分数乘整数教学设计
作为一名无私奉献的老师,时常需要用到教学设计,借助教学设计可以更好地组织教学活动。写教学设计需要注意哪些格式呢?下面是小编收集整理的分数乘整数教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
分数乘整数教学设计1
【教学目标】
知识与能力:
1、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2、使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观:
通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学重难点】
1、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2、引导学生总结分数乘整数的计算法则。
【教具、学具】
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。
【教学过程】
一、铺垫孕伏
(一)出示复习题。
1、口答:
5个12的和是多少?
10个23的和是多少?
4个0.5的和是多少?
2、整数乘法的意义是什么?
3、计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)
二、探究新知。
(一)教学分数乘整数的意义。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
指名读题。
1、分析演示:
每人吃个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了个,三个人吃了几个个?使学生从图中看到三个人吃了3个个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:++===(个),(教师将3个双层扇形图片拼成一个一块蛋糕的图片)
2、观察引导:
这道题3个加数有什么特点?使学生看到3个加数的.分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
3、比较和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点:是分数乘整数,12×5是整数乘整数。
4、概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
(二)教学分数乘整数的计算法则。
PPT出示:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。
1、推导算理:
由分数乘整数的意义导入。
表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
2、引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)
观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。
3、概括总结:
请根据观察结果总结的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)
(三)反馈练习:
1、看图写算式。
订正时让学生说出乘法的意义各表示什么?
2、口答列算式:
=()×()
3个是多少?5个是多少?
订正时让学生说一说为什么这样列式。
三、全课小结
这节课我们学习了什么?引导学生回顾总结。
【板书设计】
分数乘整数教学设计2
教学内容:
P39-40例2,“练一练”,练习八第6-11题
教学目的:
1、让学生理解求一个数的几分之几是多少可以直接用乘法来计算
2、促使学生加深对相关数量关系的理解,提高解决简单实际问题的能力教学重点难点:使学生理解求一个数的几分之几是多少可以用乘法来计算教学资源:例2的图、小黑板教学过程:
一、导入
1、出示例2学生看图理解题意说说题中两个分数的具体含义明确:以10朵绸花为单位“1”,红花的朵数是10朵的1/2,绿花的朵数是10朵的2/5
二、探索
1、学生尝试解决第(1)个问题,求红花的朵数学生交流解决方法,明确求红花的朵数可以用除法来计算,还可以用乘法计算由此列出乘法算式,并让学生再次算出结果
2、解决第(2)个问题先让学生在图中按要求圈一圈理解:求绿花有多少朵,就是把10朵花平均分成5份,求这样的2份是多少让学生已有的知识来解答交流:求10多的2/5是多少,也可以用乘法来计算
3、引导学生比较两种计算方法使学生明白:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少计算10*2/5时,要先约分,实际上也就是先用10/5,求出1份是多少,再乘2求出2份是多少
4、小结:求一个数的几分之几是多少,可以用乘法计算
5、“练一练”第1题先让学生根据题意涂色,在列式计算第2题先让学生理解题意,再填空
三、练习
1、练习八第6题先让学生独立解答后再交流,比较,教案分数与整数相乘。
体会到:求一个数的几分之几是多少与求几个相同数连加的`和,都可以用乘法来计算
2、练习八第7题学生先独立计算再交流
3、练习八第8题学生独立解答并说说是怎样思考的
4、练习八第9题先理解:表中的分数都是与四月份的天数比较后得到的,都以“30天”作为单位“1”。估计天数的多少,可以直接比较分数几个分数的大小。将计算结果与估计结果进行比较,看估计是否正确。
5、练习八第10题先让学生看图计算,再组织学生说说三个问题有什么相同的地方。
6、练习八第11题学生先独立解答,再进一步思考:如果不计算,你能比较出参加三项比赛的人数哪一项最多,哪一项最少吗?
分数乘整数教学设计3
教学内容:
教材第27页的例1和第28页的练一练,完成练习五第1~3题。
教学目标:
1.使学生学会联系不同的知识,作出不同的推理,体会策略和方法的多样性。
2.在运用不同的策略解决问题的过程中,感受知识间的内在联系,形成最优化思想。
3.在解决问题的过程中,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:
掌握用转化的策略解决分数问题的方法。
教学难点:
根据具体问题,确定转化后要实现的目标和转化的方法。
教学资源:
课件
教学过程:
一、回顾旧知,整理策略
谈话:从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?(学生可能已经忘记,教师帮助回顾整理:依次是分析量关系的从条件向问题推理和从问题向条件推理,帮助理解题意的列表整理和画图整理,还有枚举转化假设与替换等策略)
提问:这些策略你们都学会了吗?今天我们将合理的选择这些策略来解决新的问题,大家愿意接受挑战吗?(板书课题:转化的策略)
二、合作探究,运用策略
1.教学例1(课件出示例1)
学生读题,自主完成。
谈话:这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?(引导学生进一步分析)
小组交流方法。
汇报交流情况:(学生遇到困难可作适当的引导。)
①根据男生人数是女生的2/3理解2/3这个分数的意义,可以画线段图,看出男生人数是美术组总人数的2/5。原来的问题就转化成美术组一共有35人,男生人数是总人数的2/5,女生人数是总人数的.3/5,男生有多少人?女生有多少人?这是简单的求一个数的几分之几是多少的问题。
②根据分数2/3的意义,可以推理出男生人数和女生人数的比是2∶3。原来问题就转化成美术组一共有3/5人,男生与女生人数的比是2∶3,男生、女生各有多少人?这是按比例分配问题。
③根据分数2/3的意义,想到女生人数看作3份,男生人数是2份,于是产生解题思路:先算出1份是几人,再算2份、3份各是多少人。
④把作为单位1的女生人数设为x,那么男生人数就是2/3x,利用美术组一共35人,能够列方程解题。
谈话:通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?为什么呢?(让多名学生回答,征求各自的看法。)
刚才我们运用了不同的策略来解决这个问题,你们能检验一下自己做的是否正确吗?(引导学生交流检验方法)
2.做第28页的练一练
引导学生运用刚才学过的策略,用自己喜欢的方法来解决。
要求学生说说你选择了什么策略,是怎样想的(通过他们在交流中获得这些体验,让学生体会方法的多样性。)
三、巩固练习,回顾策
1.练习五第1题。
要求学生根据示意图里的数量关系,写出分数,并转化成比。或者写出比,再转化成分数。(这道题可以看作沟通数学概念之间联系,组建概念系统的练习,有助于问题的转化。)
2.练习五第2题。
根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。(在线段图上可以联想到的数学信息越多,思维就越开放,问题转化的思路会越开阔,解决问题的资源也就越充分。)
四、课堂小结,提升策略
谈话:通过今天的学习,我们知道了在小学阶段学习了很多解决问题的策略,如果能合理选择,就能起到化繁为简的作用,帮助我们更好的解决问题。
五、课堂作业
练习五第3题。
分数乘整数教学设计4
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学难点
引导学生总结分数乘整数的计算法则。
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==3××3=
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=
二、自主探索(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1、读题,说说块是什么意思?
2、根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1:
方法2:
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的。
区别:一种方法是加法,另一种方法是乘法。
教师板书:
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便。
(四)×3表示什么?怎样计算?
表示3个的和是多少?
用分子2乘3的积做分子,分母不变。
(五)提示:为计算方便,能约分的要先约分,然后再乘。
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算。
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1、改写算式
2、只列式不计算:3个是多少?5个是多少?
(二)巩固法则
1、计算(说一说怎样算)
思考:为什么先约分再相乘比较简便?
2、应用题
(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)对比练习
1、一条路,每天修千米,4天修多少千米?
2、一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的`边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:
用乘法算:
答:3人一共吃了块
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
分数乘整数教学设计5
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学难点
引导学生总结分数乘整数的计算法则。
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5 个12 是多少?10 个23 是多少?25 个70 是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法: + + = = =
×3 这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
为什么只把分子与整数相乘,分母10 不和3 相乘?
二、提出问题
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?
1、读题,说说 块是什么意思?
2、根据已有的知识经验,自己列式计算
三、解决问题
(一)学生汇报,并说一说你是怎样想的?
方法1 : + + = = = (块)
方法2 : ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的。
区别:一种方法是加法,另一种方法是乘法。
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3 个 相加,因为加数相同,写成乘法更简便。
(四) ×3 表示什么?怎样计算?
表示3 个 的和是多少?
+ + = = = = ,用分子2 乘3 的积做分子,分母不变。
(五)提示:为计算方便,能约分的要先约分,然后再乘。
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。
(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。
五、拓展应用
(一)基本练习
1、改写算式
+ + + = ( )×( )
+ + + + + + + = ( )×( )
2、只列式不计算:3 个 是多少? 5 个 是多少?
3、计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
(二)综合练习
应用题
(1 )一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2 )美术馆要进行美术展览,有5 张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)拓展练习
1、一条路,每天修 千米,4 天修多少千米?
2、一条路,每天修全路的 ,4 天修全路的`几分之几?
六、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3 人一共吃了 块。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
分数乘整数教学设计6
教学内容:
教科书第1~2页,分数乘整数。
教材简析:
本节课是在学生掌握整数乘法,理解分数的意义和基本性质,能正确计算分数加减法的基础上进行教学的,所学内容属于分数中的基本知识和技能,这些知识不仅可以解决有关的实际问题,而且也为学生进一步学习分数除法、分数四则混合运算奠定基础。
教学目标:
1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。
2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。
3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。
教学重、难点:
掌握分数乘整数的算理和计算方法,能正确地进行计算。
教学过程:
1.创设情境,揭示课题。
(1)出示情境图。
师:阳春三月,同学们打算举行一次风筝制作展示活动。请看,这是小明同学制作的风筝。仔细看图,你了解到哪些信息?根据这些信息,你能提出什么数学问题?
(2)探索分数乘整数的意义,揭示课题。
师:求制作这个风筝尾巴用多少布条,你会列式吗?
+++++。生2:×6。
21生3:6×。
2生l:师:①和②与我们以前学过的算式有什么不同?生:都是分数乘整数。
师:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。6个写成1可以2111×6,也可以写成6×。这就是我们今天要学习的分数与整数相乘。(板书课题:分数与整数相乘)2221/4
【评析】分数乘整数比较抽象,小学生学习起来容易感到枯燥。创设现实情境可以激发学生的学习兴趣。同时,鼓励学生提出问题,培养了学生发掘信息、发现问题的数学素养。
2.算法交流,分析比较。
(1)学生尝试独立计算。师:尝试计1×6,做完后小组内交流,交流时要把道理说清楚。
(2)交流算法。
1×6=×6=3(米)②×6=+++++==3(米)?66③×6===3(米)④×6=(米)212①师:你认为④正确吗?为什么?
16是3,而不是。2121师:你能联系已有知识说明×6的积为什么是3吗?
生1:因为+++++=3,所以×6=3。
生2:是1个,6个是,就是3。
2222生:6个师:在方法③中,为什么分母2不变,单单只把分子1和6相乘呢?(课件演示方法③的计算道理。)
【评析:给学生创设足够的探究时空,放手让学生运用已有的知识和经验自主探究计算方法,每一点知识都是通过学生的主观努力获得的。在此基础上引导学生生生交流、师生交流,教师仅在学生的疑惑处或计算的关键处给以提示或强调。这样设计极大程度地发挥了学生的主体性,学生中产生了许多富有个性的算法,有效地落实了算法多样化这一理念。】
3.沟通优化,促进发展。
(1)算法的初步优化。(出示:5×12)3(学生尝试独立计算后全班汇报交流。)①×12=+++++++++++=202/4
②5×12=203师:请同学们评价一下这两种方法。生:用相加的计算方法太麻烦,师:为什么不用转化成小数的方法计算?生:因为5不能化成有限小数,所以转化成小数的方法不可取。3师:这两种方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。
(2)升华计算方法。
师:能不能在原有方法的基础上,想办法使计算再变得简单一些?(课件出示简便算法:先约分再计算。)
(3)总结计算方法。
师:观察刚才的.计算过程,根据讨论,你认为分数与整数相乘,可以怎样计算?在小组里交流。师(小结):分数与整数相乘,要用分数的分子与整数相乘,分母不变,计算时,能约分的要先约分再计算。
【评析:在计算课中如何让学生既能知算理,又能晓算法,这是计算课教学的关键所在。在学生探究得出几种不同的计算方法后,让学生亲历5×12的计算过程,这样算法优化便是在学生计算、观察、比较3的基础上自然生成的,从而真正把学生推向主动活泼的探究舞台。】
(4)巩固。独立计算10×,×36,×21。
联系实际,灵活运用。
(1)学生独立完成“自主练习”第1题。
①学生审题,并按要求填空。
②集体订正,并要求学生说出从加法算式到乘法算式的根据。
(2)学生完成“自主练习”第2题。
订正时让学生说说题意并列算式,说乘法算式的意义并口算出结果。
【评析:通过基本练习,既巩固和加深了对知识的理解,学会了运用,同时也发展了学生的思维,把课堂的知识和生活紧密结合,达到了巩固知识、培养技能、激发兴趣、发展思维的目的。】
5.课堂总结,交流收获。
师:时间过得真快,一节课就要结束了,大家有什么收获?
【评析:有意识地培养学生的抽象概括能力,把思维的空间留给学生,把说的机会让给学生,让学生学会自我反思。】
分数乘整数教学设计7
教学目标:
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
重点难点:
学习重点:理解并掌握分数与分数相乘的计算方法。
学习难点:分数与分数相乘计算方法的探索过程。
课前准备:
教学过程:
一、布置要求,引导预学
1.复习迎新
口头列式
(1)80的是多少?
(2)的是多少?
二、预习反馈,诊断查学
课中进行预习反馈,教师根据学生的反映有针对性地调整教学。
三、目标引领,探究导学
(一)、创设情境
以前我们学习了分数的意义,下面请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?随着学生的回答,教师继续对它们进行操作,并引出新课
(二)、组织探究
1、教学例4出现教材中的图形
然后问:画斜线部分是12的几分之几?又是这个长方形的几分之几?
由此明确:12的14是18,12的34是38
启发学生进一步思考:求12的14是多少,可以怎样列式?求12的.34呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书P45完成
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母
2、教学例5
(1)让学生说说23×15和23×45分别表示23的几分之几?你能用前面得出的结论计算这两道题吗?学生试做订正完后问:你能用什么方法来验证你的计算结果呢?
(2)验证比较
让学生在自己准备的长方形纸上先涂色表示23再画斜线表示23的15和23的45
学生动手操作,教师巡视对学困生进行指导,看看操作的结果与你计算的结果是否一致?学生观察比较
3、归纳总结
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(三)、练习
1、完成P46的试一试
提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算通过交流进一步明确计算分数与分数相乘的计算方法
四、分数与分数相乘的计算方法的推广
同学们,下面着几道题你回计算吗?
出示:211×3=4×56=
请同学们先完成P46的填空,提醒学生把整数看作分母是1的分数来计算
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?学生分组讨论
明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘
(2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便
(3)也可以整数与分数直接进行约分后再计算。这样更简便教师进行示范如P46
2、练习完成P46的练一练
引导学生用直接约分的方法进行计算
四、巩固练习,反馈练学
1、做练习九的第1题先在图中画一画再列式计算
2、做练习九的第3题说出错的原因
3、做练习九的第4题看谁算的最快
五、课堂总结,拓展思学
全课小结通过这节课的学习,你有什么收获?还有什么疑惑?
板书设计:
分数乘分数
教后记:
分数乘整数教学设计8
教材分析
《分数乘整数》是苏教版小学数学第十一册第三单元的内容。这节的内容是在已学整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。对今后求几个加数的和的简便运算用乘法来解决。注重培养学生的计算能力。
学情分析
学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法来推导出分数乘整数时只需把分子和整数相乘的积做分子,分母不变。
学生在刚学习分数乘法时,可能会有时想不到先约分,在课堂教学时要注意加以强调。
教学目标
1、使学生理解分数乘整数的意义。
2、培养学生的合作探究意识和良好的'逻辑思维能力。
3、让学生在学习中获得成功的体验。
教学重点和难点
重点:理解分数乘整数的意义。
难点:掌握分数乘整数的计算法则。
教学过程
1、让学生动手做绸花,加深了学生对求几个相同加数的和的简便运算用乘法来算。
2、让学生操作涂彩纸表示绸带,加强学生对分数意义的推算。
3、理解分数乘法的意义,认识分数乘法算式,加深理解两个因数相乘,交换因数的位置积不变。
4、小结。
分数乘整数教学设计9
教学目标:
结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的过程。
理解分数乘整数的计算方法,会计算分数乘整数的乘法。
体验用乘法解决连加问题的价值,激发学习新知识的愿望。
教学重点:分数乘以整数的计算方法。
教学难点:正确运用先约分,再相乘的方法进行计算。
教学过程:
一、复习铺垫
1、让我们先来做几道口算题,你能直接口算出结果吗?
出示:
3/8 +1/8= 1/3+1/5= 7+9=
1/4+1/4+1/4= 2/9 +2/9= 3+3+3+3+3+3=
2、学生口答。
3、最后一题你是怎么口算的?还可以怎样口算?——引导学生说出用乘法3×5或5×3来计算。
4、师小结:是啊,求几个相同加数的和的简便运算可以用乘法。
质量问题
教师口述问题,让学生用自己喜欢的方法解决。
交流学生计算的方法和结果。
2/5+ 2/5+ 2/5 2/5 ×3
=2+2+ 2/5 = 2*3/5
=6/5( 千克 ) = 6/5( 千克 )
3、比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的。
区别:一种方法是加法,另一种方法是乘法。
教师板书: 2/5+ 2/5+ 2/5= 2/5×3
为什么可以用乘法计算?
加法表示3个2/5相加,因为加数相同,写成乘法更简便.
2/5×3表示什么?怎样计算?
表示3个2/5的和是多少?
2/5+2/5 + 2/5=2+2+2/5 =2*3/5 = 6/5 用分子2乘3的积做分子,分母不变.
6、 提示:为计算方便,能约分的要先约分,然后再乘.
三、归纳、概括:
分数乘整数,用分子和分母相乘的积做分子,分母不变
试一试
让学生独立观察图并列式计算。交流时,说一说是怎样列式的,怎样算的'。
练一练
教学后记:
这节课的教学任务主要有两点,就是掌握分数乘整数的意义,以及掌握分数乘整数的计算法则,在整数乘法 上,分数乘整数的意义学生比较易于掌握,我利用它的意义改写成 ,进而从 ,这一环节,我特别注重引导学生,观察板书,并及时给予提示,所以学生的分数乘整数的计算方法掌握得不错。但是不足的是,学生在约分时,有部分学生没有约分完,以后要不断训练学生约分的方法。
分数乘整数教学设计10
教学内容:
教科书第8―9页的例1、例2,完成“做一做”及相应的练习。
教学目标:
1、利用类推法引导学生理解分数乘整数的意义与整数乘法的意义相同;在此基础上通过自主探索、小组合作归纳并掌握分数乘整数的计算法则,且能正确地进行计算。
2、培养学生合作探究的意识及良好的逻辑思维能力。
3、让学生在课堂学习中交流学习数学的感受,获得学习成功的体验。
教学重点:掌握分数乘整数的.计算法则。
教学难点:计算法则的推导
教学方法:类推法、猜想验证法、归纳法、小组合作法
教学过程:
一、复习引入
1、师口述:
①5个12是多少?怎样列式?(12×5)
②6个0.5呢?(0.5×6)
③3个是多少?你会列式吗?(×3)
师:这是个新内容,大家也会列式,真了不起。知道我们刚才用的是什么数学方法吗?(类推法,类推法就是由原来的旧知根据它们之间的相似处类推出和它实质一样的新知识。这是我们学习数学时常用的一种方法)
2、引入:这就是今天我们要一起研究的分数乘法中的第一个问题:分数乘整数(板书课题)
二、合作探究、归纳法则
1、师:看到这个课题,你都想知道关于它哪些方面的知识?
生1:分数乘整数该怎样计算?
生2:在计算时有什么要求或要注意的地方?
师:同学们的想法可真好。那就请带着这些问题进入我们今天的时空隧道吧。
2、师:大家知道吗?出示:
人跑一步的距离相当于袋鼠跳一下的,人跑3步的距离是袋鼠跳一下的几分之几?
你们有办法解决这个问题吗?好,大家先独立思考,有想法后可以和周围的同学交流一下。
3、师:谁愿意先来发表一下你的看法?
生1:我列的是加法算式:++
同分母分数相加减,分母不变,只把分子相加减。
即:++==
生2:我列的是乘法算式:×3
我想:要求人跑3步的距离是袋鼠跳一下的几分之几,就是求3个是多少?3个就是。
即:×3=
生3:老师,我列的也是乘法算式:×3
但我是这样计算的:用分子“2”和整数“3”相乘得6,写在分子的位置上,分母不变。和他们结果一样,也得。即:×3==
师:同学们的做法和想法都不错,哪怕有的是猜想也很了不起!如果大家把乘法和加法联系起来思考,大家的思路会更明朗的。
×3,大家说就是求3个是多少,我们就可以写成3个相加的形式,即:×3=++===。现在大家再来看×3的计算过程,清楚了吧。其实在今后计算时,可以把借助加法思考的这些过程省略,写成:×3==
4、师:观察分数乘整数的计算过程,同桌说一说我们是怎样计算分数乘整数的?
生:分数和整数相乘,用分子和整数相乘的积作分子,分母不变。
师:谁来再说一说?(多找几个学生说说,加深理解和记忆)
三、运用新知、巩固练习
师:现在你会计算分数乘整数了吗?我们先闯第一关:
⑴计算:×6(学生独立计算)
⑵成果展示:生1:×6==
生2:×6===
生3:×6==
师:还有不同的做法吗?好,谁愿意来评价一下这几位同学的做法?
生1:这几位同学的计算方法掌握得都不错,但是第一位同学到最后也没有约分,我觉得这是不对的。
生2:我最欣赏第三位同学的做法,因为他在计算过程中进行了约分,这样计算起来比较简便。
分数乘整数教学设计11
教学目标:
1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。
3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:总结分数乘整数的计算方法。
教学过程:
一、创设情境,提出学习目标。
1、 创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?
比赛题目为:3个 3/10 相加的和是多少?6个 3/10 相加的和是多少?
师:同学们的.表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?
2、提出学习目标
让学生先说一说,再出示学习目标:
(1)分数乘整数的计算方法。
(2)分数乘整数的意义与整数乘法的意义是否相同。
二、展示学习成果
1、小组内个人展示
学生独立自学课本8—9页例1、例2,完成“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)
2、全班展示
(1)算法展示。
生1:利用乘法与加法的关系进行计算。
2/15×4=2/15+2/15+2/15+2/15=8/15
生2:先计算出结果,再进行约分。
5/12×8=5×8/12=40/12=10/3=
生3:在计算过程中能约分的先约分,再计算。
2×3/4=3/2 2与4先约分,再计算。
(2)比较三种计算方法,选择最优算法。
通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
(3)错例展示:
错例1:学生把整数与分子进行约分。 错例2:学生没把计算结果约成最简分数。
3、学生质疑问难,激发知识冲突。
(1)针对同学的展示,学生自由质疑问难。
(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?
4、引导归纳分数乘整数的计算法则。
分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变;能约分的先约分,再计算。
三、拓展知识外延
1、完成课本12页练习二第1、2题。
2、生活中的数学
(1)一个正方形的边长是 4/3dm,它的周长是多少dm?
(2)老师从家到学校要步行10分钟, 如果每分钟步行 2/25千米,老师每天要走两个来回,每天一共要走多少千米?
四、总结反思,激励评价。
五、布置作业:
1、列式计算
(1)3个2/5是多少?
(2)7/12的6倍是多少?
(3)5/14扩大7倍以后是多少?
( 4)3/16与24的积是多少
2、智力冲浪:用12个边长都是 dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(A类同学做)
分数乘整数教学设计12
备教材内容
1、本课时学习的是教材2页的内容及相关习题。
2、例1以一家人吃蛋糕的情境引出分数乘整数的学习内容,使学生理解分数乘整数的意义及算理,掌握其计算方法。在学生掌握分数乘整数的计算方法的基础上,使学生进一步了解乘得的积一般应化成最简分数,掌握把积化成最简分数的两种方法。这节课是本单元的起始课,是学生学习分数乘除法的基础。
备已学知识
整数乘法的意义
求几个相同加数的和,可以用乘法计算。
分数的意义
把整体“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数加法的计算方法
同分母分数相加,分母不变,分子相加。
备教学目标
知识与技能
1、理解分数乘整数的意义,掌握分数乘整数的计算方法。
2、能够应用分数乘整数的计算方法比较熟练地进行计算。
过程与方法
通过观察、比较,归纳分数乘整数的计算方法,培养学生的抽象概括能力。
情感、态度与价值观
1、引导学生探究知识间的内在联系,激发学生的学习兴趣。
2、在理解算理的同时体会数学知识的魅力,领略数学的美。
备重点难点
重点:理解并掌握分数乘整数的意义和计算方法。
难点:明确分数乘整数的'算理。
备知识讲解
知识点:分数乘整数的意义及计算方法
知识回顾:同分母分数相加,分母不变,分子相加。
问题导入:小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?(教材2页例1)
过程讲解
1、理解题意
(1)理解关键语句的含义。
题中的“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思是说每人吃了整个蛋糕的。
(2)确定标准量(单位“1”)和比较量。
每人吃了整个蛋糕的,是把整个蛋糕看作标准量(单位“1”),把每人吃的份数看作比较量。
(3)借助示意图理解题意。
①画标准量:画一个圆表示标准量(单位“1”),如图一。
②画比较量:把表示标准量(单位“1”)的圆平均分成9份,其中的2份就表示每人吃的份数,如图二。
③明确所求问题:求3人一共吃多少个,就是求3个是多少,如图三。
图一图二图三
2、根据题意列出加法算式
++
3、探究分数乘整数的意义
重点提示
3个相加,用乘法也可以表示成3×。
(1)转化:将加法算式转化为乘法算式。
++3个加数相同转化为乘法算式×3
方法提示
求一个分数的几倍是多少或求几个相同分数的和是多少,就用这个分数乘“几”。
(2)明确意义:从算式中可以看出×3表示求3个相加的和是多少,也可以表示求的3倍是多少。也就是在这种情况下与整数乘法的意义完全相同。
4、探究×3的计算方法
(1)借助示意图计算出结果。
思想方法解读
借助示意图理解题意,其中蕴涵着数形结合思想。把数量关系和空间形式结合起来去分析问题和解决问题就是数形结合思想。
(2)计算加法算式的结果。
++===
(3)计算乘法算式的结果。
×3=++====
(4)观察对比。
(5)分数乘整数的简便计算。
分数乘整数时,如果分母和整数能约分,可以先约分,再计算,这样比较简便。例如:×3=。
5、解决问题
灵活应用
分数乘整数的计算方法对于整数乘分数同样适用。例如:5×==。
×3=
答:3人一共吃个。
归纳总结
1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算,结果不变。
拓展提高
1、带分数乘整数的计算方法:先把带分数化成假分数,再按照分数乘整数的计算方法进行计算。例如:3×2=×2=。
2、分数乘整数的简便算法也适用于分数连乘。例如:×10×3,在计算的过程中,分数的分母9和整数3能约分,可以先约分,再计算。
计算过程:×10×3=
【分数乘整数教学设计】相关文章:
分数乘整数教学设计01-17
分数乘整数教学设计【推荐】11-21
分数乘整数教学设计优秀12-20
分数乘整数优秀教学设计范文10-07
分数乘整数的教学反思02-25
分数乘整数教学反思04-13
《分数乘整数》教案06-18
分数乘整数教案08-27
小数乘整数教学设计09-18