- 五年级《植树问题》教学设计优秀 推荐度:
- 相关推荐
五年级《植树问题》教学设计优秀(精选)
作为一名优秀的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么优秀的教学设计是什么样的呢?以下是小编为大家整理的五年级《植树问题》教学设计优秀,希望对大家有所帮助。
五年级《植树问题》教学设计优秀1
教学内容:
《义务教育教科书、数学》五年级上册p106—107。
教材分析:
“植树问题”是义务教育课程标准实验教科书四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽以及封闭图形(方阵问题)等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
学情分析:
学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
设计理念及思路:
“数学广角”系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段(间隔),由于路线不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。“植树问题”的本质是对应问题,只要明确了“间隔”与“树”这两者之间的对应关系,突出“一一对应”的思想,再以此为基础并通过适当变化就可以应对各种变化了的情况。
为了更好的落实教学目标,本节课在教材的处理上我作了如下调整,把原例题中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究植树问题中间隔数与棵数的关系。再通过展示现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。
教学目标:
1、知识技能。
借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。
2、数学思考。
(1)学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。
(2)学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。
3、问题解决。
(1)能运用所得到的规律解决实际问题。
(2)能和他人合作交流。
4、情感态度。
(1)能积极参与数学活动,对数学有好奇心和求知欲。
(2)在数学学习过程中,体验获得成功的乐趣,建立自信心。
(3)感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。
教学重、难点
重点:探究棵数与间隔数之间的关系,运用一一对应,建立植树问题模型,会应用植树问题的模型解决一些相关的实际问题。
难点:应用植树问题的模型灵活解决一些相关的实际问题。
教学准备
多媒体 笔 直尺
教学方法
讲授、演示、讨论交流、操作练习等
教学过程:
一、课前互动、引出课题
师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的`课前思维训练题:
1、一根木头长10米,要把它平均锯成9段,需要锯几次?
2、四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)
师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)
二、探索规律、建立模型
(一)创设情境,出示问题。
园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由。
师:从这份要求上,你能获得哪些信息?
(预设:20米长的小路,一边,每隔5米栽一棵)
师:每隔5米是什么意思?
(预设:两棵树之间的距离是5米,每两棵树的距离都相等)
(二)动手操作,设计方案
同桌二人合作,摆一摆或画一画
(三)交流汇报,展示作品
师:大多数同学已经完成了,谁来汇报(汇报后展示)
(预设:我们小组设计栽了5棵树。在一条长20米的路上,开始先栽一棵,然后隔5米栽第二棵,再隔5米栽第三棵……再隔5米栽第五棵。)
师:不错,老师期待你更精彩的表现,他们设计了5棵,还有不同方案吗?
(预设:我们小组设计栽了4棵树,开头的地方没栽,先隔5米栽第一棵……隔5米栽第4棵。)
师:为什么开头的地方不栽?
(预设:因为有的时候在一条路的一头可能会有障碍物,所以不能栽。)
师:你想得真周到,真是个既细心又爱动脑的孩子。是呀,如果在路的一端有建筑物就只能在另一端栽了!同学们的设计真精彩啊!还有不同的设计方案吗?
(预设:如果路的两端都有建筑物,可以栽3棵。)
师:你回答的太棒了,老师感到震撼!对,有的时候在路的两端都会有障碍物,这个时候路的两端就不能栽树。
(四)比较方案,探究规律。
1、间隔数与总长、间距的关系。
(1)出示植树的三种情况,学生观察相同点。
师:同学们真有创造力!短时间内根据要求设计出了三种不同的方案,你们都有资格成为一名设计师了。现在请用你们雪亮的眼睛看一看,这三种方案中相同的地方是什么?
(2)学生汇报,教师板书。(总长、间距、间隔数 20 5 4)
(3)间隔数与总长、间距的关系。
师:这三种方案的间隔数都是几?能用一个算式来表示吗?(20÷5=4(个))在这个算式中,每个数字分别表示什么?
你们能说说怎样求间隔数吗?(总长÷间距=间隔数)
问:要想知道有几个间隔,必须要知道哪两条信息?(总长、间距)
师:接下来,咱们来比一比,谁的反应快?(如果一条小路长100米,每隔10米栽一棵树,一共有多少个间隔呢?如果每隔20米栽一棵树,一共有多少个间隔呢?)
2、间隔数与植树棵数之间的关系。
(1)学生观察不同点,教师讲解三种方法的名称,同桌交流棵树和间隔数的关系。
问:刚才咱们找到了这三种方案的相同点,请同学们再用你们睿利的目光观察,不同的地方又是什么呢? (预设:植树的棵数不同、植树的方法不同)
学生汇报后,教师讲解三种方法的名称。
师:看来虽然间隔数相同,但是不同的植树方法,植树棵数是不同的。我们就来研究在不同的植树方法中,间隔数与植树棵数之间存在着怎样的关系。赶紧用你们的慧眼去发现吧,可以把你的发现和同桌分享。
(2)汇报交流。(板书)
(3)演示,明白原因。(演示:树与间隔之间的一一对应关系。)
3、小结:解决植树问题方法
师:会求植树的棵树吗?这三种关系可是个宝贝,你们想得到它吗?那请闭上眼睛,打开你的大脑主机,我要把这个宝贝输入你的大脑了,千万别开小差啊,出现死机现象那可麻烦啦,准备好了吗?我要开始传宝贝了……好,收到了宝贝的同学请用最美的姿势坐好。
三、巩固应用、内化提高
师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:
1、有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?
2、同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?
3、大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?
4、在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
四、课堂总结、拓展延伸
师:今天我们一起研究了有关“植树的问题”,不过,我有一个疑问想请大家帮我解释一下:植树问题就仅仅是指植树这一种现象吗?
生举生活中的其他例子,锯木头、上楼梯、安装路灯……
回到大脑思维体操的题目,进一步理解每一个算式表示的意思。
师:第一题锯木头属于哪种情况,第二题又属于哪一种情况呢?
师:今天这节课,你觉得你最大的收获是什么?
师:植树问题在我们的生活中无处不在,它美化着我们的生活,美化着我们的校园。其实在“植树问题”中,“植树”的路线可以是一条线段,也可以是一个封闭图形,比如正方形、长方形或圆形等。有兴趣继续探索吗?请利用本节课学到的方法回家和家长探讨。
板书设计:
(一条线段上的)植树问题
方法 间隔数 棵数 关系
总长 ÷ 间距
两端都栽 4 5 棵数=间隔数+1
只栽一端 4 4 棵数=间隔数
两端不栽 4 3 棵数=间隔数-1
五年级《植树问题》教学设计优秀2
单元教学目标:
1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的.应用意识和解决实际问题的能力。
教学时数:4课时
数学广角植树问题(一)
第一课时教学内容:
教科书第117页118页的例1、例2
教学目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。
2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。
3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点、难点:
教具:
挂图、直尺
教学过程:
一、创设情境,引入课题
1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。
师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)
师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。
2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。
3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?
今天,我们就来学习有趣的植树问题。
(一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
1)同桌相互讨论。
2)有线段图表示你的方法
3)学生汇报
4)引导总结:
两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)
你能用一个式子表示两端都栽的棵数和间隔数的关系吗?
板书:棵数=间隔数+1
5)在线段图上,又有怎样的关系呢?
点数=间隔数+1
6)这个问题应是:1005=20(个)间隔数
20+1=21(棵)棵数
巩固练习
(一)书第118页的做一做独立完成,指名反馈。
(二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
1)读题,理解题。
2)分组看图讨论。
3)尝试列式计算。
4)交流:603=200间隔数
两端不栽树:20-1=19(棵)
192=38(棵)
5)质疑:
为什么减1?为什么乘2?
比较例1与例2的不同?小组讨论,再交流
例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。
巩固练习二:
教科书第119页做一做1、2题
学生独立完成,集体反馈。
三、本课小结:
通过今天的学习,你有什么收获?
五年级《植树问题》教学设计优秀3
一、教学内容
教科书P117例1
二、教学目标
1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。
2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。
3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。
三、教学重点、难点
1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”
2、难点:利用规律来解决生活中的实际问题。
四、教学准备
小棒、课件、练习本、表格
五、教学过程
(一)创设情境,引入学习
1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?
(预设 生:有5根手指 生:有4个空)
像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)
2、生活中很多地方也存在着间隔,你能找到吗?
(预设 生1:树木之间有间隔 生2:队伍之间 生3:栏杆之间也有)指名3人
3、老师也收集了一些(播放课件)
过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)
(二)合作探究“两端都栽”的规律
1、①课件出示 请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?
谁能响亮的读题?
②从题中你了解到了哪些数学信息?
预设 生1这条小路总长20米 生2每隔5米种一棵(5米就是我们所说的间隔长) 生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽) 生4:一旁
③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)
(预设 生1:20÷5+2=6(棵) 生2:20÷5+1=5(棵))
还有不一样的吗?也上来写写
说一说你的想法
④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?
指名2人说(板书总长÷间隔长=间隔数)齐读1次
2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。
(预设 生1:用手掌中的'间隔现象来说明 生2:用小棒来模拟种一种
生3:画线段图来验证一下)
方法有很多,但是画线段图是最常见、最一般的方法。
②你打算怎么画,能介绍一下吗?
生介绍,师板画
介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔 5棵数)
通过线段图,我们清楚的看出正确答案应该是20÷5+1=5(棵))
3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?
两端都栽的情况下
同桌合作完成表格第2、3两行。
②展示1个学生的作品,课件出示
观察大屏幕上的数据,想一想在两端都栽的情况下,棵数与间隔数存在怎样的规律?
指名3人说(在说时强调条件是两端都栽的情况下) (板书 棵数=间隔数+1 间隔数=棵数-1) 加上条件再齐读一次
4、验证规律
①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?②请在表格的剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?
③同桌再次合作,教师巡视
④汇报,教师记录结果
⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?
700个间隔,几棵树? 1000棵数几个间隔?
(三)练习生活,拓展应用
生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!
1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题 学生独立列式,说一说你的理解
2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题 刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。
3、你看过钟表吗?
你听——当当,这是几时;当当当这是几时,有几个间隔?
在钟声里也有数学问题,一起去看看吧!
出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?
(四)课堂小结,留下悬念
1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?
2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!
五年级《植树问题》教学设计优秀4
教学目标:
一、知识与技能性:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3、能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1、进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。
三、情感态度与价值观
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重、难点
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
教学准备:
课件
教学过程:
一、 动手种树,初步感知
1、创设情景
2、理解题意
[出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。
师:从这份要求上,你能获得哪些信息?
(20米长的小路,一边,每隔5米种一棵)
3、设计方案,动手种树
师:了解了信息,请同学们设计一份植树方案。你可以用这条线段来代表20米长的小路,其中每一小段的长度是1厘米,我们用它来表示1米长的小路,请你用自己喜欢的图案或图形来表示小树苗,把你设计的方案画一画。比一比,谁画得快种得好,老师就聘请他作学校的环境设计师。
学生活动,教师巡视指导
4、反馈交流
师:根据你的方案,需要种几棵树?
师:同学们真会动脑筋,设计出了这么多的方案。那他们的方案分别是怎样的呢?
请设计师们给大家作一下介绍
师:他的设计符合要求吗?
师:这位同学是按照每隔5米种一棵的要求来设计的,我们把这个距离叫做间隔距离,在这份设计方案中,有几个间隔距离呢?我们一起来数一数。有4个这样的间隔距离。像这样间隔距离的个数我们又把它叫做间隔数。
师:接下来我们来看看种4棵树的设计方案是怎样的?
生答
师:最后我们来看看种3棵树的设计方案又是怎样的`呢?
生答
师:就一个要求,同学们就设计出了三种不同的植树方案,真是太能干了!
看来你们都有成为环境设计师的资格。李老师会把你们的方案上交到学校的。
师:(出示三种方案线段图)不过,李老师有个问题想请教大家,既然这三种植树的方案都符合设计的要求,为什么同样是20m长的小路,同样的要求,为什么有的是种3棵树,有的是种4棵树,还有的是种5棵树? 谁能来说说他们不同的地方在哪里?
师:第一种方案,在路的头尾都种了一棵树,我们就把它叫做是“两端都种”的植树方案,第二种方案,只种头不种尾或者只种尾不种头,我们就把它叫做是“只种一端”的植树方案,第三种植树方案头尾都不种树,我们就把它叫做是“两端不种”的植树方案。(板书:两端都栽 只栽一端 两端不栽)
二、 合作探究,总结方法
1、总结规律
师:现在我们一起来研究一下,在这三种植树方案中,它们的间隔数和树的棵数之间分别有着什么样的关系呢?同桌同学先讨论讨论,然后完成这张表格。
植树方案 间隔数(个) 棵数(棵) 间隔数与棵数的关系
学生反馈交流,师生共同完成表格
师小结:刚才我们通过每隔5米种一棵树的要求,发现了植树的三种方案,并知道了每种方案中棵数与间隔数之间的关系,接下来我们重点来研究“两端都种”的植树问题。
师:在两端都种的情况下,在这条20米长的小路上,如果按照每隔1米,2米,4米,10米的要求来种树,那么间隔数与棵数之间是不是也会存在这样的关系呢?
请同学们选择一种自己喜欢的间隔距离,先在线段图中画一画,然后再列式算一算,间隔数是几个,需要种几棵树?间隔数与棵数之间又有怎样的关系?
(学生活动后反馈交流)
师小结
2、运用规律
师:老师有问题要考你们了,知道的同学马上起立回答我,比比谁的反应快?在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?
三、 开放练习,应用方法
1、这是我们镇新修的一条公路(图示),公路全长100米,园林工人们想在公路的一侧种樟树(两端都要种),每两棵树之间的距离是10米,一共需要多少棵樟树苗?
(1)学生独立解答
(2)全班交流结果
2、师:如果两侧都要种,一共需要多少棵樟树苗?(把第1题中的“一侧”改为“两侧”?)
(1)学生独立解答
(2)集体反馈
3、 园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(1)学生独立解答
(2)集体反馈
师小结
4、在一条街道的一边等距离安装路灯(两端也要安装),街道全长800米,共安装了41座路灯,问相邻两座路灯之间的间隔距离是多少米?
(1)学生独立解答
(2)集体反馈
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
6、书本P122练习二十第4题
圆形滑冰场的一周全长是150米。如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
四、课堂小结,课外延伸
师:通过这节课的学习你有什么收获?
五、板书设计:
植树问题
(主板书) (副板书)
间隔距离 间隔数 棵数
两端要栽:间隔数+1=棵数 1米 20个 21棵
只栽一端:间隔数=棵数 2米 10个 11棵
两端不栽:间隔数-1=棵数 4米 5个 6棵
10米 2个 3棵
【五年级《植树问题》教学设计优秀】相关文章:
植树问题教学设计优秀12-16
五年级《植树问题》教学设计优秀01-23
植树问题教学设计10-06
《植树问题》教学设计04-11
植树问题教学设计06-10
植树问题教学设计范文10-07
人教版《植树问题》教学设计05-23
[精选]五年级《植树问题》教学设计01-05
五年级《植树问题》教学设计06-27
五年级上册《植树问题》教学设计05-11