎么写教学设计呢?下面是小编整理的《植树问题》教学设计,欢迎阅读,希望大家能够喜欢。
《植树问题》教学设计1
【教学目标】
知识目标:
1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。
2、让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要种)的解题规律,并利用规律解决一些实际问题。
能力目标:
1、让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。
2、通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。
情感目标:
培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。
【教学重点】
教学重点:引导学生发现棵数与间隔数的关系。
【教学难点】
理解间隔与棵树之间的规律并运用规律解决问题。
【教学过程】:
一、激趣导入,谜语导入激发学生的兴趣。
同学们!你们喜欢猜谜游戏吗?老师说一个谜语让同学们猜一猜,看谁能最先猜出来。
一颗小树五个叉
不长叶子不开花
能写会算还会画
天天干活不说话
谜底:(手)
出示课件,让学生举手回答谜底,并作表扬或鼓励。
1、师:每位同学都有一双灵巧的.手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手。(五指伸直、张开)师:张开的五指中有了一些空隙。数学中我们把这个“空隙”叫“间隔”。同学们看一看,3根手指中有几个间隔?那么4根手指呢?5根呢?
在我们的生活中,像这样的例子很多很多,比如路灯、公路边上的树和摆放的花盆,它们之间都有间隔。生活中的“间隔”到处可见,你能举几个例子吗?它们都有一个共同的特征,都有间隔,那么在数学上我们把研究与间隔有关的问题叫做植树问题,今天我们就一起来研究它。
二、构建模型
1、了解植树问题中棵数与间隔数之间的关系
师:在植树问题中,有几种情况:一种是两端都栽,一种是只栽一端,还有一种是两端都不栽。今天这节课我们只学习“两端都栽”的情况(课件出示三种情况)。板书:两端都栽。那么两端都栽时,棵数与间隔数之间有什么关系呢?(出示课件,板书棵数、间隔数)当只有3棵树时,它们之间有几个间隔呢?4棵树时有几个间隔呢?5棵树呢?现在同学们想象一下,如果有10棵树呢?50棵树呢?100棵树呢?那么你们发现了棵数与间隔数之间有什么关系呢?(棵数比间隔数多1,间隔数比棵数少1)那谁会用一个等式来表示一下呢?(棵数=间隔数+1,间隔数=棵数-1)(出示板书)
3、利用模型解决问题
1、出示招聘启示:我们学校将对校园进行绿化,特聘请校园设计师设计一份植树方案,择优录取。同学们想成为这名设计师吗?出示设计要求:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,每隔5米栽一棵(两端都栽),一共要栽几棵树?
(1)说说从题中你知道了哪些数学信息?(让学生举手回答)
(2)判断:下面哪种情况是一边种树呢?下面哪幅图是两端都栽的情况呢?(课件出示)
(3)分析题意。
“全长20米”是指小路的总长(板书:总长);“一边”是小路的一侧,指左边或右边;“每隔5米栽一棵”是每两棵树之间的距离,简称“间距”(板书:间距)。“两端要栽”指起点与终点处都要栽。
(4)算一算一共需要多少棵树苗?(学生独立完成)
(5)学生汇报交流。
(6)反馈答案:
方法1:20÷5=4(棵)
方法2:20÷5=4(段)4+1=5(棵)
到底哪一个是对的呢?大家都认为这种方法是正确的,那么算式中的“20”表示什么呢?“5”表示什么?“20÷5=4(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“4+1=5(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。(课件演示分析过程)
谁能够完整地说一说这个算式的意思?
2、试一试。师:如果老师把题目改一改,看看谁还会?课件出示例题1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)和刚才这题比较,你想说什么?
(2)学生独立列式并汇报。
3、巩固新知师:恭喜大家,顺利完成了任务!你们还想接受新一轮的挑战吗?
(1)出示第一关:说一说。让学生自己读题,抢答。
(2)同学们真棒,现在老师想请同学们在小组内把我们今天学的知识整理一下,看哪一个小组最先完成。(老师课件出示题目,学生完成手里的学习单)学生完成后汇报交流(投影学生完成的情况,并请学生说说自己是怎样想的)
(3)拓展练习。同学们真棒,这两道关卡都没有难住同学们,现在还有最后一道关卡,如果你能闯过最后一关,那今天这节课就要给同学们打100分了。课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(1)学生独立阅题,说说这个题目中又有哪些数学信息呢?
(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)
(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?
(4)学生独立解答并汇报:
(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)
(6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?
(7)有谁听懂了这个算式的意思,说给大家听一听?
四、回顾小结
这么难的题目让你们解答出来了,看来今天收获一定不少?谁来说说你今天都有哪些收获?
板书设计
植树问题——两端都种
棵数=间隔数+1
间隔数=棵数-1=总长÷间距
总长=间隔数×间距
间距=总长÷间隔数
《植树问题》教学设计2
教学内容:五年级(上册)第106页例1及练习二十四的1—5题
教学目标:
1.通过探究发现一条线段上两端要种植树问题的规律。
2.向学生渗透化归的思想方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重点:
使学生掌握“两端都要种的植树问题”的解题方法。
教学难点:
用发现的规律解决生活的实际问题作为难点。
教学过程:
一、引入课题
3月12日是什么节日呢?植树有什么好处呢?从而引出课题——植树问题。(板书课题:植树问题)
二、引导探究,发现“两端都要栽”的规律
让学生在一条长度为12厘米的线段上等距离的植树,通过植树的情况引出间隔和间隔数以及棵数与间隔数之间的关系。
三、利用规律解决植树中的问题
例1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?每隔4米呢?每隔10米呢?把小路延长到1000米呢?
100÷5=20(段).........间隔数
20+1=21(棵)...........棵数
答:一共需要栽21棵树苗。
小结:刚才,我们应用发现的规律,解决了实际问题。已经知道,“两端要种”棵数=间隔数+1.其实,应用植树问题的`规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决.
四、回归生活,实际应用
1、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?
2、在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?
3、同学们做操比赛,第一行从左起第一人到最后一人的距离是14米,每两人之间相距2米,这一行有多少人?
五、全课总结
1、在生活中,你还见过那些植树问题呢?
2、同学们今天的表现真不错,运用发现的规律解决了不少问题,你们有什么收获呢?
六、布置作业:课本109页第5题。
七、板书设计:
植树问题
两端要载棵数=间隔数+1
100÷5=20(段).........间隔数
20+1=21(棵)............棵数
答:一共需要栽21棵树苗。
《植树问题》教学设计3
第二课时教学内容:
教科书第120页的内容
知识目标:
通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;
能力目标:
让学生自己动手,自己实验,得出规律,解决生活中的实际问题。
情感目标:
通过小组合作、交流,培养学生的协作精神。
教(学)具准备:
长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。
教学过程:
一、复习铺垫
同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?
指名回答,引导学生说出棵数与段数的关系:
两端都种只种一端两端都不种
棵数=段数+1棵数=段数棵数=段数-1
请你把这个规律跟同桌说一遍;教师在黑板上贴示。
二、引入新课:
前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花
这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律
1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。
1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?
2)、学生以小组为单位操作;
3)、交流:你们小组种了几棵,把圆分成了几段?
4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)
2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。
1)、出示长方形空地题目
我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?
2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);
教师巡视指导;
3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?
得出:种植路线是长方形的,种植棵数与种植段数是相等的。
4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。
5)、展示不同的解决问题的方法,集体讨论判断正误
3、研究在其他封闭图形上种树:
A、你还想在什么封闭路线上种树?(指名回答)
B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?
C、小组交流。
4、得出规律:在封闭路线上植树:棵数=段数(板书)
5、联系:它和非封闭路线上的哪种情况相同?
(告诉学生事物就是这样相互联系的!
6、质疑问难:大家还有什么疑问吗?
如果在不规则的封闭路线上植树,棵数和段数是否相同?
三、尝试练习:
练习第121页的做一做上的习题
学生尝试练习,交流,指名板书解题方法。
四、课堂小结。
这节课你最大的收获是什么?
第三课时课题:围棋中的数学问题
教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。
教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3.让学生感受数学在日常生活中的广泛应用。
教学重点:从封闭曲线(方阵)中探讨植树问题。
教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。
课前准备:课桌围成回字形。
教学过程:
一、情境导入(课件出示)
猜谜:十九乘十九,
黑白两对手,
有眼看不见,
无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的.学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?
(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)
(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。
(4)汇报交流(着重请学生说出方法。)
可能会出现以下方法:
32+2=824=8
33-1=834-4=8直接点数。
教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)
2.教学每边摆放4粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]
(4)汇报交流(着重请学生说出方法)
教师随学生回答,用课件出示摆放方法。
(5)你们最喜欢哪种方法?为什么?
3.教学每边摆放5粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)
(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)
每边放的个数最外层总数
3
4
5
6
18
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律::教师随着学生的回答板书:
间隔数边数=最外层的总数
(3)学生根据规律,独立完成例3。
三、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
如果最外层每边能放300个,最外层一共可以摆放多少个棋子?
拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)
2.做第121页第三题
《植树问题》教学设计4
教材内容:人教版五年级上册数学广角植树问题P106页例1
教学目标:
1.通过猜测、验证等数学探究活动,使学生发现一条线段上两端都栽的植树问题的规律,构建数学模型,解决实际生活中的问题。
2.培养学生通过“化繁为简”从简单问题中探索规律找出解决问题方法的能力,初步培养学生的模型思想和化归思想。
3.通过合作交流,感受数学在生活中的的应用,体验学习成功的乐趣。
教学重点:运用数形结合、一一对应建构植树问题模型,并灵活地解决植树问题。
教学难点:“一一对应思想”的运用
教学准备:课件、10根小棒、尺子、白纸等。
【教学过程】:
一、创设情境引入
1、师:今天张老师和大家一起学习,你们欢迎吗?怎么欢迎?(学生鼓掌)
师:手不但能表示情感,还藏着数学奥秘呢!伸开你的右手,你找到了数字几?
生:5
师:5是什么?
生:5个手指
师:就是手指数,那还能发现哪个数?
生:4个空隙
师:你能指给大家看看吗?
师:像这样每两个手指之间的空隙,在数学上叫做间隔。(板书:间隔)
师: 4根手指几个间隔?三根呢?
2、找一找生活中还有哪些间隔现象?(课件出示)今天我们就一起来研究与间隔有关的一类有趣的`数学问题:植树问题。(板书课题)
二、发现规律
1.课件出示:同学们要在全长500米长的小路的一边植树,每隔5米栽一棵树。(两端都栽)一共要栽多少棵数?
(1)你获得了哪些数学信息?问题是什么?“一边”“每隔5米”、“两端都栽”什么意思?(解释“一边”、“500米”是全长和“每隔5米”是间距)
(2)那么我们需要种多少棵树呢?
(3)请同学猜一猜、算一算
预设:100÷5=20? 100÷5+1=21? 100÷5-1=19
(4)引导验证:现在有不同的猜想,到底谁的对呢?怎么办?我们能不能想一个办法验证呢?如果我们画图来验证,你觉得好不好?(太麻烦)
三、建立数学模型
1、化繁为简
师:我们可以先从简单数据开始研究。我们可以把这里的总长500米改成5米、10米、15米20米、30米,请你选一个来摆一摆、画一画,数一数、找一找规律验证下吧。
出示活动要求:
(1) 结合生活情境,独立用学具摆一摆,也可以用画一画、找一找、算一算的办法研究两端都栽的情况下,棵数与间隔数的关系,有困难的同学也可以同桌合作。
(2) 完成后,在小组内说一说你的想法。
2、全班交流,完成表格。
3、引导总结规律,完成板书:
小结:1棵树对应1个间隔,最后一棵对应的间隔没有了,棵数比间隔数多1。你再仔细观察,还有什么新发现?
板书:两端都栽:全长÷间隔长=间隔数
间隔数+1=棵树
棵数-1=间隔树
师:如果老师下面空格里的全长填上40米,那么你能不画图列式得出答案吗?100米呢?
预设:40÷5=8? 8+1=9(解释8表示间隔数)
4、回归应用
(1)师:那回到原来的题目全长改成500米,会算吗?那么我把数字再放大变成1000米,怎么做?
(2)全长10000米,每隔10米种一棵(两端都种),要种多少棵?
5、小结:其实今天的学习我们用了一个非常重要的学习方法,(板书:以小见大或化繁为简)也就是像这样遇到数据比较大或比较繁琐的问题时我们可以用一些小数据、一个简单的草图找到规律来解决。
四、联系生活,解决问题
1.出示:为美化校园环境,建安小学准备在一条长10米的小路两旁,每隔2米放一盆花,(两端都放)一共可放多少盆花?
学生审题后独立完成。
交流提问:这个问题也是植树问题吗?为什么?生活中还有类似的问题吗?
师:这些树、花盆、小旗等都可以用点来表示,植树问题就是研究这些点和间隔关系的问题。
2、路的一边从头到尾摆了6盆花,如果每两盆花之间在插一面小旗,一边能插几面小旗?两边呢?
3.同学们排成一队去参观,从头到尾一共12人,每两个人之间的距离是2米,那么这列队伍长是多少米?
五、课堂总结:
这节课学了什么?有什么收获?
六、拓展延伸:
出示30米,每隔5米两端都种,学生读题。出示房子,师:现在还是两端都种吗?
预设:只种了一端
师:现在间隔数和棵数有什么关系呢?
再出示一个房子,师:现在还是只种一端吗?
预设:两端都不种
师:那间隔数和棵数又有什么关系呢?同学们下课以后可以用我们今天学到的方法研究一下。
板书设计:
植树问题
:两端都栽: 全长÷间隔长=间隔数
间隔数+1=棵树
棵数-1=间隔树
《植树问题》教学设计5
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。
教学目标:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
教学重难点:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.培养学生从实际问题中发现规律,应用规律解决问题的能力。
3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。
教学、具准备:
课件、表格、尺子等。
教学过程:
一、教学“间隔”
1.教学“间隔”的含义。
师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)
2.引入植树问题的学习。
师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。
二、自主探究 找出规律
1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?
师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?
预设:学生可能大多数对得到20棵。
师:你们的猜测正确吗?下面我们就一起想办法来验证一下。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?
师:下面就请小组同学一起想办法验证一下你们的'猜测是否正确?
全班交流汇报。(重点让用线段图来验证的小组来说明理由。)
师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?
生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)20÷5不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?
师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。
根据学生的回答,师填写表格:
总
长(米)
每两棵树之
间的距离
(每段长)
棵
数
间隔数
(段 数)
20
全班观察表格寻找规律。
师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)
师:对得到的这个规律有没有不同意见?
三、巩固练习
师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?
(1)基础练习。
师:请看题目,谁愿意来说一说?
A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?
A2. 如果是每隔10米栽一棵呢?(口答)
B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题。这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?
课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?
C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。
课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?
(2)拓展练习。
师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?
课件出示解放碑的大钟及题目。
解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?
师:请同学们独立的在练习本上完成。
小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。
四、数学文化
介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?
五、全课总结
1.通过这节课的学习你有什么收获?
2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
《植树问题》教学设计6
教学目标:
1. 使学生通过生活中的事例,初步体会解决植树问题的方法。
2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。
3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。
教学重点:用解决植树问题的方法解决实际问题。
教学难点:栽树的'棵数与间隔数之间的关系。
教具准备:多媒体课件。
设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。
教学过程:
一、谈话导入:
师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。
二、揭示学习目标:(媒体出示)
通过这节课的学习,我们要解决哪些问题呢?
1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。
2. 能利用植树问题,灵活解决生活中类似的实际问题。
三、探究新知:
1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)
师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。
学习提示:(媒体出示)
①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)
②通过上面的分析,你能找出什么规律?和同桌或小组内说说。
③现在你能算出一共需要多少棵树苗吗?
④你还有别的想法吗,在小组内说说。
2. 学生自学探讨。(师巡视)
3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。
总结规律:栽的棵数比间隔数多1。
完成例题。
四、变化巩固:
1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。
2. 122页第2题。独立完成,同桌交流想法,可一生板演。
五、检测反馈:(独立完成)
1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?
2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?
学生完成后师批阅订正,发现问题及时解决。
六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。
《植树问题》教学设计7
教学目标:
1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。
2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。
3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题。
教学难点:
让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。
教学准备:
课件
教学过程:
一、初步感知间隔的含义
1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。
师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)
2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的`段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)
二、探究规律,解决问题。
1、找出两端都种树的规律
植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。
假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?
师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,
棵数=间隔数+1”这个规律解决了两端都植树的问题。
三、应用规律,走进生活。
走进生活:
(一)目标检测:
1.排列在同一条直线上的16棵树之间有( )个间隔。 2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。
3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?
(二)闯关题
1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?
5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?
四、总结:通过这节课的学习,你们有什么收获?
五、作业设计
实地考察
六、板书设计:植树问题
两端要栽:棵数=间隔数+1;
《植树问题》教学设计8
【教学背景】“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。
【教学内容】数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。
【教学目标】
知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。
过程与方法:主要让学生通过观察、操作、交流等活动探索新知。
情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。
【教学重、难点】引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
【教学准备】课件、
一、创设情境,揭示课题。
1、教师出示几幅有关北方沙尘暴的图片,引出植树的话题。
学生看完视频和照片说一说有什么感受?
治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)
【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】
二、引导探究,发现规律。
(出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)
(1)理解什么是每隔5米植一棵?下一棵怎么栽?
(2)介绍什么是一个间隔?学生指一指每一个间隔。
(3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)
【设计意图:把课本中的例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的提问,为下一环节的探究作好准备。】
①组织反馈交流
师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?
可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)
②学生汇报其他两种植法。
学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?
③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。
【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】
(4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)
20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。
【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】
(5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。
学生先想一想,再一起来看一看。
重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。
找一学生再来说一说,同桌两人说一说。
(6)学生独立尝试借助一一对应的数学思想解决另外两种植法。
【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的一一对应思想,把一一对应的'思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】
小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。
(7)寻找三种不同的植法棵数与间隔数之间的关系。
观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。
学生汇报,教师板书。
小结:通过刚才的学习我们知道了有这三种不同的植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。
【设计意图:新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。】
精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。
《植树问题》教学设计9
教学内容:
《义务教育教科书.数学》五年级上册p106—107。
教材分析:
“植树问题”是义务教育课程标准实验教科书四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽以及封闭图形(方阵问题)等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
学情分析:
学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
设计理念及思路:
“数学广角”系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段(间隔),由于路线不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。“植树问题”的本质是对应问题,只要明确了“间隔”与“树”这两者之间的对应关系,突出“一一对应”的思想,再以此为基础并通过适当变化就可以应对各种变化了的情况。
为了更好的落实教学目标,本节课在教材的处理上我作了如下调整,把原例题中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究植树问题中间隔数与棵数的关系。再通过展示现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。
教学目标:
1.知识技能。
借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。
2.数学思考。
(1)学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。
(2)学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。
3.问题解决。
(1)能运用所得到的规律解决实际问题。
(2)能和他人合作交流。
4.情感态度。
(1)能积极参与数学活动,对数学有好奇心和求知欲。
(2)在数学学习过程中,体验获得成功的乐趣,建立自信心。
(3)感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。
教学重、难点
重点:探究棵数与间隔数之间的关系,运用一一对应,建立植树问题模型,会应用植树问题的模型解决一些相关的实际问题。
难点:应用植树问题的模型灵活解决一些相关的实际问题。
教学准备
多媒体 笔 直尺
教学方法
讲授、演示、讨论交流、操作练习等
教学过程:
一、课前互动、引出课题
师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:
1.一根木头长10米,要把它平均锯成9段,需要锯几次?
2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)
师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)
二、探索规律、建立模型
(一)创设情境,出示问题。
园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由。
师:从这份要求上,你能获得哪些信息?
(预设:20米长的小路,一边,每隔5米栽一棵)
师:每隔5米是什么意思?
(预设:两棵树之间的距离是5米,每两棵树的距离都相等)
(二)动手操作,设计方案
同桌二人合作,摆一摆或画一画
(三)交流汇报,展示作品
师:大多数同学已经完成了,谁来汇报(汇报后展示)
(预设:我们小组设计栽了5棵树。在一条长20米的路上,开始先栽一棵,然后隔5米栽第二棵,再隔5米栽第三棵……再隔5米栽第五棵。)
师:不错,老师期待你更精彩的表现,他们设计了5棵,还有不同方案吗?
(预设:我们小组设计栽了4棵树,开头的`地方没栽,先隔5米栽第一棵……隔5米栽第4棵。)
师:为什么开头的地方不栽?
(预设:因为有的时候在一条路的一头可能会有障碍物,所以不能栽。)
师:你想得真周到,真是个既细心又爱动脑的孩子。是呀,如果在路的一端有建筑物就只能在另一端栽了!同学们的设计真精彩啊!还有不同的设计方案吗?
(预设:如果路的两端都有建筑物,可以栽3棵。)
师:你回答的太棒了,老师感到震撼!对,有的时候在路的两端都会有障碍物,这个时候路的两端就不能栽树。
(四)比较方案,探究规律。
1.间隔数与总长、间距的关系。
(1)出示植树的三种情况,学生观察相同点。
师:同学们真有创造力!短时间内根据要求设计出了三种不同的方案,你们都有资格成为一名设计师了。现在请用你们雪亮的眼睛看一看,这三种方案中相同的地方是什么?
(2)学生汇报,教师板书。(总长、间距、间隔数 20 5 4)
(3)间隔数与总长、间距的关系。
师:这三种方案的间隔数都是几?能用一个算式来表示吗?(20÷5=4(个))在这个算式中,每个数字分别表示什么?
你们能说说怎样求间隔数吗?(总长÷间距=间隔数)
问:要想知道有几个间隔,必须要知道哪两条信息?(总长、间距)
师:接下来,咱们来比一比,谁的反应快?(如果一条小路长100米,每隔10米栽一棵树,一共有多少个间隔呢?如果每隔20米栽一棵树,一共有多少个间隔呢?)
2.间隔数与植树棵数之间的关系。
(1)学生观察不同点,教师讲解三种方法的名称,同桌交流棵树和间隔数的关系。
问:刚才咱们找到了这三种方案的相同点,请同学们再用你们睿利的目光观察,不同的地方又是什么呢? (预设:植树的棵数不同、植树的方法不同)
学生汇报后,教师讲解三种方法的名称。
师:看来虽然间隔数相同,但是不同的植树方法,植树棵数是不同的。我们就来研究在不同的植树方法中,间隔数与植树棵数之间存在着怎样的关系。赶紧用你们的慧眼去发现吧,可以把你的发现和同桌分享。
(2)汇报交流。(板书)
(3)演示,明白原因。(演示:树与间隔之间的一一对应关系。)
3.小结:解决植树问题方法
师:会求植树的棵树吗?这三种关系可是个宝贝,你们想得到它吗?那请闭上眼睛,打开你的大脑主机,我要把这个宝贝输入你的大脑了,千万别开小差啊,出现死机现象那可麻烦啦,准备好了吗?我要开始传宝贝了……好,收到了宝贝的同学请用最美的姿势坐好。
三、巩固应用、内化提高
师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:
1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?
2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?
3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?
4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
四、课堂总结、拓展延伸
师:今天我们一起研究了有关“植树的问题”,不过,我有一个疑问想请大家帮我解释一下:植树问题就仅仅是指植树这一种现象吗?
生举生活中的其他例子,锯木头、上楼梯、安装路灯……
回到大脑思维体操的题目,进一步理解每一个算式表示的意思。
师:第一题锯木头属于哪种情况,第二题又属于哪一种情况呢?
师:今天这节课,你觉得你最大的收获是什么?
师:植树问题在我们的生活中无处不在,它美化着我们的生活,美化着我们的校园。其实在“植树问题”中,“植树”的路线可以是一条线段,也可以是一个封闭图形,比如正方形、长方形或圆形等。有兴趣继续探索吗?请利用本节课学到的方法回家和家长探讨。
板书设计:
(一条线段上的)植树问题
方法 间隔数 棵数 关系
总长 ÷ 间距
两端都栽 4 5 棵数=间隔数+1
只栽一端 4 4 棵数=间隔数
两端不栽 4 3 棵数=间隔数-1
《植树问题》教学设计10
教学目标:
1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
教学重点:
发现并理解两端都栽的植树问题中间隔数与棵数的规律。
教学难点:
运用“植树问题”的解题思想解决生活中的实际问题。
教学准备:
课件、直尺、学习纸。
教学过程:
(一)创设情境,引入新课
教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)
教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)
(二)充分经历,探究新知
1、大胆猜测,引发冲突。
(1)读一读,说一说。
课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:
“每隔5米栽一棵”是什么意思?
使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。
“两端要栽”是什么意思?“一边”是什么意思?
可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?
(2)猜一猜,想一想。
让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。
教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?
引导学生用画线段图的方法进行验证。
(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)
2、借助操作,探究规律。
(1)初步体验,化繁为简。
教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?
教师:为什么觉得很麻烦?
学生:因为100米里面有20个5米,太多了。
教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。
(2)教师演示,直观感知。
教师演示课件,边演示边说明。
教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)
教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?
引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。
(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)
(3)动手操作,初步体验。
让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。
教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?
教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?
引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。
(4)合理推测,感知规律。
教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。
学生填写表格,教师巡视,对个别学生进行指导和说明。
学生填写完表格后,小组交流汇报结果。
(5)归纳概括,理解规律。
教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。
学生汇报自己的发现。
引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。
教师:为什么两端都栽树,棵数比间隔数多1?
学生回答后,教师借助课件演示帮助学生进一步直观理解。
(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的'全过程,学到了解决问题的方法。)
(6)即时巩固,强化规律。
教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?
(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)
3、运用规律,验证例1。
教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?
教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?
学生尝试列式解决问题,教师巡视,有针对性地指导。
全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?
(设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)
(三)回归生活,实际应用
1、“做一做”第1题。
教师:这道题里没有植树呀,能用我们今天学的方法解决吗?
使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。
教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。
2、练习二十四1、2、3题。
让学生进一步感受到植树问题在生活中的广泛应用。
3、练习二十四第4题。
教师:这一题与例题有什么不同?
老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。
教师:你是怎样计算的?为什么用36减1?
(设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)
(四)课堂小结,畅谈收获。
反思:
通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。
一、创设愉悦氛围,让游戏走入情境。
从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。
二、注重自主探索,让体验走入方法。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。
三、倡导知识运用,让建模走入生活。
“数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。
但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。
《植树问题》教学设计11
教学内容:
人教版四年级下册第八单元数学广角的所有例题,以及相关习题。
教材分析:
现实生活中与“植树问题”类似的有很多:如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法,和策略。
本节课是把所有类型的植树问题归纳在一起,通过观察比较,得出公式,最后能够运用所学知识解决所有和植树问题相关的实际问题。
教学目标:
1、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
2、理解并掌握“植树问题”几种类型的特征,以及解题方法。
3、感受数学在日常生活中的广泛应用。
教学重、难点:
重点:掌握“植树问题”几种类型的特征。
难点:解决所有和植树问题相关的实际问题。
教学方法:
巩固练习法。
教具准备:
多媒体课件。
教学过程:
一、创设情境,导入新课。
1、直接揭示课题:今天我们来复习第八单元数学广角的植树问题。板书课题
2、出示复习目标:
(1)、理解并掌握“植树问题”几种类型的特征,以及解题方法。
(2)、感受数学在日常生活中的广泛应用。
3、常见类型:
(1)、两端都栽的植树问题;
(2)、两端都不栽的植树问题;
(3)、一端栽、一端不栽的植树问题;
(4)、封闭图形的植树问题。
二、探索解决问题的方法
1、出示例题:
例题:在全长20米的小路上植树,每隔5米栽一棵,你能想出几种植树方案?
2、学生自主尝试,教师巡视指导。
3、小组合作交流。
4、全班交流。
特点棵树间隔数棵树与间隔数的`关系
方案1两端都栽54棵树=间隔数+1
方案2两端都不栽34棵树=间隔数-1
方案3一端栽,一端不栽44棵树=间隔数
方案4封闭图形44棵树=间隔数
5、总结学习方法:
植树问题有高招,做题之前先分类。
两端都栽,棵树=间隔数+1;
两端都不栽,棵树=间隔数-1;
一端栽,一端不栽,棵树=间隔数;
封闭图形,棵树=间隔数。
三、巩固提高、发展创新。
1、在一条长400米的道路一旁安装路灯,每隔50米安装一座(两端都要安装),一共可以安装多少座路灯?
2、两座楼房之间相距56米,每隔4米栽雪松一棵,一行能栽多少棵?
3、学校要在80米的跑道一旁插彩旗,每隔5米插一面。如果一端不插,一共需要多少面彩旗?
4、一个圆形池塘,它的周长是200米,每隔10米栽一棵柳树,需要树苗多少棵?
以上四道题为基础巩固题,下面两道为拔高题。
5、一根木料锯成4段要12分钟,锯成10段要几分钟?
6、祁老师要上楼去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道祁老师去几楼的教室吗?
四、全课小结。
你在这一节课里学习了什么知识?
师:其实数学就在我们身边,只要我们善于观察,勤于动脑,你就会发现生活中有很多有趣的数学问题。
《植树问题》教学设计12
单元教学目标:
1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学时数:4课时
数学广角植树问题(一)
第一课时教学内容:
教科书第117页118页的例1、例2
教学目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。
2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。
3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点、难点:
教具:
挂图、直尺
教学过程:
一、创设情境,引入课题
1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。
师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)
师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。
2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。
3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?
今天,我们就来学习有趣的植树问题。
(一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
1)同桌相互讨论。
2)有线段图表示你的方法
3)学生汇报
4)引导总结:
两端要栽的`时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)
你能用一个式子表示两端都栽的棵数和间隔数的关系吗?
板书:棵数=间隔数+1
5)在线段图上,又有怎样的关系呢?
点数=间隔数+1
6)这个问题应是:1005=20(个)间隔数
20+1=21(棵)棵数
巩固练习
(一)书第118页的做一做独立完成,指名反馈。
(二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
1)读题,理解题。
2)分组看图讨论。
3)尝试列式计算。
4)交流:603=200间隔数
两端不栽树:20-1=19(棵)
192=38(棵)
5)质疑:
为什么减1?为什么乘2?
比较例1与例2的不同?小组讨论,再交流
例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。
巩固练习二:
教科书第119页做一做1、2题
学生独立完成,集体反馈。
三、本课小结:
通过今天的学习,你有什么收获?
《植树问题》教学设计13
设计说明
“植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。
1.通过对比,提高学生解决问题的能力。
植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。
2.通过变式练习,培养学生灵活运用所学知识的能力。
在学生进一步明确了三个类型的“植树问题”的解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。
课前准备
教师准备:PPT课件、课堂练习卡
学生准备:课堂练习卡
教学过程
⊙创设情境,导入复习
第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。
(1)在线段上栽树。
①两端都栽:棵数=间隔数+1
②两端都不栽:棵数=间隔数-1
(2)在封闭路线上栽树:棵数=间隔数。
设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。
⊙分层练习,强化提高
1.基本练习。
(1)在练习本上画一条10厘米长的线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?
(2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?
(3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?
(4)公园大门前的`公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?
(学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)
师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?
2.综合练习。
一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?
(1)读题明确题意。
(2)分组合作探究。
设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。
⊙全课总结
通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢?
⊙布置作业
1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?
2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?
3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?
4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?
《植树问题》教学设计14
教学内容:
四年级下册第117、118页例1
教学目标:
1.利用生活中的问题,通过实践活动让学生发现段数与植树棵数之间的关系,并能利用规律来解决简单的植树问题。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
3.渗透数形结合的思想,培养学生借助图形解决问题的意识。
4、 通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重难点:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.培养学生从实际问题中发现规律,应用规律解决问题的能力。
3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。
教学、具准备:课件、尺子等。
教学过程:
一、游戏问答,认识“间隔”
1.同学们,我们先做个游戏请你们伸出一只手张开手指,仔细观察。
2、 把你的'手放好,我们进行快速问答:五个手指几个空?4个手指几个空?2个手指几个空?3个手指几个空?一个手指几个空?
3、 这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔, (全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)
4、今天我们就一起来研究生活中跟间隔密切相关的数学问题。
二、创设问题情境:
1、最近我们的学校发生了很多的变化,新修建的操场旁有一条小路需要同学们发挥聪明才智来绿化、美化我们,现在请你来当设计师,你对自己有些信心吗?现在我们一起来了解一下设计的内容和要求。
2、多媒体出示题目:学校操场边有一段长20米的小路,学校打算在小路一边植树(两端都栽)、并且每两棵树之间的距离都相等。请按照要求设计一份植树方案。并说明设计理由、
3、从屏幕中你获得了哪些信息?你认为在设计时需要特别注意什么?你能解释什么是两端吗?
(总长20米两端都栽间距相等)
4、在分组探讨前,请先商量好准备每隔几米栽一棵,然后动动手、动动脑,看用什么方法能够又快又好的解决这个问题。(同桌合作)
5、学生活动,教师巡视指导。
三、探讨新知:
1、谁能展示一下你的设计才能,注意说明白你是每隔几米栽一棵?一共需要多少棵树?你是怎样获得这个结果的?
2、学生交流汇报(画线段图法、计算法)
3、 教师介绍讲解概念:总长、间距、段数、棵数(并随机板书)
4、用多媒体演示线段图的推理过程。
在设计方案、交流方法的过程中,老师发现有的同学没有画线段图,而是直接列出了算式,他们一定找到了规律,我们现在也一起来找一找这个规律是什么。
总长20米,间距10米,有几段几棵。
总长20米,间距5米, 有几段几棵。
总长20米,间距4米, 有几段几棵。
总长20米,间距2米, 有几段几棵。
5、学生交流,教师总结并板书:
棵数总比段数多1,段数总比棵树少1。
总长÷间距=段数段数+1=棵数
6、当总长是20米时,我们可以用线段图来解决,当路段变长是1000米、20xx米时,就不能这样做了,就需要用发现的规律来解决这样的问题。
7、 多媒体出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都栽)。一共需要栽多少棵树苗?
(1)了解题目内容。
(2)学生独立思考,全班交流。
8、刚才我们所提到的手指数和间隔数分别相当于植树问题中的哪个数量呢?生活中不止是植树问题包含着间隔现象,在其他方面也广泛存在,你能举出这样的例子吗?(锯木头、路灯、表面上的间隔和数字……)
9、下面我们就一起来解决生活中类似的问题:(独立思考解决,全班交流)
①同学们做早操,某行从第一人到最后一人的距离是24米,每两人之间相距2米,这一行有多少人? (独立思考解决,全班交流)
②李老师从一楼去某班教室,每走一层楼有24个台阶,共走了48个台阶。你知道李老师去几楼吗? (独立思考解决,全班交流)
③5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共应该设置几个车站?(独立思考解决,全班交流)
④在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?
听老师读题你自己再读一读,你发现这道题与我们刚才所解决的问题有什么不同?有什么特别需要注意的词语?(2千米 两旁)学生独立思考后,全班交流方法。
四、拓展例题,训练思维:
1、多媒体出示例1:同学们在全长()米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽21棵树苗、
(1)了解题意,解决问题。(21-1=20段20×5=100米)
(2)学生质疑:为什么用21-1=20 算出的是什么?为什么要减1?
(3)我们所解决的这个问题跟刚才我们解决的例1有什么不同?
(不论是要算出棵数还是总长都要先知道段数,然后根据问题列出算式)
2、思维训练:
①第一个同学到第二个同学之间的距离差不多是1米,那么,第一个同学到第五个同学的距离是多少米?
②园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
3、出示刘翔的图片,展示刘翔竞赛的过程引出问题:中间共有10个栏,栏间距离为12、2米,请你们算出从第一栏架到最后一个栏架有多少米吗?
五、课堂总结:今天我们一起探讨学习了植树问题中两端都栽的情况,谈一谈你的收获有哪些。其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等 ,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
《植树问题》教学设计15
教学目标:
1、感受“植树问题”在生活中的广泛应用,并能用此方法解决简单的实际问题。
2、学会从实际问题中探索规律,找出有效解决问题方法的潜力。
3、透过生活的事例,初步体会“植树问题”的思想方法。
教学难点:运用“植树问题”的解题思想解决实际问题。
教学重点:参与探索并发现“植树问题”的解题规律。
教学准备:练习纸、课件
教学过程:
一、谈话引入,揭示课题
师:同学们,你明白我们这天要学习什么资料吗?
生:植树问题
师:你们是怎样明白的哦?
好,这天我们就来研究植树中的问题。植树问题中蕴涵着许多搞笑的数学问题。你们喜不喜欢?
板书课题:植树问题
出示学习目标:
二、操作感悟,探究规律
1、请看大屏幕:
(1)想一想:
那里有一条线段,我们把它看作一条路,这条路长20米,如果要在这条路上种树,请同学们想一想,你们还要了解什么信息?
①每棵树之间相隔几米?(间隔)②是不是两端都种呢?……看来同学们思考问题还很全面呢!
(2)猜一猜:
如果告诉你每隔5米种一棵,种几棵比较适宜?
生1:5生2:4生3:3
(3)画一画:
师:那么,有什么办法验证你的想法?(画图)
哦,你能不能用简单的示意图把你的想法简单地画出来呢?
(教师先介绍画树的方法,学生画图,教师巡视)看谁画得又对又快。
2、展示、汇报
①选一学生的示意图展示、汇报。
两端都种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
②选另一学生的示意图展示、汇报。
只种一端:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
③选另一学生的示意图展示、汇报。
两端都不种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
3、写算式
师:我们刚才用图来表示的思维过程能不能用个算式来表示?
①只种一端:你是怎样想的呢?谁能来说一说。
20÷5=4(段)=4(棵)
棵数和段数一一对应。
②两端都种:20÷5+1=5(棵)
20÷5表示什么?加“1”是什么意思?
③两端都不种:最后一种用算式怎样表示呢?20÷5-1=3(棵)
每间隔5米是这样的,假如每间隔是2米,分别能种几棵呢,列出算式(不要画图了,要画就画在脑子里)
20÷2+1=11(棵)20÷2=10(棵)20÷2-1=9(棵)
4、小组讨论:
我们刚才在这条20米的.路上,每间隔5米和每间隔是2米分别种多少棵树都做了,仔细看看,你们有什么想说的?先独立思考,想好后再和同学交流,然后向老师汇报。(告诉你总长度、间隔长,要你求种多少棵树,是否有简单的方法?)
5、教师引导学生总结:
①只种一端:棵数=段数
②两端都种:棵数=段数+1③两端都不种:棵数=段数—1
那么段数(间隔数)怎样求呢?
所以解决植树问题,首先要确定它是怎样种的?是两端都种、只种一端还是两端都不种,再分别根据以上数量关系来解决就能够了。
6、象这样,这天用植树问题这样的思考方式来思考的,平时生活当中的问题还是否有?(摆花、锯木头、站队……)
师:老师也收集了一些图片,看看那里有植树问题吗?
(根据学生的回答教师出示课件,并说明为什么属植树问题)
三、活学活用,解决问题
师:我们刚才透过猜测、验证、推理,摸索了植树问题中的一些规律,我们能不能应用这些规律来解决生活中的实际问题呢?
(一)基本练习:我能行!
1.从头至尾栽了10棵树,那么有个间隔。
2.一根木头长8米,每2米锯一段。一共要锯次。
好,两道题都做对的对老师笑一笑。哇!我从同学们灿烂的笑脸中读出了自信,读出了自信!老师为你们加油!
(二)综合练习:我挑战!
1、林木工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
①6×36=216(米)
②6×(36-1)=210(米)
③6×(36+1)=222(米)
2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
①10÷5=2(米)2×8=16(分钟)
②5×8=40(分钟)
③(5-1)×8=32(分钟)
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
①12÷1=12(个)
②12÷1+1=13(个)
③12÷1-1=11(个)
(三)拓展练习:我智慧!
四、再次梳理,总结提高
这天我们学习了什么资料?你有什么收获?你有什么感受?
【《植树问题》教学设计】相关文章:
植树问题教学设计06-10
《植树问题》教学设计04-11
人教版《植树问题》教学设计05-23
《植树问题》教学设计15篇05-13
植树问题教学设计15篇06-16
植树问题教学设计(15篇)06-16
植树问题教学设计(汇编15篇)06-27
植树问题教学设计(集合15篇)06-27
植树问题教学设计汇编15篇06-27
植树问题教学设计集合15篇06-16