圆柱的表面积教学设计

时间:2023-11-20 14:14:32 教学资源 投诉 投稿

圆柱的表面积教学设计15篇[精品]

  作为一位兢兢业业的人民教师,就有可能用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么什么样的教学设计才是好的呢?下面是小编为大家整理的圆柱的表面积教学设计,仅供参考,欢迎大家阅读。

圆柱的表面积教学设计15篇[精品]

圆柱的表面积教学设计1

  教学目标:

  (一)知识目标

  1.理解圆柱的侧面积和表面积的含义。

  2.掌握圆柱侧面积和表面积的计算方法。

  3.会正确计算圆柱的侧面积和表面积。

  (二)能力目标

  能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点:

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点:

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备:

  1.教师、学生每人用硬纸做一个圆柱体模型。

  2.投影片。

  教学过程:

  课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?

  生:我想对老师们说,我们一定会好好表现的,不会让你们失望。

  生:我们的课堂将比赛场更精彩……

  师:我坚信你们一定不会让老师失望的。

  一、引入新课:

  师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?

  生:圆柱是由平面和曲面围成的立体图形。

  生:我还知道圆柱各部分的名称……

  生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  课件演示这一过程

  师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)

  师:你还想知道什么呢?

  生:还想知道怎么求它的`表面积......

  师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)

  二、探究新知

  师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?

  指名学生摸其表面积,并追问:怎样求它的表面积?

  生:六个面的面积和就是它的表面积

  师:怎样求圆柱的表面积呢?(学生分组讨论)

  学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)

  1、圆柱的侧面积

  师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)

  小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。

  师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。

  课件展示其变化过程。

  师生小结:(教师板书)侧面积=底面周长×高

  (评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)

  师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)

  投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。

  (1)学生独立解答

  (2)投影呈现学生的解答,并让其讲清自己的解题思路。

  师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?

  生:底面周长和高

  师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。

  2、圆柱的表面积

  师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)

  教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)

  指名学生说解题思路,

  师:这说明要计算圆柱的表面积需要抓出哪两个量?

  生:底面积和侧面积

  师生小结:圆柱的表面积=底面积×2﹢侧面积

  3、反馈练习

  师:想一想,应该先求什么?再求什么?请大家动手试一试。

  4、实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)

  三、全课小结:这节课你有什么收获?

  你有没有想提醒同学们注意的地方?

  生:要注意单位,还要注意所要求得圆柱有几个底面……

  最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)

圆柱的表面积教学设计2

  教材分析:

  《圆柱的表面积》是人教版版小学数学六年级下册第二单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。

  设计理念:

  圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。动手实践,主动探索和合作学习是小学生学习数学的重要方式。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。本节课,我试图通过让学生动手,让学生“自由结合”进行探索,在为学生提供主动发展的时间和空间中实现以下

  教学目标:

  知识技能:1。通过动手操作使学生理解圆柱体表面积的意义,掌握圆柱体表面积的计算方法。2。会正确计算圆柱的侧面积和表面积。

  数学思考:运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  问题解决;使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法;通过比较、观察培养学生的观察能力和空间想象力;通过独立思考、交流合作,类比推理而成功地获取知识,并能积极地运用所学知识解决实际问题。

  情感态度:让学生体验出自己探究发现的快乐;感受到数学与日常生活联系广泛,激发起热爱数学的情感。

  教学重点:动手操作展开圆柱的侧面积

  教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  教具准备: 圆柱表面展开图

  学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

  教学过程:

  一、创设情境,引起兴趣。

  拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?

  想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的`底面再加一个侧面)

  那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)

  二、自主探究,发现问题。

  1、探究圆柱侧面的计算方法。

  教师提问:将圆柱体的侧面展开,会是什么形状的呢?

  这个长方形与圆柱体有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  长方形的面积=圆柱的侧面积

  即 长×宽 =底面周长×高

  所以,

  圆柱的侧面积=底面周长×高

  S 侧 = C × h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

  2、研究圆柱表面积

  (1)、现在请大家试着求出这个圆柱体茶叶罐用料多少。

  学生测量,计算表面积。

  (2)、圆柱体的表面积怎样求呢?

  得出结论:圆柱的表面积=圆柱的侧面积+底面积×2

  (3)、动画:圆柱体表面展开过程

  三、实际应用

  四、回顾全课

  本节课你收获了什么,有什么遗憾。

圆柱的表面积教学设计3

  教学目标:

  (1)理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱体的侧面积和表面积。

  (2)培养学生观察操作概括的能力以及利用知识合理灵活地分析、解决实际问题地能力。

  教学重点:理解和掌握求圆柱表面积的计算方法

  教学难点:解答有关圆满柱体实物表面积的实际问题。

  教学关键:充分运用多媒体演示,引导学生观察,推导出面积公式。

  教具准备:

  学生准备自制圆柱、剪刀。

  教学过程:

  一、检查复习,引入新课。

  1.检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

  2.复习:(1)点名说说两底的关系,圆柱的高以及侧面积展开可能是什么图形。

  (2)圆柱的特征是什么?

  (3)答下面问题:

  一个圆形花池,直径是5米,周长是多少?

  长方形的面积怎样计算?

  长方形的面积=长×宽。

  3.引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

  板书:圆柱的表面积

  二、引导探究,学习新知。

  1.侧面积的意义和计算方法。

  (1)摸一摸自制的圆柱的侧面,谈谈自己感觉到了什么.

  (2)想一想用我们已有的知识,能不能求出这个曲面的面积。

  小组讨论:有什么好办法求出圆柱的侧面积吗?

  (3)剪一剪自制的圆柱交流结果。

  (4)说一说:圆柱的侧面可转化为已学过的平面图形,它的侧面积正好等于底面周长与高的乘积。

  板书:圆柱的侧面积=底面周长×高

  (5)算一算:选出下图中给出的数据,求出侧面积。(单位:厘米)

  小组汇报结果:可能出现的计算方法有

  方法一:25.12×20=502.4(平方厘米)

  方法二:3.14×8×20=502.4(平方厘米)

  方法三:3.14×(2×4)×20=502.4(平方厘米)

  小结:计算圆柱的'侧面积,要根据所给的已知条件灵活计算。

  (6)小组合作,量一量自制圆柱的有关数据,求出它的侧面积,并反馈。

  (7)完成教科书例1及34页“做一做”的第1题。

  2.表面积的意义及计算方法。

  (1)自读课本:什么是圆柱的表面积?

  板书:圆柱的表面积=侧面积+2个底面积

  (2)出示例2(课件显示例2)(单位:厘米)

  小组讨论:根据所给数据,可以求出那些面积?学生可能得出以下几种结果。

  a、侧面积:2×3.14×5×15=471(平方厘米)

  b、2个底面积:2×3.14×5×5=157(平方厘米)

  c、表面积:471+157=628(平方厘米)

  (3)小结;圆柱的侧面积等于底面周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但是在实际生活中,有许多问题要根据实际情况,合理灵活地求出圆柱地表面积。

  三、巩固练习,灵活运用。

  1、自学课本,教科书第34页例3。

  (1)自读后分小组讨论:求圆柱形水桶所需铁皮地多少,是水桶哪几个面地面积?为什么?什么叫“进一法”为什么1821.2平方厘米≈1900平方厘米呢?

  (2)学生反馈:

  a.水桶是无盖的,所以求铁皮的面积就是求侧面积和一个底面的面积。

  b.在实际生活中,使用材料要比计划得到得结果要多一些,因此要保留整平方厘米,都要向前一位进1,这种方法叫进一法,所以1821.2平方厘米≈1900平方厘米。

  2、要知道下利物体的用料面积,要求那些面的总面积?(课件显示)

  铁皮制成的糖盒 纸杯 塑料水管

  3、只列式不计算。(课件显示)

  用铁皮制成圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?

  4、实践练习。

  (1)小组合作:测量并计算自制圆柱形事物的用料面积。

  (2)要计算制做这个圆柱形物体的用料面积,求哪些面的面积?需要知道哪些数据?怎样测量这些数据?

  (3)测量:测量所需的数据。(取整厘米数)

  (4)计算:根据量得的数据,列出算式并计算结果。

  四、布置作业

  教科书练习七的第2~5题

  板书设计

圆柱的表面积教学设计4

  【教学内容】

  P13-14页例3、例4,完成“做一做”及练习二的部分习题。

  【教学目标】

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  【教学重点】

  掌握圆柱侧面积和表面积的计算方法。

  【教学难点】

  运用所学的知识解决简单的实际问题。

  【教学准备】

  多媒体课件

  【自学内容】

  学习提示:

  (1)长方体、正方体的表面积指的是什么?

  (2)圆柱的表面积指的是什么?

  (3)圆柱的底面积你会计算吗?侧面积呢?

  (4)你知道侧面的形状以及长、宽与圆柱的关系吗?

  【教学预设】

  一、自学反馈

  1、求下面各圆柱的侧面积

  (1)底面周长2.5分米,高0.6分米

  (2)底面直径8厘米,高12厘米

  2、求下面各圆柱的表面积

  (1)底面积是40平方厘米,侧面积是25平方厘米

  (2)底面半径是2分米,高是5分米

  二、关键点拨

  1、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的'面积和圆柱的侧面积有什么关系呢?

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2、侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题:

  ① 这两道题分别已知什么,求什么?

  ② 计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3、理解圆柱表面积的含义。

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4、教学例4

  (1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)

  ③表面积:1758.4+314=20xx.4≈20xx(平方厘米)

  5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  三、巩固练习

  1、做第14页“做一做”。(求表面积包括哪些部分?)

  2、练习七第6题。

  四、分享收获畅谈感想

  这节课,你有什么收获?

  五、板书:圆柱的侧面积=底面周长×高

  圆柱的表面积=圆柱的侧面积+底面积×2

  例4:①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想

  反思与体会

圆柱的表面积教学设计5

  一、设计理念

  新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”

  二、教学策略

  1.创设生活情景,激励自主探索。

  2.创建探究空间,主动发现新知。

  3.自主总结规律,验证领悟新知。

  4.解决生活问题,深化所学新知。

  三、教材分析

  《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。

  四、教学目的:

  使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。

  五、教学难点:

  理解和掌握求圆柱表面积的计算方法。

  六、教具准备:

  圆柱表面积展开模型电脑课件

  学具准备:

  易拉罐、白纸壳、剪子

  七、教学过程

  (一)创设生活情景,激励自主探索

  在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”

  (评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。)

  (二)创设探究空间,主动发现新知

  1、认识圆柱的表面积

  师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?

  生:要卷一个圆筒,要剪两个圆粘合在圆筒的.两边就行了。

  师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)

  生:我知道了,圆筒是用长方形纸卷成的!

  师:各小组试试看,这位同学说的对吗?

  (其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)

  师:还有别的可能吗?如三角形、梯形。

  生:不能。如果是的话,就不是这种圆柱形的饮料罐了。

  (评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)

  2、把实际问题转化为数学问题

  师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?

  学生观察、思考、议。

  生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。

  生B:求饮料罐铁皮用料面积就是求:

  圆面积X 2 + 长方形面积

  生C:必须知道圆的半径、长方形的长和宽才能求面积。

  生D:我看只要知道圆的半径和高就可以求出用料面积。

  师:我们让这位同学谈谈他的想法。

  生D:长方形的长与圆的周长相等,长方形的宽与高相等。

  所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。

  师随着板书:长方形的面积 = 长 × 宽

  圆柱的侧面积 = 底面周长 × 高

  (三)自主总结规律,验证领悟新知

  让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 πr h

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。)

  (四)解决生活问题,深化所学新知

  师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。

  生汇报。

  师:通过计算,你有哪些收获?

  生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。

  生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。

  (评析:教师让学生合作学习,自主发现问题,交流解决。)

  课件出示例四,读题明题意,学生试做,全班交流。

  课件出示第16页第七题,学生试做,全班交流。

  讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。

  八、板书设计

  S表面积=S侧+2S底

  =2πrh+2πr

圆柱的表面积教学设计6

  教学内容:

  小学数学第十二册教材P33~P34

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+78.5×2=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+28.26×2=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的`例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、 分组闯关练习

  1、多媒体出示题目。

  第一关(填空)

  沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

  第二关

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

  第三关(用你喜欢的方法完成下面各题)

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、 质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学反思

  1、 自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

圆柱的表面积教学设计7

  教学目标:

  1、理解圆柱侧面积和圆柱表面积的含义。

  2、掌握圆柱侧面积和表面积的计算方法。

  3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学准备:

  多媒体课件

  教学过程:

  一、创设情景

  1、复习圆柱的特征。

  2、大屏幕出示问题,学生口头回答:

  (1)一个圆形花池,直径是5米,周长是多少?面积是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽

  二、探究新知

  1、教学圆柱的侧面积。

  (1)大屏幕出示课题:圆柱的表面积。

  (2)理解“圆柱的侧面积”的含义。用手指出实物圆住的侧面积。

  (3)大屏幕出示圆柱的侧面展开图,思考:圆柱的侧面积应该怎样计算呢?引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,推出:圆柱的侧面积=底面周长×高

  2、小结。

  要计算圆柱的侧面积,必须知道什么条件?如果题目只给出直径或半径,又如何求圆住的侧面积呢?

  3、理解圆柱表面积的含义。

  观察自己制作的圆柱模型:圆柱的表面由哪几个部分组成?那么,圆柱的表面积是指什么?大屏幕:圆柱的表面积=圆柱侧面积+两个底面的面积

  4、教学例4。

  (1)大屏幕出示例4的题目。

  思考:这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么? (2)学生试着解答。

  (3)全班交流:为什么只求了一个底面面积呢? (4)小结。

  在实际应用中计算圆柱形物体的'表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  5、巩固练习:完成第14页的“做一做”。

  三、课堂小结

  圆柱的表面积指的是哪几个面?如何求圆柱的表面积?

  四、作业

  完成练习二的5——7题。

  五、思维训练

  1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的( )。

  2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求( )与( )的( )。

圆柱的表面积教学设计8

  教学过程

  (一)复习导入,探求新知

  用课件展示复习内容:

  (1)我们学过的圆的周长是怎么计算的?面积呢?

  (2)长方形的面积呢?

  (3)圆柱有哪些特征?

  (二)设下悬念,导入课题

  由学过的长方体表面积的计算方法,设下悬念“要是这些面是曲面呢?表面积又要怎么求呢?”,激发学生的求知欲,带着问题进入本节课题。

  (三)动手操作,发现规律

  引导学生用一张纸做一个简单的圆柱模型,然后引导他们发现圆柱的特征,发现规律,例如:侧面的长=底面周长、侧面的宽=圆柱的`高,还有本节课重点s圆柱=s侧面积+2×s底面积=c×h+2×πr2=2πr×h+2×πr2。

  (四)例题解剖,引导学习

  1、一顶厨师帽,高是30cm,帽顶直径20cm,做这样一顶帽子至少需要多少面料?

  解:(1)帽子的侧面积:s侧面积=2×3.14×20×30=3768(cm2)

  (2)帽顶的面积:s底面积=3.14×20×20=1256(cm2)

  (3)需要用面料:s侧面积+s底面积=3768+1256=5024(cm2)

  答:

  (五)巩固练习,知识拓展

  做一做:

  1、一个圆柱底面半径是2dm,高是5dm,求它的表面积?

  解:(1)s侧面积=2×3.14×2×5=62.8(dm2)

  (2)s底面积=3.14×2×2=12.56(dm2)

  (3)s圆柱=s侧面积+2×s底面积=62.8+2×12.56=87.92(dm2)

  2、一个圆柱表面积是6π,底面半径是2,则圆柱的高是多少?

  解:设圆柱的高为h,由s圆柱=s侧面积+2×s底面积=2πr×h+2×πr×r知,6π=2π×1×h+2×π×1×1,解得h=2

  (六)反思小结,加强记忆

  让学生自主总结“本节课学习了什么?”

  1.这堂课的主要内容是什么?

  2.求圆柱表面积的公式是什么?

  3.如何运用公式求解实际问题。

  这堂课我们学习了圆柱的表面积计算的基本思路及方法。在估算圆柱表面积时发现了圆柱的表面积公式。在今天的学习中,我们还要逐步深入、领会、掌握“转化”这一数学思想方法。

  (七)设置问题,带出课堂

  16页第6题的第1小题,第7题和第14题。

  教学目标

  1、认识圆柱,掌握它的基本特征,认识圆柱的底面,侧面和高。

  2、通过制作圆柱模型,探索并掌握圆柱的侧面积和表面积的计算,并运用到实际问题中。

  3、通过探究、观察等活动,了解平面图形与立体图形之间的联系,发展学生的空间观察。

  教学的重、难点及教学关键

  (一)教学重点:探索圆柱侧面积和表面积的计算,并能运用到实际问题中。

  (二)教学难点:理解圆柱侧面展开图与圆柱的各部分之间的联系,并推导出圆柱侧面积和表面积的计算公式。

  (三)教学关键:利用教具,学具进行实验活动,引导学生观察、思考、经历计算公式的推导过程。

圆柱的表面积教学设计9

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是xxx 、xxx和xxx。

  2、底面是xxxx形,它的面积=xxx。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个xxx形。它的长等于圆柱的xxx,宽等于圆柱的xxx。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=xxx,所以圆柱的侧面积=xxxx。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的xxx和xxx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由xxx和xxx组成。

  (2)圆柱的表面积的计算方法:

  圆柱的表面积=xxx

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的xxx。需要注意的是厨师帽没有下底面,说明它只有xx个底面。

  列式计算:

  ① 帽子的'侧面积=xxx

  ② 帽顶的面积=xxx

  ③ 这顶帽子需要用面料=xxx

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

圆柱的表面积教学设计10

  课题圆柱的表面积教时一3(3)

  学习

  目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  学习

  重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  过程与方法

  教师活动

  一、基本练习

  二、实际应用

  求压路的面积是求什么?

  三、实践活动

  学生活动

  说说计算方法。

  说自己的想法,独立解答。

  说自己的想法,独立解答。

  学生讨论后完成。

  学生实际操作。

  板书设计

  圆柱的表面积教学反思

  学生掌握了求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。但是个别学生计算的不准。

  课题圆柱的表面积教时一4(4)

  学习

  目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  学习

  重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  过程与方法

  教师活动

  实际应用

  1、

  2、

  3、

  学生活动

  指名读题,说出题意以及解题思路,然后指名做出。

  结合生活实际进一步明确题意,以便做出。

  学生互评互议。

  板书设计

  圆柱的`表面积

  圆柱的表面积 = 圆柱的侧面积+底面积×2

  教学反思

  在实际应用中,简单的问题还能轻松完成。

圆柱的表面积教学设计11

  教案背景:

  冀教20xx课标版小学数学六年级下册第四单元

  教学课题:

  圆柱的侧面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

  2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

  教学重点:圆柱侧面积的计算。

  教学难点:圆柱体侧面积计算方法的推导。

  教法运用:本节课我采用操作和演示、讲练相结合的`教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

  学法指导:采取引导—放手—引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具准备:圆柱体教具、多媒体课件。

  学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。 教学过程:

  一、复习导入,引入新知

  1、复习圆柱体的特征

  师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)

  二、课堂小结

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

  三、课后作业

  应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧! 附:板书设计

  圆柱的侧面积 =底面周长 ×高→S侧=ch

  长方形面积=长×宽

  教学反思

  这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

  一、数学教学要注重数学思想和数学方法的渗透。

  在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

  二、重视学生的合作意识和实践能力的培养。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

  三、合理利用现代化教学手段辅助教学。

  侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

圆柱的表面积教学设计12

  教学课题:

  圆柱的表面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在研究展开后长方形的长、宽与圆柱的关系时,通过让学生在侧面展开成长方形和长方形卷成侧面的活动中,发现长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。从长方形的面积计算公式,推导出圆柱侧面积的计算方法。在探索圆柱侧面积算法的过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

  教学重点:

  圆柱表面积的计算。

  教学难点:

  圆柱体侧面积计算方法的推导。

  教法运用:

  本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时通过多媒体的辅助教学,发挥互联网搜索引擎功能,使新授和练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。

  学法指导:

  采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具准备:

  圆柱体教具、多媒体课件。

  学具准备:

  圆柱形纸筒、茶叶桶。

  教学过程:

  一、检查复习,引入新课

  1、复习圆柱体的特征

  师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)

  1备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。

  【设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的空间观念和思维能力得到锻炼。】

  三、解决问题,强化认知。

  (一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。

  (二)根据要求练习。

  1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)

  2、一台压路机的滚筒宽1、2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)

  3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)

  根据学生的计算结果,教学用“进一法”取近似值。

  小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的.知识合理灵活地解决生活中的实际问题。

  (三)操作练习。

  根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。

  讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

  测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

  计算:根据量得的数据,列出相应的算式并算出结果。

  【设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】

  四、课堂回顾,总结提升

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原

  3思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。

  五、合理利用现代化教学手段辅助教学。

  围绕课的重难点及学生能力的培养,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。在教学圆柱表面积含义时动画闪烁圆柱各部分的名称,测量并计算圆柱底面积时动画闪烁圆内直径的测量方法,求圆柱茶叶罐侧面积时呈现茶叶罐侧面包装纸,利用圆柱表面积解决生活中的实际问题时,课件呈现圆柱应用的实物图等等,形象直观,加深了学生对表面积实际计算意义的直观认识和理解,也使学生感受到了数学与现实生活的密切联系。

圆柱的表面积教学设计13

  一、引入新课:

  1.引入。

  师:在上节课,老师布置同学们课后每人用纸板做一个圆柱体,你们带来了吗?这就是我们昨天刚刚认识的新的几何体朋友——圆柱,谁能向大家介绍一下你的这位几何新朋友?(★ 生答时要利用手中的道具)

  2.激发兴趣。

  【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米,高 30 厘米 。想请你帮设计部算一算,制作这样一个罐头盒至少需要多少铁皮?

  师:“要求制作这样的一个罐头盒至少需要多少铁皮,实际上,用数学语言来说,就是求什么?”

  师:这节课我们就一起来研究——怎样求圆柱的表面积。(板书:圆柱的表面积)

  二、探究新知。

  1.什么是“圆柱的表面积”?

  师:以前我们学过长方体和正方体的表面积,你能说说圆柱的表面积指的是什么吗?和周围的同学研究一下。(学生分组讨论)

  师:谁能用简炼的语言概括出:什么加什么就是圆柱的表面积?

  (生:圆柱的侧面积 + 两个底面的面积就是圆柱的表面积。)(教师板书)

  师:【课件演示这一过程】“你能用一个等式来概括这句话吗?”

  师贴出——圆柱的表面积=圆柱的侧面积+两个底面的面积

  也就是说,要求圆柱的表面积,必须知道哪两个条件?

  2。圆柱的侧面积。

  师:两个底面是圆形的,我们早就会求它的面积。//而它的侧面是一个曲面,怎样计算侧面积呢?这是我们这节课要解决的一个难点。(板书:侧面积)

  ①合作探究。

  “请同学们利用自己手中的圆柱体,小组研究一下——圆柱的侧面积该怎么求?

  学生分组探究。

  ②汇报交流。★※★※★

  师:哪个小组来汇报一下你们组的做法和结果?要到前面来,边汇报边演示你们的推导过程。

  ③.【课件演示变化过程】★师解说。

  (贴出:圆柱的侧面积=底面周长×高 )

  强化:“要求圆柱的侧面积,必须知道什么条件?”

  3.学习例1。【课件出示】

  一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数。)

  一人板演,全班齐练。

  板演者讲解题思路。集体订正。

  小结:我们在计算圆柱的侧面积时,必须知道什么条件?(底面周长和高。)可是有时候底面周长没有直接给出,我们可以根据底面直径或半径求出圆柱的底面周长。

  4.计算圆柱的.侧面积。

  请同学们看屏幕——有这样几个圆柱体,你会求它们的侧面积吗?只列式,不计算。

  【课件出示】

  5.学习例2。

  师出示手中的教具:这是老师用纸板制作的圆柱体。(高15厘米,底面半径15厘米)现在,老师想考考你:要制作这样一个圆柱体,至少需要多少平方厘米的纸板?

  ①弄清几个面:要求“制作这样一个圆柱体,至少需要多少平方厘米的纸板”,实际上就是求这个圆柱的什么? 老师手中这个圆柱体一共有几个面? 三个什么面?

  【课件出示例2图】

  ②独立试算:(一个板演,全班齐练。)

  ③指名讲解题思路。

  ④小结:圆柱的表面积包括侧面积和底面积,要求圆柱的表面积,就是要求出这几个面的面积的总和。

  ⑤扩展:

  a.刚才这道题是“已知底面半径和高,求圆柱的表面积。”如果是“已知底面直径和高”,该怎样求圆柱的表面积?

  【课件出示例2改后的题】

  b.师:如果是“已知圆柱的底面周长和高”,又该怎样求圆柱的表面积呢?

  【课件出示例2改后的题】

  学生口算。

  ★ 师:如果“已知圆柱的侧面积和底面半径,你会求这个圆柱的高吗?”

  【课件出示】一个圆柱体的侧面积是188.4平方分米,底面半径是2分米。它的高是多少分米?

  d.指名说解题思路。

  三.实际应用。

  【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

  ①请同学们认真的默读题,想想:题目让我们求什么?应该怎么求呢?

  ②强调“没盖”,“得数保留整百平方厘米。”

  ③独立计算。

  ④板演者讲解题思路。(讲清每步算的是什么)

  ⑤了解“进一法”。

  ★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的材料都要比计算得到的结果多一些。 因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。”

  ⑥举一反三

  师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢?

  【课件出示】

  ★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。

  四.巩固练习。

  1.一顶厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整十平方厘米。)

  2.砌一个圆柱形的水池,底面直径2.5米,深3米。在水池的周围与底面抹上水泥,抹水泥的面积是多少平方米?

  3.回到引入题。

  【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米 ,高 30 厘米 。现在请你帮设计部算一算制作这样一个罐头盒至少需要多少铁皮?

  如果要制作200个呢?制作1000个呢?

  想一想:工人师傅在制作它时就按照我们刚才求出的数据准备料,行吗?为什么?

  师:如果给罐头盒贴一圈商标纸,你能算出每张商标纸的面积吗?

  五.实践应用。

  师:拿出自己制作的圆柱体,老师看看,谁的做的漂亮?(选出可以欣赏的。)

  “现在你能算出自己包装的圆柱体各用了多少平方厘米的彩纸吗?请同学们课后测量出你所需要的数据,然后算出来。”

  六.全课小结:

  师:今天这节课我们学习了《圆柱的表面积》,谈谈你有什么收获?

  师:你有没有想提醒同学们注意的地方?

  教学目标:

  1.知识目标:

  ⑴.理解圆柱的侧面积和表面积的含义。

  ⑵.掌握圆柱侧面积和表面积的计算方法。

  ⑶.会正确计算圆柱的侧面积和表面积。

  2.能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备:

  1.教师、学生每人用硬纸做一个圆柱体模型、另备圆柱体实物。

  2.多媒体课件。

圆柱的表面积教学设计14

  教学内容:练习六第3~9题。

  教学目标:

  1、使学生理解和掌握圆柱侧面积和表面积的计算方法,能根据实际生活情况解决有关圆柱

  表面积计算的实际问题。

  2、在解决实际问题中,加深理解表面积计算方法,发展学生的空间观念。

  3、让学生进一步密切数学与生活中联系,能够初步学以致用。

  教学重点:

  能根据实际生活情况解决有关圆柱表面积计算的实际问题。

  教学难点:

  灵活运用所学知识解决实际问题的能力。

  教学准备:

  与练习六中的练习相关的图片。

  教学过程:

  一、复习引入

  1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?

  2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。

  二、基本练习

  1、出示练习六第3题,理解表格意思。

  2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后填写在书中表格里,再交流方法和得数。

  3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后填写在书中表格里,再交流方法和得数。

  4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后交流方法和得数。

  三、巩固练习

  1、完成练习六第4题。

  ⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?

  ⑵各自练习后交流算法。

  2、完成练习六第5题。

  ⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?

  ⑵各自练习后交流算法和结果。

  3、讨论练习六第7题。

  ⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?

  ⑵看看,这个博士帽是怎么做成的,包括哪几个部分?

  ⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。

  你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?

  ⑷各自计算,算后交流算法和结果。

  ⑸如果要做10顶呢?怎么算?

  3、讨论练习六第8题。

  ⑴出示题目,让学生读题,理解题目意思。

  ⑵讨论:塑料花分布在这个花柱的哪几个面上?

  要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?

  算出上面和侧面的面积后,怎么算?为什么?

  4、讨论解答练习六第9题。

  ⑴出示题目,读题,理解题目意思。

  ⑵尝试列式。

  ⑶交流算法:

  这题先算什么?再算什么?最后算什么?

  怎么算一根柱子的侧面积的?为什么不要算底面积?

  四、小结

  通过本节课的`学习,你学会了什么?

  学生交流

  五、作业

  完成《练习与测试》相关作业

  板书设计

  圆柱的表面积

  圆柱的体积

  教学内容:教科书第25~26页的例4、“试一试”、“练一练”。

  教学目标:

  使学生经历观察、猜想、操作、验证、交流和归纳等数学活动的过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。

  培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

  教学重点:

  掌握和运用圆柱体积计算公式

  教学难点:

  圆柱体积公式的推导过程

  教学准备:多媒体

  教学过程:

  一、复习引入

  1、呈现例4中长方体、正方体和圆柱的直观图。

  2、提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

  启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱的体积怎么算?

  3、引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

  二、教学例4

  1、观察比较

  引导学生观察例4的三个立体,提问:

  ⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

  ⑵长方体和正方体的体积一定相等吗?为什么?

  ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

  2、实验操作

  ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

  提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

  ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

  ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

  操作教具,让学生观察。

  引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

  课件演示,使学生清楚地认识到:拼成的立体会越来越接近长方体。

  3、推出公式

  ⑴提问:拼成的长方体与原来的圆柱有什么关系?

  指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

  ⑵想一想:怎样求圆柱的体积?为什么?

  根据学生的回答小结并板书圆柱的体积公式:

  圆柱的体积=底面积×高

  ⑶引导用字母公式表示圆柱的体积公式:V=sh

  三、教学“试一试”

  ⑴让学生列式解答后交流算法。

  ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

  四、巩固练习

  1、做“练一练”第1题。

  ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

  ⑵各自练习,并指名板演。

  ⑶对照板演,说说计算过程。

  2、做“练一练”第2题。

  说说为什么要从里面量?如果从外面量算出的是什么?

  五、小结

  这节课我们学习了什么?有哪些收获?还有什么疑问?

  学生交流

  六、作业

  完成练习与测试相关作业

  板书设计

  圆柱的体积

圆柱的表面积教学设计15

  教学目标

  1.理解圆柱的侧面积和表面积的含义。

  2.掌握圆柱侧面积和表面积的计算方法。

  3.会正确计算圆柱的侧面积和表面积。

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教学过程

  一、复习准备

  (一)口答下列各题(只列式不计算)。

  1.圆的半径是5厘米,周长是多少?面积是多少?

  2.圆的直径是3分米,周长是多少?面积是多少?

  (二)长方形的面积计算公式是什么?

  (三)回忆圆柱体的特征。

  二、探究新知

  (一)圆柱的侧面积。

  1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。

  2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。

  (二)教学例1.

  1.出示例1

  例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  2.学生独立解答

  教师板书: 3.14×0.5×1.8

  =1.75×l.8

  ≈2.83(平方米)

  答:它的侧面积约是2.83平方米。

  3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。

  (三)圆柱的表面积。

  1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

  2.比较圆柱体的表面积和侧面积的区别。

  圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的.面积;表面积包含着侧面积。

  (四)教学例2.

  1.出示例2

  例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

  2.学生独立解答

  侧面积:2×3.14×5×15=471(平方厘米)

  底面积:3.14× =78.5(平方厘米)

  表面积:471+78.5×2=628(平方厘米)

  答:它的表面积是628平方厘米。

  3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。

  (五)教学例3.

  1.出示例3

  例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

  2.教师提问:解答这道题应注意什么?

  这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

  3.学生解答,教师板书。

  水桶的侧面积:3.14×20×24=1507.2(平方厘米)

  水桶的底面积:3.14×

  =3.14×

  =3.14×100

  =314(平方厘米)

  需要铁皮:1507.2+314=1821.2≈1900(平方厘米)

  答:做这个水桶要用1900平方厘米。

  4.教师说明:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

  5.“四舍五入”法与“进一法”有什么不同。

  (1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。

  (2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

  三、课堂小结

  这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。圆柱的表面积在实际应用时要注意什么呢?

  归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

  四、巩固练习

  (一)求出下面各圆柱的侧面积。

  1.底面周长是1.6米,高是0.7米

  2.底面半径是3.2分米,高是5分米

  (二)计算下面各圆柱的表面积。(单位:厘米)

  (三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)

  五、课后作业

  (一)砌一个圆柱形的沼气池,底面直径是3米,深是2米。在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?

  (二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

  六、板书设计

【圆柱的表面积教学设计】相关文章:

《圆柱的表面积》教学设计03-18

圆柱的表面积教学设计05-08

《圆柱的表面积》教学设计15篇04-28

《圆柱体的表面积》教学设计06-13

圆柱的表面积教学设计15篇06-13

圆柱体的表面积教学设计06-25

小学数学《圆柱的表面积》教学设计06-25

《圆柱的表面积》教学设计(15篇)06-21

数学《圆柱的表面积》教学设计优秀11-14

小学数学《圆柱的表面积》优秀教学设计03-17