同类项教学设计优选

时间:2024-01-22 09:02:34 教学资源 投诉 投稿
  • 相关推荐

同类项教学设计人教版优选推荐

  作为一位兢兢业业的人民教师,时常需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。如何把教学设计做到重点突出呢?下面是小编收集整理的同类项教学设计人教版优选推荐,仅供参考,希望能够帮助到大家。

同类项教学设计人教版优选推荐

同类项教学设计人教版优选推荐1

  教学目标:

  (一)知识目标

  (1)了解同类项的概念,能识别同类项;

  (2)会合并同类项,知道合并同类项所依据的运算律。

  (二)能力目标

  培养学生的观察、分析、归纳的能力,进一步培养学生的思维能力。

  (三)情感、态度、价值观

  (1)积极营造亲切和谐的课堂氛围,激励全体学生积极参与数学活动,进一步培养学生团结协助,严谨求实、合作交流、勇于创新的精神。

  (2)激发学生探究数学的兴趣,发扬合作学习的精神,培养学生的语言表达能力,并学会与他人合作的`能力,在合作中体验成功的喜悦,建立自信心。

  教学重点和难点:

  重点:同类项的概念、合并同类项的法则及应用。

  难点:正确判断同类项;准确合并同类项。

  教学过程:

  一、出示问题,引出同类项的概念

  1、问题:我们到动物园参观,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里。为何不把老虎与鹿关在同一个笼子里呢?

  问题:在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类。

  2、议一议: 归为同类需要有什么共同的特征?

  8n和5n 3ab 和 -2ab 6xy和 -3yx, -7a2b 和 2a2b 5和-3

  3、概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

  注意:

  (1)两同:所含字母相同,相同字母的指数也相同

  (2)两无关:同类项与系数无关,与字母的排列顺序也无关

  (3)几个常数项也是同类项。

  4、课堂检测1:下列各组中的两项是不是同类项?为什么?

  (1)ab与3ab (2)6b2a与2ab (3)3xy与- xy

  (4)2a与2ab (5)-2.1与 3 (6)5与b

  二、如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?

  问题1:

  3ab+ 5ab=_______ 理由是________

  -4xy - 2xy=_______ 理由是_______

  -3a + 2b= _______ 理由是_______

  问题2:

  不在一起的同类项能否将同类项结合在一起?为什么?

  例如:试化简多项式3xy-2abC3+ 5xy + 3ba + 5

  解:3xy-2ab-3+5xy+3ba+5--------------找出同类项

  =3xy+5xy-2ab+3ba-3+5 ----------加法交换律

  =(3xy+5xy)+(-2ab+3ba )+(-3+5)--加法结合律

  =(3+5)xy+(-2+3)ab+2 ---------乘法分配律逆用

  =8xy + ab + 2 ----------合并同类项

  合并同类项: 把同类项合并成一项就叫做合并同类项

  问题3:探讨合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?

  合并同类项后,所得项的系数等于合并前各同类项的系数之和;合并同类项后,字母以及字母的指数与合并前字母以及字母的指数相同。

  合并同类项法则:

  同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。(“即一相加,两不变”)

  三、例题1:合并下列各式中的同类项:

  (1) 2ab - 3ab + ab

  (2) a C 4ab + ab + 2ab- 5ab + b

  (3) 6a -5b + 2ab + b - 6a

  方法是:

  (1)系数:各项系数相加作为新的系数。

  (2)字母以及字母的指数不变。

  注意:

  (1)用画线的方法标出各多项式中的同类项,减少运算的错误。

  (2)移项时要带着原来的符号一起移动。

  (3)两组同类项之间用“+”号连接。

  (4)多项式中只有同类项才能合并,不是同类项不能合并。

  思考:合并同类项的步骤是怎样?

  合并同类项一般步骤:

  找出同类项 ,交换律 ,结合律,分配律逆用 ,合并

  课堂检测2:

  (1)3x + x

  (2) 2x - 7y - 5x + 11y - 1

  (3)4a + 3b + 2ab - 4a - 4b

  例题2:求代数式-3x2 + 5x - x2 + x + 1- 7x的值,其中x=2。

  四、课堂小结:通过这节课的学习,你有哪些收获?

同类项教学设计人教版优选推荐2

  教学目标

  知识与技能

  1、在具体情境中感受合并同类项的必要性,理解合并同类项的概念。

  2、理解合并同类项的法则,能正确合并同类项。

  数学思考

  通过具体情境导入同类项以及合并同类项的概念,经历合并同类项的过程,培养学生的观察、归纳等能力。

  问题解决

  通过大量的练习巩固,培养学生的计算能力,帮助学生形成解题经验。

  情感态度与价值观

  在学习中培养学生分类、化繁为简等数学思想、方法,鼓励学生敢于发表自己的观点,从交流中获益。

  教学重难点

  重点:同类项的概念,合并同类项。

  难点:判断同类项和正确合并同类项。

  教学流程:

  一、导入新课:

  1、将下列物品分类

  2、将下列整 式进行分类,并与同伴交流一下你为什么这么分类?

  8a -7a2b -3xy 5a 2a2b 6xy

  3、同类项概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。几个常数项也是同类项。

  例如:

  4、同类项概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。几个常数项也是同类项。

  例如:

  (1) 2x2y 与 5x2y (2) 2ab3 与 6b3 a

  (3) 4ab与 2ab (4) 3mn 与 -nm

  (5) 5 a3 与 a3 (6) -5 与 +3

  5、如何判断同类项?

  (1)同类项有两个标准: 所含字母相同; 相同字母的指数分别相同

  (2)同类项与系数大小无关;

  (3)同类项与它们所含相同字母的顺序无关。

  6、辨一辩:下列各组中的两项是不是同类项?为什么?

  (1)2x2y与-3x2y ( √ ) (2)2abc与2ab ( × )

  (3)-3pq与3qp ( √ ) (4) -4x2y与5xy2 ( × )

  第一种方法:100a+200a+240b+60b

  第二种方法:(100+200)a+(240+60)b

  则100a+200a+240b+60b=(100+200)a+(240+60)b

  由此我们知道,计算100a+200a,可以先把它们的系数相加,再乘a;计算240b+60b,可以先把它们的系数相加,再乘b。

  7、做一做

  合并同类项,并说出你的理由:

  (1) 7a-3a = __________

  (2) 4x2+2x2 = ____________

  (3) 5ab2-13ab2 = ___________

  (4) -9x2y3+5x2y3 = ___________

  思考:通过上面的练习,你能发现各式计算的结果中系数有什么变化?字母呢及字母的指数呢?由此你能得出哪些结论?

  8、合并同类项的法则

  同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

  9、例题: 合并同类项

  (1)-3x + 2y - 5x - 7y

  = (-3x-5x)+(2y-7y) 加法交换律、结合律

  =(-3-5)x+(2-7)y 乘法对加法的分配律

  = -8x-5y 有理数加法法则

  10、小结:

  (1)同类项的概念:所含字母相同,并且相同字母的指数也相同的'项,叫做同类项。几个常数项也是同类项。

  (2)合并同类项的概念:把代数式中的同类项合并成一项,叫做合并同类项。

  (3)合并同类项的法则:

  同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

  (4)合并同类项的步骤:

  第一步 : 准确找出同类项(用下划线);

  第二步 : 逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;

  第三步: 写出合并后的结果。

  开放训练体现应用

  【应用举例】

  例1 合并下式中的同类项。

  4a2+3b2-2ab-3a2+b2

  解:4a2+3b2-2ab-3a2+b2

  =(4a2-3a2)-2ab+(3b2+b2)

  =(4-3)a2-2ab+(3+1)b2

  =a2-2ab+4b2

  【拓展提升】

  例3 在不知道a,b的情况下,能否求出“7a2-5b2+3a2b-4a2+b2-3a2b-3a2+4b2-2”的值?若能,请求出数值,若不能,请说明理由。

  设计意图:拓展提升,提高学生应用知识的能力。

  【当堂训练】

  1、下列各项中的两个式子是同类项的是( D )

  A、9abc与11ac

  B、0.2ab2与0.2a2b

  C、b2与x2

  D、3x2y与-3yx2

  2、下列合并同类项,正确的是( D )

  A、2a+3b=5ab

  B、-7x2y+2x2y=9x2y

  C、4m3-m3=3

  D、2pq-4pq=-2pq

  3、已知2xmy3与-3x2yn是同类项,则m=__2__,n=__3__。

  4、合并下列各式中的同类项:

  (1)x-f+5x-4f;

  (2)2a+3b+6a+9b-8a+12b;

  (3)30a2b+2b2c-15a2b-4b2c;

  (4)7xy-8wx+5xy-12xy。

  5、求代数式的值:

  (1)8p2-7q+6q-7p2-7,其中p=3,q=3;

  (2) m- n- n- m,其中m=6,n=2。

  设计意图:学以致用,当堂检测及时获知学生对所学知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的。

  【板书设计】

  第1课时 合并同类项

  一、同类项的概念:

  二、合并同类项:

  1、法则:

  2、步骤:

  例题

【同类项教学设计优选】相关文章:

同类项教学反思(精选9篇)10-08

数学合并同类项教学反思02-11

表合并同类项教学反思10-06

(优选)《礼物》教学设计08-15

(优选)《过秦论》教学设计12-24

【优选】《燕子》教学设计11-18

【优选】坐井观天教学设计07-04

《称赞》教学设计(优选)07-17

《爱莲说》教学设计【优选】01-16