《幂函数》教学设计

时间:2024-09-12 10:54:42 诗琳 教学资源 投诉 投稿

《幂函数》教学设计(精选7篇)

  作为一名老师,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么大家知道规范的教学设计是怎么写的吗?以下是小编精心整理的《幂函数》教学设计,仅供参考,欢迎大家阅读。

《幂函数》教学设计(精选7篇)

  《幂函数》教学设计 1

  教学目标

  1、使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性。

  2、通过函数单调性概念的教学,培养学生分析问题、认识问题的能力。通过例题培养学生利用定义进行推理的逻辑思维能力。

  3、通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育。

  教学重点与难点

  教学重点:函数单调性的概念。

  教学难点:函数单调性的判定。

  教学过程设计

  一、引入新课

  师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?

  (用投影幻灯给出两组函数的图象。)

  第一组:

  第二组:

  生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小。

  师:(手执投影棒使之沿曲线移动)对。他(她)答得很好,这正是两组函数的主要区别。当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小。虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质。我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质。而这些研究结论是直观地由图象得到的。在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容。

  (点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意。)

  二、对概念的分析

  (板书课题:)

  师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍。

  (学生朗读。)

  师:好,请坐。通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

  生:我认为是一致的。定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少。

  师:说得非常正确。定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质。这就是数学的魅力!

  (通过教师的情绪感染学生,激发学生学习数学的兴趣。)

  师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力。

  (指图说明。)

  师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间。

  (教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解。渗透数形结合分析问题的数学思想方法。)

  师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……

  (不把话说完,指一名学生接着说完,让学生的思维始终跟着老师。)

  生:较大的函数值的函数。

  师:那么减函数呢?

  生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数。

  (学生可能回答得不完整,教师应指导他说完整。)

  师:好。我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

  (学生思索。)

  学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环。因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力。

  (教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气。在学生感到无从下手时,给以适当的提示。)

  生:我认为在定义中,有一个词“给定区间”是定义中的关键词语。

  师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同。增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性。请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

  生:不能。因为此时函数值是一个数。

  师:对。函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化。那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

  生:不能。比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数。因而我们不能说y=x2是增函数或是减函数。

  (在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知。)

  师:好。他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”。这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数。因此,今后我们在谈论函数的增减性时必须指明相应的区间。

  师:还有没有其他的关键词语?

  生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语。

  师:你答的很对。能解释一下为什么吗?

  (学生不一定能答全,教师应给予必要的.提示。)

  师:“属于”是什么意思?

  生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取。

  师:如果是闭区间的话,能否取自区间端点?

  生:可以。

  师:那么“任意”和“都有”又如何理解?

  生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2)。

  师:能不能构造一个反例来说明“任意”呢?

  (让学生思考片刻。)

  生:可以构造一个反例。考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了。

  师:那么如何来说明“都有”呢?

  生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数。

  师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性。

  (教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解。在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力。)

  师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小。即一般成立则特殊成立,反之,特殊成立,一般不一定成立。这恰是辩证法中一般和特殊的关系。

  (用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力。)

  三、概念的应用

  证明函数f(x)=3x+2在(-∞,+∞)上是增函数。

  师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径。

  (指出用定义证明的必要性。)

  师:怎样用定义证明呢?请同学们思考)(后在笔记本上写出证明过程。

  (教师巡视,并指定一名中等水平的学生在黑板上板演。学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发。)

  师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立。因此我们可由差的符号来决定两个数的大小关系。

  生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,所以f(x)是增函数。

  师:他的证明思路是清楚的。一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”)。但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号。应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2)。”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”)。最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”)。

  这就是我们用定义证明函数增减性的四个步骤,请同学们记住。需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小。

  (对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势。在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的。)

  调函数吗?并用定义证明你的结论。

  师:你的结论是什么呢?

  上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数。

  生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义。比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数。

  生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数。

  域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数。因此在函数的几个单调增(减)区间之间不要用符号“∪”连接。另外,x=0不是定义域中的元素,此时不要写成闭区间。

  上是减函数。

  (教师巡视。对学生证明中出现的问题给予点拔。可依据学生的问题,给出下面的提示:

  (1)分式问题化简方法一般是通分。

  (2)要说明三个代数式的符号:k,x1·x2,x2-x1。

  要注意在不等式两边同乘以一个负数的时候,不等号方向要改变。

  对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视。)

  四、课堂小结

  师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

  (请一个思路清晰,善于表达的学生口述,教师可从中给予提示。)

  生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤。

  课堂教学设计说明

  是函数的一个重要性质,是研究函数时经常要注意的一个性质。并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用。对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质。学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味。因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理。

  另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点。因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用。

  还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫。

  《幂函数》教学设计 2

  教学目标:

  1、结合实例,了解幂函数的概念

  2、结合具体的幂函数的图象,了解它们的变化情况及性质

  3、在探讨幂函数性质的过程中,体会由特殊到一般及数形结合的数学思想方法

  教学重点:

  幂函数的图象和性质

  教学难点:

  画幂函数的图象并由图象概括其性质

  教学过程:

  教学内容问题、任务师生活动设计意图

  一、幂函数的定义

  二、几个具体幂函数的图象

  三、几个具体幂函数的性质

  四、小结提升

  五、作业

  1、某种蔬菜每千克1元,若购买千克,需要支付元是函数吗?

  2、正方形的边长为,那么它的面积是的函数吗?

  3、立方体的边长为,那么它的体积是的函数吗?

  4、正方形的面积为,那么它的边长是的.函数吗?

  5、某人内骑车内行进了1,那么他骑车的平均速度是函数吗?

  6、这五个函数有什么共同特征?

  7、给出幂函数的定义

  8、下列函数是幂函数吗?

  9、幂函数的定义和指数函数的定义有什么区别?

  10、已知幂函数的图象过点(4,),求这个函数的解析式?

  11、观察幂函数的图象

  12、作函数的图象。

  13、作函数的图象。

  14、作函数的图象。

  15、根据所作函数的图象,分别讨论这些函数的性质。

  16、你能证明幂函数在[0,+上是增函数吗?

  17、从整体上把握幂函数的图象。

  作业P79习题1、2、3

  师:投影展示问题,引导学生根据函数的定义进行分析。

  生:根据函数定义思考并回答。

  师:板书这5个函数表达式。

  师生:从形式上分析:是指数幂的形式,其中底数是自变量,指数是常数。

  师:板书定义。

  生:根据幂函数的形式进行辨别。

  生:对比指数函数的定义,指出区别。

  师生:用待定系数法共同完成。

  师:几何画板展示幂函数图象,随着指数的改变,幂函数图象的形态和位置都发生改变。

  生:观察指数的变化和图象的变化

  师:幂函数的图象因指数不同而形态各异,远比指数函数的。图象复杂。但我们可以通过讨论其中有代表性的几个函数来了解幂函数的图象特征。生:在同一坐标系中作出三个函数的图象。

  师:巡视指导。

  师:用几何画板作出三个函数的图象。

  生:对照检查,注意所作图象的特征。

  师:提示横坐标取值:。巡视学生作图情况。

  生:列表,并描点作图。

  师:投影函数图象。

  师:指导作图:取横坐标0。

  生:作图。

  师:投影图象。

  师:引导学生根据函数的图象,指出函数的性质。

  生:指出函数性质并完成课本第78页表格。

  生:尝试证明。

  师生:共同完成证明。

  师:几何画板动态展示幂函数在第一象限的图象,引导学生观察图象的变化。师生共同归纳图象的主要特征:在上:减函数:猛增:增函数:缓增通过实际问题,引入幂函数。由特殊到一般的提练、概括。形式定义,注意辨别。对比,加深印象,避免与指数函数混淆。进一步加强理解幂函数定义。对幂函数的图象作整体感知,了解幂函数的图象和性质与指数关系密切。三个函数都是初中学过的,描三个点作出简图,把握图象的主要特征。数形结合。

  《幂函数》教学设计 3

  1、教学目标

  知识目标:

  (1)掌握幂函数的形式特征,掌握具体幂函数的图象和性质。

  (2)能应用幂函数的图象和性质解决有关简单问题。

  能力目标:培养学生发现问题,分析问题,解决问题的能力。

  情感目标:

  (1)加深学生对研究函数性质的基本方法和流程的经验。

  (2)渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。

  2、教学重点

  从具体函数归纳认识幂函数的一些性质并简单应用。

  教学难点:引导学生概括出幂函数的性质。

  3、教学方法和教学手段

  探索发现法和多媒体教学

  4、教学过程:

  问题情境

  问题1写出下列y关于x的函数解析式:

  ①正方形边长x、面积y

  ②正方体棱长x、体积y

  ③正方形面积x、边长y

  ④某人骑车x秒内匀速前进了1m,骑车速度为y

  ⑤一物体位移y与位移时间x,速度1m/s

  问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。

  (二)新课讲解

  幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfunction),其中是自变量,是常数。

  为了加深对定义的理解,请同学们判别下列函数中有几个幂函数?

  ①y=②y=2x2

  我们了解了幂函数的概念以后我们一起来研究幂函数的性质。

  问题3幂函数具有哪些性质?用什么方法研究这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起研究了哪些性质呢?(学生讨论,教师引导)

  (引发学生作图研究函数性质的兴趣。函数单调性的'判断,既可以使用定义,也可以通过图象解决,直观,易理解。)

  在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。

  根据你的学习经历,你能在同一坐标系内画出函数的图象吗?

  (学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示,通过超级链接几何画板演示。)

  问题4我们看到,这些函数在第一象限都有图象,所以我们就先来研究幂函数在上的性质。请同学们考虑一下有哪些共性呢?(学生回答)

  归纳总结幂函数的性质:幂函数图象的基本特征是,当是,图象过点,且在第一象限随的增大而上升,函数在区间上是单调增函数。

  下面我们一起来尝试幂函数性质的简单应用

  巩固练习:例1写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x②y=x③y=x。(板书一题,其他学生回答并小结)

  感受理解例2:比较下列各组中两个值的大小,并说明理由:

  ①0.75,0.76;

  ②(—0.95),(—0.96);

  ③0.31,0.31

  分析:利用考察其相对应的幂函数和指数函数单调性来比较大小

  巩固提高例3、幂函数y=(m—3m—3)x在区间上是减函数,求m的值。

  (三)小结:今天的学习内容和方法有哪些?你有哪些收获和经验?幂函数的图象和形状就可能发生很大的变化。我们今天主要研究了幂函数在第一象限的性质。

  《幂函数》教学设计 4

  【教学目标】

  (一)知识与技能

  1、了解幂函数的概念,会画幂函数y?x,y?x,y?x,y?x,y?x的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。

  2、了解几个常见的幂函数的性质。

  (二)过程与方法

  1、通过观察、总结幂函数的性质,提高概括抽象和识图能力。

  2、体会数形结合的思想。

  (三)情感态度与价值观

  1、通过生活实例引出幂函数的概念,体会生活中处处有数学,树立学以致用的意识。

  2、通过合作学习,增强合作意识。

  【教学重点】

  幂函数的定义

  【教学难点】

  会求幂函数的定义域,会画简单幂函数的图象、

  【教学方法】

  启发式、讲练结合教学过程

  一、复习旧课

  二、创设情景,引入新课

  问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

  (总结:根据函数的定义可知,这里p是w的函数)

  问题2:如果正方形的边长为a,那么正方形的面积S?a2,这里S是a的函数。

  问题3:如果正方体的边长为a,那么正方体的体积V?a3,这里V是a的函数。

  问题4:如果正方形场地面积为S,那么正方形的边长a?S12,这里a是S的函数

  问题5:如果某人ts内骑车行进了1km,那么他骑车的速度V?t?1km/s,这里v是t的函数。

  以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

  二、新课讲解

  (一)幂函数的概念

  如果设变量为x,函数值为y,你能根据以上的生活实例得到怎样的`一些具体的函数式?

  这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?幂函数的定义:一般地,我们把形如y?x?的函数称为幂函数(power function),其中x是自变量,?是常数。 【探究一】幂函数有什么特点?

  结论:对幂函数来说,底数是自变量,指数是常数试一试:判断下列函数那些是幂函数练习1判断下列函数是不是幂函数3(1) y=2 x;(2) y=2 x5;7(3) y=x8;(4) y=x2+3、

  根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?

  (二):求幂函数的定义域

  1.什么是函数的定义域?

  函数自变量的取值范围叫做函数的定义域2.求函数的定义域时依据哪些原则?(1)解析式为整式时,x取值是全体实数。

  2 (2)解析式是分式时,x取值使分母不等于零。

  (3)解析式为偶次方根时,x取值使被开方数取非负实数。 (4)以上几种情况同时出现时,x取各部分的交集。

  (5)当解析式涉及到具体应用题时,x取值除了使解析式有意义还要使实际问题有意义。例1写出下列函数的定义域:1(1) y=x3;(2) y=x2;-32、 (3) y=x-;(4) y=x2解:(1)函数y=x3的定义域为R;

  1(2)函数y=x2,即y=x,定义域为[0,+∞);

  12(3)函数y=x-,即y=2,定义域为(-∞,0)∪(0,+∞);

  x3-1(4)函数y=x2,即y=,其定义域为(0,+∞)、

  3 x练习2求下列函数的定义域:

  11-(1) y=x2;(2) y=x 3;(3) y=x-1;(4) y=x2、

  (三)、几个常见幂函数的图象和性质

  我们已经学习了幂函数(1) y=x;(2) y=x2.(3) y=x-、(4)y=x3 (5) y=1x2;请同学们在同一坐标系中画出它们的图象.性质:幂函数随幂指数α的取值不同,它们的性质和图象也不尽相同,但也有一些共性,例如,所有的幂函数都通过点(1,1),都经过第一象限;当??0是,图象过点(1,1),(0,0),且在第一象限随x的增大而上升,函数在区间?0,???上是单调增函数。??0时幂函数y?x?图象的基本特征:过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,??)上是单调减函数,且向右无限接近X轴,向上无限接 近Y轴。

  (四)课堂小结

  (五)课后作业

  1、教材P 100,练习A第1题、

  12在同一坐标系中画出函数y=x与y=x2的图象,并指数这两个函数各有什么性质以

  3及它们的图象关系

  《幂函数》教学设计 5

  一、教学内容分析

  教材地位:幂函数是中学教材中的一个基本内容,即是对正比例函数、反比例函数、二次函数的系统总结,也是对这些函数的概况和一般化、

  教学重点:幂函数的图像与性质、

  教学难点:以幂函数为背景的图像变换、

  二、教学目标设计

  能描绘常见幂函数的图像,掌握幂函数的基本性质;理解幂函数图像的演进及单调性质;理解幂函数图形特征与代数特征的对称联系,在函数性质的应用中体会它的价值。能以幂函数为背景进行基本的函数图像的平移和对称变换、

  三、教学流程设计

  设置情境→探索研究→总结提炼

  →尝试应用→练习回馈→设置评价

  五、教学过程设计

  1、情境设置

  指导学生描画一些典型的`幂函数的图像,回忆并归纳幂函数的性质、

  2、探索研究

  问题:如图所示的分别是幂函数①,②,③,④,⑤,⑥,⑦在坐标系中第一象限内的图像,请尽可能精确地将指数的范围分别确定出来

  3、总结提炼

  揭示幂函数图像特征与底数的依赖关系、师生共同整理出规律性结论、

  4、尝试应用

  ①(1)研究函数的图像之间的关系;

  (2)在同一坐标中作上述函数的图像;

  (3)由所作函数的图像判断最后一个函数的奇偶性、单调性、

  ②已知函数

  (1)试求该函数的零点,并作出图像;

  (2)是否存在自然数,使=1000,若存在,求出;若不存在,请说明理由、

  ③作函数的大致图像、

  5、练习回馈

  课本第83页练习4、1(2)

  六、教学评价设计

  习题4、1——

  B组(根据学生具体情况选用)

  《幂函数》教学设计 6

  一、说教材

  1、教材的地位和作用:

  幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。

  2、根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  ⑴知识与技能目标:

  ①理解幂函数的概念,会画幂函数的图象。

  ②结合这几个幂函数的图象,理解幂函图象的变化情况和性质。

  ③了解分段函数及其表示。

  ⑵过程与方法目标:

  ①通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

  ②使学生进一步体会数形结合的思想。

  ⑶情感、态度与价值观目标

  ①通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣。

  ②利用计算机多媒体课件,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。

  3、教学重点与难点

  ⑴教学重点:常见幂函数的概念、图象和性质。

  ⑵教学难点:幂函数的单调性及比较两个幂值的大小。

  二、说教法

  教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。

  1、引导发现比较法

  因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。

  2、练习巩固讨论学习法

  这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的.能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。

  三、说学法

  引导学生观察教材提供的五个实例所出现的函数模型,归纳出几个函数表达式的共同特征,引出本节课要讲的幂函数。采用小组讨论的方法,数形结合,培养学生互助、协作的精神,使学生“学”有新“思”,“思”有所“得”,“练”有所“获”,学生会逐步感受到数学的美,产生一种成功感,从而提高学数学的兴趣。

  四、说教学程序

  1、复习引入:

  复习指数函数、对数函数的定义、图像和性质。

  2、探索发现:

  ⑴引导学生阅读教材的五个引例,细心观察这五个引例得出的函数解析式的共同特点(从结构上看)。引出本节课将要学习的课题:幂函数。

  ⑵幂函数的定义:

  一般地,函数y= 叫作幂函数,其中x是自变量,a是常数。

  ⑶幂函数与指数函数之间的区别:

  幂函数——底数是自变量,指数是常数;

  指数函数——指数是自变量,底数是常数。

  注:在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  ⑷幂函数的图像和性质:

  ①幂函数的图像:

  由同学们画出下列常见的幂函数的图象:

  y=x,y=x2,y=x3, , 。并与指数函数、对数函数的图像进行比较。

  ②幂函数的性质:

  总结幂函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。

  3、学用结合:

  ⑴讲解例题:P 92/例1。

  注:在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。

  ⑵课堂练习:P 92/习题2.3第1、2题。

  注:使学生能巩固并自觉运用所学知识与解题思想方法。

  4、课堂小结:

  主要由学生进行总结,教师进行补充。

  注:知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  5、作业布置:

  P 87/习题2.3第3题。

  《幂函数》教学设计 7

  一、教材分析

  (一)地位与作用

  《幂函数》选自高一数学新教材必修1第2章第3节。是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础、在初中曾经研究过y=x,y=x2,y=x—1三种幂函数。这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华、本节内容之后, 将把指数函数,对数函数,幂函数科学的组织起来,体现充满在整个数学中的组织化,系统化的精神。让学生了解系统研究一类函数的方法、这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究、

  (二)学情分析

  (1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。

  (2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。

  (3)学生层次参差不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体。

  (一)教学目标

  (1)知识与技能

  ①使学生理解幂函数的概念,会画幂函数的图象。

  ②让学生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。

  (2)过程与方法

  ①让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

  ②使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  ①通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的学习兴趣。

  ②利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。

  ③培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。

  (二)重点难点

  根据我对本节课的内容的理解,我将重难点定为:

  重点:从五个具体的幂函数中认识概念和性质

  难点:从幂函数的图象中概括其性质。

  三、教法、学法分析

  (一)教法

  教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。

  1、引导发现比较法

  因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。

  2、借助信息技术辅助教学

  由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用《几何画板》画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。

  3、练习巩固讨论学习法

  这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。

  (二)学法

  本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。

  由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。

  四、教学过程分析

  (一)教学过程设计

  (1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  问题1:下列问题中的函数各有什么共同特征?是否为指数函数?

  由学生讨论,总结,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

  这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成:

  都是自变量的若干次幂的形式。都是形如

  的函数。

  揭示课题:今天这节课,我们就来研究:幂函数

  (一)课堂主要内容

  (1)幂函数的概念

  ①幂函数的定义。

  一般地,函数

  叫做幂函数,其中x 是自变量,a是常数。

  ②幂函数与指数函数之间的区别。

  幂函数——底数是自变量,指数是常数;

  指数函数——指数是自变量,底数是常数。

  (2)几个常见幂函数的图象和性质

  由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格

  根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。

  以上问题的设计意图:数形结合是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的`性质。

  教师讲评:幂函数的性质、

  ①所有的幂函数在(0,+∞)上都有定义,并且图像都过点(1,1)、

  ②如果a>0,则幂函数的图像通过原点,并在区间〔0,+∞)上是增函数、

  ③如果a<0,则幂函数在(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+∞时,图像在x轴上方无限地趋近x轴、

  ④当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。

  以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数函数和对数函数的图像更为复杂,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。在教学中,采用从具体到一般,再从一般到具体的安排。

  通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

  (3)当堂训练,巩固深化

  例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。本节课选取主要选取了两道例题。

  例1是课本上的例题:证明f(x)=x1/2在(0,+∞)上是增函数。这题先从“形”的角度判断函数的单调区间和单调性,再用到定义从“数”的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。

  例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1。3是增函数与y=x—5/4的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路

  (4)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:

  (1)通过本节课的学习,你学到了哪些知识?

  (2)通过本节课的学习,你最大的体验是什么?

  (3)通过本节课的学习,你掌握了哪些技能?

  (二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成、 我设计了以下作业:

  (1)必做题

  (2)选做题

  (三)板书设计

  板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

  谢谢!

【《幂函数》教学设计】相关文章:

《幂函数》教学设计【优】01-20

幂函数的教后反思10-06

《出塞》教学设计-教学设计07-06

素描教学设计-教学设计07-09

教学设计的设计07-17

[经典]教学设计的设计07-17

《冰花》教学设计 冰花教学设计12-12

头饰设计教学设计08-07

《头饰设计》教学设计06-06