比的应用教学设计

时间:2024-04-16 16:30:59 教学资源 投诉 投稿

(集合)比的应用教学设计15篇

  作为一名教学工作者,通常需要用到教学设计来辅助教学,教学设计是把教学原理转化为教学材料和教学活动的计划。优秀的教学设计都具备一些什么特点呢?下面是小编帮大家整理的比的应用教学设计,欢迎大家分享。

(集合)比的应用教学设计15篇

比的应用教学设计1

  教学目的:

  1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

  2.培养学生分析、解决问题的能力,以及良好的思维品质。

  教学过程:

  一、复习

  1.什么叫长方体、正方体的表面积?

  如果告诉了长方体的长、宽、高,怎样求它的表面积?

  如果要求正方体的表面积,需要知道什么?怎样求?

  2.图中告诉了长方体的什么?

  (1)要求前面或者后面的面积,需要用哪两个条件?怎样求?

  用9厘米、3厘米这两个条件可以求出哪个面的面积,怎样求?如果要求左面或右面的面积,需要用哪两个条件,怎样求?

  这个长方体的表面积怎样求?

  (2)按要求列式,不计算。

  3.(出示长方体教具)请同学生们看,这是什么体?它有几个面?

  如果没有上面,(同时去掉上面)要求它的表面积,就是求几个面的总面积?是哪5个面呢?

  如果没有上、下面,(再去掉下面)又是求几个面的总面积,哪几个面?

  [说明:以上复习题的设计,突出了逻辑性和灵活性。为学生灵活运用表面积的计算方法,创造性地解决生活中的实际问题,埋下了伏笔。]

  二、新课教学

  1.揭示课题:长方体、正方体表面积的实际应用。

  2.例3:粮店售米用的米箱(上面没有盖),长l.2米、宽0.6米、高0.8米,制作这样一个木箱至少要用木板多少平方米?

  (1)读题,说出这道题的题意(或己知条件和问题)

  (2)要求用木板多少平方米,就是求木箱的什么?这个木箱有几个面?少了哪一个面?

  (3)怎样列式?

  a.1.2×0.8×2+0.6×0.8×2+1.2×0.6

  =1.92+0.96+0.72

  =3.6(平方米)

  答:至少要用木板3.6平方米。

  b.谁还有不同的方法(并讲出列式思路)。

  (1.2×0.8+0.6×0.8)×2+1.2×0.6

  (l.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6

  [说明:教师让学生审题时,强调题中的隐含条件"上面没有盖",抓住解答本题的关键,又从不同角度引导,加强学生逻辑思维的训练,培养思维的灵活性。]

  3.小结:

  通过例3的学习,我们知道在解答长方体、正方体表面积的问题时,首先要判断什么?然后就按照有几个面就直接求几个面的面积或先求出6个面的总面积再减去缺少面的面积的方法来解答。

  4.如果原已知条件不变,再增加条件和问题,出示如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?

  (1)提问:求刷油漆的面积就是求几个面的面积,自你会解答吗?请独立完成。

  (2)集体评讲。(师板书如下)

  1.2×0.8×2+0.6×0.8×2=2.88(平方米)

  (1.2×0.8+0.6×0.8)×2=2.88(平方米)

  (1.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6×2=2.88(平方米)

  (1.2+0.6)×2×0.8=2.88(平方米)

  (3)利用教具演示,验证(1.2+0.6)×2×0.8是否正确:如果把它刷油漆的四个面展开,观察是什么形,要求长方形的面积需要知道什么,这个长方形的长是多少?长方形的宽是多少?面积是多少?

  [说明:通过上题只改变一个问题,使学生灵活运用知识,变换思路,培养学生集中思维和随机应变的能力,发展思维的灵活性。当学生说出(1.2+0.6)×2×0.8时,教师给予表扬性的肯定,然后教师借助教具的演示,使学生明白刷油漆的四个面展开后与长方形的关系及计算的简洁性,利用了转化思想,培养了学生的思维独创性。]

  5.看来,在实际生活中,有些物体不一定要求6个面的总面积。老师带来一幅图,请看,哪些物体是需要求6个面的总面积,哪些是求5个面的或4个面的总面积的?谁还能举出生活中的例子?

  [说明:举例说明生活中的求六、五、四个面总面积的物体,不仅提高了学生学习的兴趣,开阔了数学视野,而且使学生感觉到生活中处处有数学,可以学以致用。]

  三、巩固练习

  1.只列式,不计算。

  (1)农民伯伯要做一个不带盖的正方体水桶,底面是边长3分米的正方形,做这样一个水桶至少要用铁皮多少平方分米?

  (2)工人叔叔要做一个长方体烟卤,长宽都是3分米,高10分米,求至少要用铁皮多少平方分米?

  2.判断下列算式是否正确,并说明理由

  一个火柴盒长5厘米、宽4厘米、高1.5厘米,做这样一个外盒至少要用硬纸多少平方厘米?

  (1)5×4×2+4×1.5×2 ( )

  (2)(4×1.5+5×1.5)×2+5×4 ( )

  (3)5×4×2+5×1.5 ( )

  (4)(5×4+5×1.5)×2 ( )

  (5)(4×1.5)×2×5 ( )

  (4+1.5)×2×1.5对不对呢?

  请同学们像图一样放置火柴盒,用剪刀沿长剪开,看看是什么图形?要求长方形的面积需要知道什么?长是多少?宽是多少?(4+1.5)冬2×1.5求的`是什么?

  [说明:老师在处理判断题时,不仅仅满足于学生说出正常的分析思路,而且紧跟一句"谁还有不同的理由也能说明这道题是错的",培养了学生的多向思维;"哪一种判断方法最快",又培养了学生思维的敏捷性和批判性。当学生的思维遇到障碍时,老师引导学生亲自动手操作去发现,相机点拨,教给了学生探索解决问题途径的策略。]

  3.希望小学新盖了一间教室,长8米、宽6米、高4米,工人叔叔要粉刷教室屋顶和四壁。除去门窗和黑板的面积20平方米。

  (1)粉刷的面积是多少平方米?

  (2)如果每平方米用涂料0.25千克,需要用涂料多少千克?

  想一想在实际粉刷过程中,工人叔叔准备35千克的涂料够用吗?为什么?

  [说明:"在实际粉刷过程中,工人叔叔准备35千元的涂料,够用吗",看似一句无关紧要的问话,却把学生的思维引向更加严密和周全的角度,这是创造性思维不可缺少的重要品质。]

  4.一个长方体的食品盒长6厘米、宽5厘米、高10厘米,在食品盒的四周贴上商标纸,宽度是1.5厘米,贴这样1个食品盒要用商标纸多少平方厘米?

  读题后,让学生讲什么叫接头处。

  独立思考,并把算式写在练习本上。

  [说明:以变化激趣,在变中找不变,使学生养成多层次思考的习惯,培养思维的广阔性。]

  四、全课小结

  同学们,我们今天学习了什么?你有什么收获?

  [说明:最后,教师没有总结本节课所学的知识,而是让学生谈自己的收获。学生不但总结了本节课的知识而且从中明白了许多道理,这一设计打破了原来的教学模式,加深了学生对知识的理解和掌握,诱发了创造性思维。]

  [说明:这节课重点突出、逻辑严密、灵活多样,充分调动了学生思维的积极性,在学习的过程中,不时有创造性的思维火花产生。这样设计一是通过一题多解培养了学生探索精神,发展了他们思维的独特性;二是通过简缩思维,培养了学生思维的敏捷性;二是通过联想,培养思维的变通性。]

比的应用教学设计2

  设计说明

  1.注重培养学生学习的自主性。引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。

  2.培养学生的解题能力。本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。

  教学目标

  1、经历多种方法解决“物物交换”问题的过程,体会解决问题方法的多样性,提高综合运用知识解决问题的能力。

  2、在解决问题的过程中,列出含有未知数的比例,并自主探索解比例的方法,理解根据“两个内项的积等于两个外项的积,求比例中的未知项,”会正确解比例。

  3、在生活中感受数学探索的乐趣,提高学生学习数学的兴趣。

  教学重点:

  使学生自主探索出解比例的方法,并能轻松解出比例中的未知项。

  教学难点:

  用比例的知识解决实际问题

  教法学法

  讲授法、讨论法、练习法、自主学习法

  教学准备:

  多媒体课件

  教学过程:

  一、回顾旧知,复习铺垫

  1.上节课我们学习了有关比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?

  2 .下面两个长方形的长和宽能组成比例吗?(白板出示长方形)

  二、创设情境 引出新知

  师讲《完璧归赵》的故事。秦王打算用什么来换和氏璧?其实这种物物交换的现象在我们现实生活中同样存在,学生举例,课前,老师就收到了这样一则信息,淘气是玩具汽车的收藏爱好者,笑笑喜欢收藏小人书,两人一商量,打算资源共享。引出新知——《比例的应用》

  三、实践探究、精讲点拨

  活动(一)“物物交换”,提出问题

  呈现问题情境,引导学生读懂题意,并尝试提出问题。

  他们经过商量,打算用4个玩具汽车换10本小人书, 14个玩具汽车,可以换多少本小人书?(设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。

  活动(二)尝试解决,体会联系

  1、14个玩具汽车可以换多少本小人书?把你的想法记录在答题卡上。

  2、 教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的比例关系。

  3、学生介绍每种方法的.思考过程,强调尽管思路不同,但各种方法都围绕玩具汽车个数与小人书本数之间的比例关系而展开。

  活动(三) 拓展策略 列比例解答

  1、教师引导:假设14个玩具汽车可以换x本小人书,同学们能否根据题意列出比例?并说说你是根据哪两句话写出比例的,你是怎么想的?

  2、学生尝试列式。

  3、交流汇报写出比例的主要依据。

  4、学生独立解比例。

  5、汇报结果。

  6、验算:把求出的结果代入比例验算一下,看等式是否成立。 (学生自主验算)

  7、教师小结。解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。

  设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。

  四、分层练习、生生过关

  (1)完成练一练1、2题

  (2)完成练一练3、题

  五、拓展延伸、优化提升

  1、根据小组评价结果编一道有关比例的应用题。

  2、你能结合生活中的例子编一道有关比例的应用题吗?

比的应用教学设计3

  教学目标

  1.知道求几个相同加数和的乘法应用题的结构,初步掌握求相同加数和的乘法应用题的分析思路和解答方法,能正确解答这种类型的应用题.

  2.通过乘法应用题的分析解答,培养学生认真审题、动脑分析、比较区别等能力.并使学生们学会简单地分析乘法应用题中的数量关系.

  3.在授课过程中,教育学生们养成认真审题、正确解题、仔细检查的习惯.

  教学重点

  使学生理解求相同加数和的应用题的结构和数量关系.

  教学难点

  使学生真正掌握此类应用题的结构.

  教学过程

  复习导入

  1.口算.

  2×3= 2×5= 4×2= 5×1=

  5×3= 4×3= 5×5= 1×4=

  2.列式计算.

  (1)3个4相加是多少?

  (2)5个2相加是多少?

  3.师:大家已经学习了1~5的乘法口诀,学会了计算相应的式子题和文字叙述题.今天,我们要一起来研究一些生活中的问题,看谁能够应用前面所学的知识来解决这些问题.

  4.教师板书课题:应用题

  新授

  1.出示例8(教师板书)

  同学们浇树,每个人浇4棵,3个人一共浇多少棵?

  2.分析解答例8

  (1)读题,找出题目中的已知条件、要求的'问题各是什么?用小圆片摆一摆,表示出题目中的意思.

  学生可以答出:每个人浇4棵,有了3个人,要求一共浇了多少棵.(一个学生说,另一个学生在黑板上板贴小圆片.)

  (2)师:看图思考,要求一共浇了多少棵树应该怎么想?(学生回答:每个人浇4棵,也就是1个4棵,有3个人浇树,就是浇了3个4棵.要求一共浇了多少棵,也就是求3个4是多少.)

  (3)问:要求3个4棵是多少,应该用什么方法解答?该怎样列式?说一说为什么要这样列式?

  学生边回答教师边板书:4×3=12(棵)

  口答:一共浇了12棵.

  3.进一步理解例8算式的意义.

  师问:谁来说一说,算式中的每个数分别表示什么意思?

  (算式中的4表示每个人浇了4棵树,也就是一份是4,算式中的3表示有3个人再浇树,也就是有相同的3份,算式中的12表示3个人一共浇了12棵树,也就是3个4是12.)

  4.讲解例9

  (1)出示例9(教师板书例9)

  小明买了3个扣子,每个5角钱,一共用了多少钱?

  (2)师:读题,已知条件是什么?要求的问题是什么?

  教师根据学生的叙述板贴:

  (3)师:看图思考,要求一共多少分应该怎样想?用什么方法解答?怎样列式?说说为什么? (分小组讨论)

  (4)汇报解答方法.(小组同伴分工完成下面的任务:一人负责口头列式,一人负责板书列式,一人负责说为什么这样列式.)

  (5)再次说明列式中每个数表示的意义.(算式里的5表示每个扣子5角,3表示买3个扣子,一共是3个5角,要求3个5角是多少应该用乘法计算)

  巩固练习

  教师要求:

  (1)在规定的时间里,根据个人的不同情况,能完成几道题就完成几道题.

  (2)如果在规定时间里,完成了所有的题目后,可以思考以下问题:

  这几道题有什么共同的特点?(都是用乘法解答的;这几道题都是求几个几是多少.)

  这几道题还可以用什么方法解答?

  如果每一道题都能用两种方法解答,你更喜欢哪一种方法,为什么?

  归纳质疑

  师:通过这节课的学习,大家有什么收获?

  1、乘法算式可以用乘法口诀来迅速的计算.

  2、求几个几用乘法计算.

  3、求几个几还可以用加法来计算,但是用乘法计算起来比用加法计算更简便.

  4、我们已经学习了“求几个几” 的文字叙述题和应用题.其实把文字叙述题加上不同的事情就是不同的应用题.

  布置作业(略)

  板书设计

比的应用教学设计4

  教学目标:

  1、知识与技能

  经历正比例意义的建构过程,通过具体问题认识成正比例的量,初步感受生活中存在很多成正比例的量,并能正确判断成正比例的量。

  2、过程与方法

  通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

  3、情感态度与价值观

  在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。教学重点:正确理解正比例的意义。教学难点:能准确判断成正比例的量。教学准备:多媒体课件,学生练习纸 教学过程:

  一、在学生熟悉的儿歌中引入正比例的量: 你听过《数青蛙》这一首儿歌吗?(课件)

  师:你会往下唱吗?三只青蛙,四只青蛙,n只青蛙呢?

  师:你在唱得时候有什么规律吗?

  生:嘴巴数和青蛙只数一样,眼睛数总是青蛙只数的2倍,腿数总是青蛙只数的4倍。

  师:你真聪明,会横着观察观察表格。

  生:青蛙每增加一只,嘴巴数增加1张,眼睛增加2只,腿数增加4条。

  师:很好,你是竖着观察表格的。

  师:我已经学过比,所以还可以说,眼睛数/青蛙只数=2;腿数/青蛙只数=4;嘴巴数/青蛙只数=1。

  看来,嘴巴数、眼睛数、腿数都随着青蛙只数的变化而变化,像这样有一定关系的量,在数学上,称为相关联的量。

  (学生的自主学习需要教师的引导,此处教师看似无意的评价,实际是对学生学习方法的指导,直接影响学生后续的自主学习活动,有了此处的指导,学生接下来就能顺利地自主观察表格发现规律了。)

  二、自主建构正比例的量

  (一)初步感受成正比例量的变化规律

  看来,像这样相关联的量在变化的时候有一定的规律,有兴趣继续研究吗?在我们的生活中,像这样相关联的量还有许多,老师为同学们的研究找了几组材料:(课件)

  1、学生独立填表。

  2、选择其中的一张表格,通过观察说说你发现了什么规律? 你可以模仿前面找规律的方法。

  3、反馈交流

  4、小结:这两张表格的变化情况有什么相同点? 一种量增加或(减少),另一种量也相应增加或(减少),它们相对应的两个数的比值一定

  (二)在比较中继续感受成正比例量的变化规律

  看到同学们学得那么认真,数学老爷爷也要来考考我们,想挑战吗?他给我们带来下面两组信息,并告诉我们只有一张表格的变化情况和前面的变化规律一样,但不知是哪一张,你能找出是哪一张吗?我们先把表格填写完整。

  1、出示材料:

  下面是边长与周长,边长与面积的变化情况,把表填写完整。

  2、四人小组活动:

  思考:哪一张表格的变化情况和前面的变化规律一样? 3、比较图像,再次感受正比例

  除了用表格的形式表示它们的变化情况,我们还可以用图来表示它们的变化情况,你想看吗? 指导看图,说说你发现了什么?

  师:另外两张表格的变化情况我们也画成了图,你想看吗? 思考:这四张图如果让你分类,你会怎么分?为什么这样分? 其中三张图为什么都呈直线状态,朝一个方向生长?(比值一定)其中一张图为什么呈曲线?(比值不一定)

  揭题:像这样的两个相关联的量,我们在数学上就说它们成正比例,具体可以这样描述:

  (三)尝试归纳正比例的意义

  1、出示:

  像这样时间增加(或减少),所走的路程也相应增加(或减少),而且相应的路程与时间的比值(也就是速度)相同,那么,我们就说路程和时间成正比例。

  2、你觉得这里哪几个词比较重要?

  3、你能照这样说说另外几组成正比例的量吗? 不成正比例的用虽然但是来说

  三、运用提高

  1、小明和爸爸的年龄变化情况如下,把表填写完整。父子的年龄成正比例吗?你怎么想的?

  2、在《数青蛙》儿歌中找找成正比例的量。

  四、小结提升:

  通过今天这节课的学习,你有什么收获?成正比例的量有什么重要特征?

  刚才同学们在一首《数青蛙》的儿歌中就找到了这么多的成正比例的量,可以想象在我们的生活中一定存在着更多的成正比例的量,希望同学们在课后能以数学的眼光去观察,发现生活中成正比例的量,下一节课我们一起交流

  板书设计:

  正比例的意义

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)③两种量中相对应的.两个量的比的比值(商)是一定的 路程/时间=速度(一定)总价/数量=单价(一定)

  《正比例》教学反思

  对比过北师大和人教版两个版本的教材,人教版的教材中介绍了“两个相关联的量”,而北师大版中没有,在最初的教学设计中本没有设计介绍“相关联的量”这一环节,但课前准备中我也为是否设计这一环节而矛盾,但最后还是在我的课堂中呈现了这一概念,课后自己不禁反思,“正比例的意义”本来就是一抽象的概念,我还在课堂上有加入“相关联的量”这一概念,无疑是增加了学生理解的难度。另在设计教案之初,本以为本班学生整体情况较好,在处理“正比例的意义”中的“比值一定”时,只注重了口头上的描述而忽略了让学生动手去算算比值。课后看见学生的作业,自己不尽感叹“失策”,对于抽象的概念一定要让学生通过实际的生活经验或者是通过自己的实际操作去理解。

  还有本节课还有一个最大的问题,就是没有及时抓住学生精彩的生成。也许我们每一位老师都有过这样的经历:我们精心设计的一节课,原想着会很顺利地在课堂教学中予以实施,但事实却并不是这样,往往会因为学生的一些出乎意料的想法或问题,而使我们的教学偏离了预设的轨道,课上得并不那么顺利。比如,象正方形的周长、面积与其边长,原的周长与半径这些特例是否成正比例,我觉得这实际上就是教师如何有效处理动态生成的问题。

  教学不应只是平实地传递和接受知识的过程,更多的是师生双方在课堂上互动对话、实践创造,随机生成与资源开发的过程。它是教师及时捕捉课堂上无法预见的教学因素,利用课堂上随机生成的资源展开再教学的过程。就正如赵老师前面提到的“课中也要备课”,动态生成才能真正体现学生的主体性和课堂的真实性,它追求课堂的真实、自然、和谐,再现师生“原汁原味”的教学生态情境,从而达到师生共识、共享、共进的教学高境界,实现师生生命价值的不断超越。

  那么,怎样才能做到课堂上的精彩生成呢?从生成的内容看,有显性的知识、技能生成和隐性的情感、态度生成。因此,我认为:促进课堂生成的关键是教师课前的预设、教学的机智和学生的心理环境。要达到课堂有精彩的生成且能很好的抓住并能利用生成这点还需要我的不断努力。

比的应用教学设计5

  一、复习引入

  1.回忆列方程解决问题的一般步骤。

  学生小组内交流。

  2.在横线上写出含有字母的式子。

  (1)明明写了a个生字,红红写的字比明明写的3倍还多5个。红红写了(x)个生字。

  (2)男生x人,女生比男生人数的1.5倍少8人。女生有(x)人。

  学生独立思考后,指名回答。

  二、讲授新知

  1. 导入。

  教师:西安是我国有名的历史文化名城,有许多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。(多媒体出示西安大雁塔和小雁塔图片)这节课,就让我们一起来研究一个与它们有关的数学问题。(多媒体出示教材第9页例8)

  2.探究新知。

  (1)分析题旨、提出问题

  教师:仔细观察,认真分析,题目中告诉了我们哪些条件?需要我们解决什么问题?

  学生认真读题,分析题意,全班交流。

  教师:根据你的分析,能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?

  学生独立思考,全班交流汇报。

  (2)找等量关系。

  教师:你能用一个等量关系式来表示它们之间的相等关系吗?

  小组合作,全班交流。

  多媒体出示各种等量关系式的情况:

  ①小雁塔的'高度×2-22=大雁塔的高度。

  ②小雁塔的高度×2=大雁塔的高度+22。

  ③小雁塔的高度×2-大雁塔的高度=22。

  ④(大雁塔的高度+22)÷2=小雁塔的高度。

  教师在充分肯定学生能从不同的角度分析题中数量关系的基础上,引导学生比较最后一种想法与前面几种想法的不同。然后着重引导学生观察第一个等量关系。

  教师:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?

  指名学生回答。

  (3)引导列出方程。

  教师:通过我们的观察与交流,你觉得可以用什么方法来解决这个问题?

  学生独立思考,全班交流。

  教师:根据等量关系式,你们能列出方程吗?

  学生先自主尝试设未知数,并根据第一个等量关系式列出方程,全班交流,教师板书。

  解:设小雁塔高x米。

  2x-22=64

  (4)自主思考、解方程。

  教师:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?怎样将这个方程变形为我们以前学过的方程?

  小组合作探究,全班交流。

  通过交流使学生明确:首先把2x 看出一个整体,先求出2x等于多少,所以可以应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。

  教师和学生一起完成例题呈现的方程两边同时“+22”的步骤,让学生继续独立解答,求出方程的解。

  组织交流解方程的整个过程,并完整板书。

  解:设小雁塔高 x米。

  2x-22=64

  2x-22+22=64+22

  2x=86

  x=43

  (5)引导检验、培养习惯。

  教师:你打算怎样对这道题进行检验?

  学生各自检验,指名汇报检验方法。

  教师:列方程解决实际问题检验答案是否正确,不光要检验结果是不是方程的解,还要把答案作为已知条件,看能不能满足题目中的数量关系。

  3.内化理解、触类旁通。

  教师:根据等量关系还可以怎样列方程解决?

  学生独立列出方程后,在小组内交流各自列的方程,并说说列方程的依据。

  集体交流,然后说说怎样来解自己的方程。

  4.对比归纳、掌握方法。

  教师:刚才我们通过列方程解决了一个实际问题,我们来一起看看这几种列方程的方法,你觉得那种比较简便?为什么?

  小组交流,明确:顺着题意来列方程比较简便。

  三、巩固应用

  (一)预习答疑

  这道题里数量关系有多种,但我们一般用求和的关系式即“看了的页数+剩下的页数= 一共看的”,这样在解方程时比较方便。

  (二)教材习题

  1.教材第10页“练一练”。

  引导学生顺着题意写着关系式,再依据关系式列方程解方程。学生独立完成,选1人板演,教师巡视辅导,针对共性讲评。(解:设香港青马大桥全长大约x千米。x×16+0.8=36 x=2.2)

  2. 教材第11页练习二第5题。

  独立解答,集体讲评,每道题选一名学生说一说解题思路。(x=9 x=0.3 x=3.8 )

  3. 教材第11页练习二第6题。

  学生直接填空,全班交流。(3x+15 4x-80)

  4.教材第11页练习二第7题。

  学生独立完成,教师巡视辅导,集中讲评。(讲评: 解:设猫的最快时速是x千米。2x+20=110 x=45)

  5.教材第11页练习二。第8题。

  学生独立完成,教师巡视辅导,集中讲评。(讲评:解:设水星绕太阳一周大约要用x天。4x-13=365 x=94.5)

  (三)课堂作业

  完成第三部分习题设计“课堂作业”第1、3题。

  学生在作业纸上直接写出答案,教师让做错的同学说一说思路,予以专门辅导。

  四、总结提升

  1.我们今天继续学习了列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?

  2.解方程解实际问题时应注意什么?你有哪些收获?还有哪些困惑?

  五、布置作业

  完成第三部分习题设计“课后作业”第5、6、7题。

  设计意图:学习新知识以前,进行两个内容的准备性练习,为新课做好铺垫,为下一步学习新知识做好准备。

  设计意图:用图文结合的方式展示信息,使数学学习和对历史景观的了解有机融合,增强了学生的探索兴趣,激发学生全身心地投入到问题的研究中去。

  设计意图:找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题,这是解决问题的关键一步。通过小组合作交流各自的思考,促使学生透彻地理解大雁塔与小雁塔高度之间的相等关系,从而灵活地解决问题。

  设计意图:以解决问题为载体,引导学生在解决问题的过程中逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。

  设计意图:设计引导学生掌握解决实际问题检验的方法,养成自觉检验的习惯。是为了在引导学生掌握数学知识的同时,注意处理好智力培养与习惯养成的关系,着眼于全面素质的培养和提高。

  设计意图:在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。但要注意的是,方法并不是越多越好,这里不是要求学生一题多解。教学中要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同,进而进一步优化方法。

比的应用教学设计6

  —、气体摩尔体积

  一、教材分析:

  气体摩尔体积是在学习物质的量的基础上学习的,它将气体的体积和气体的物质的量联系起来,为以后学习气体参加反应的计算奠定了基础。

  二、教学目标

  (一)知识与技能

  1、理解决定物质体积大小的因素;

  2、理解气体摩尔体积的概念;

  3、掌握气体体积与物质的量之间的转换关系。

  (二)过程与方法

  从分析决定物质体积大小的因素入手,培养学生发现问题的意识,通过设置问题调动学生的求知欲望,引导学生进行归纳,体验矛盾的主要方面和次要方面对结论的影响。

  (三)情感态度与价值观

  通过决定物质体积大小的.因素和气体摩尔体积的学习,培养学生的分析问题的能力和团结合作的精神,感受科学的魅力。

  三、教学重难点

  教学重点:气体摩尔体积

  教学难点:决定物质体积大小的因素、气体摩尔体积。

  四、教学过程

  【引入】在科学研究和实际生产中,常常用到气体,而测量气体的体积往往比称量质量更方便。那么气体体积与它的物质的量之间有什么联系呢?我们今天就来学习气体体积与其物质的量之间的桥梁——气体摩尔体积。

  二、气体摩尔体积

  【教师活动】播放电解水的实验视频。

  【学生活动】观察、讨论、思考并回答问题。

  1、阅读教材P13 —P14科学探究的内容,并填空。

  (1)实验中的现象:两极均产生气体,其中一极为 氢气,另一极为氧气,且二者体积比约为 。

  (2)

  质量(g)物质的量(mol)氢气和氧气的物质的量之比氢气氧气从中你会得出结论:在相同温度和压强下,1molO2和H2的体积。

  2、下表列出了0℃、101 kPa(标准状况)时O2和H2的密度,请计算出1 mol O2、H2的体积。从中你又会得出什么结论?

  物质物质的量(mol)质量(g)密度(g·L-1)体积(L)O211.429H210.0899结论:在标准状况下,1mol任何气体的体积都约是。

  【过渡】1mol任何气体在同温、同压条件下体积几乎相等,1mol固体或液体是否也类似的关系呢?【问题】下表列出了20℃时几种固体和液体的密度,请计算出1 mol这几种物质的体积。

  密度/g·cm-3质量/g体积/cm3Fe7.86Al2.70H2O0.998H2SO41.83

  结论:在相同条件下,1mol固体或液体的体积。

比的应用教学设计7

  课题:

  比的应用

  教学内容:

  义务教育课程标准小学数学六年级上册第三单元《比的应用》

  教学目标:

  1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

  2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。

  3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独立思考、自觉检验的好习惯,增强学生学好数学的信心。

  教学重点:

  掌握按比分配应用题的结构特点和解题思路。

  教学难点:

  正确分析,灵活解决按比分配的实际问题。

  教学准备:

  教学课件卡片

  教学过程:

  一、复习导入

  1、复习求一个数的几分之几是多少的实际问题。

  2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。

  二、讲授新课

  1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。

  2、利用课件出示例2。

  (1)学生读题,弄清题意。

  (2)引导学生找出题中所提供的数学信息。

  (3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的结构特点。

  (4)引导学生分析题中的数量关系,使学生理解按比分配问题的解题思路。

  (5)小组讨论解题方法,然后进行汇报,并集体订正。

  (6)引导学生用不同的方法解决问题,重点理解按比分配的方法。

  (7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。

  3、小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?

  三、巩固练习

  1、解决课前分卡片时所产生的问题。

  2、课件出示练习题1,在学生理解题意的`基础上,引导学生比较练习题与例题

  的异同,并用自己喜欢的方法解决,后集体订正。

  3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,鼓励学生用不同的方法独立解决,并引导学生自行检验。

  四、拓展延伸

  利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。

  五、课堂总结

  学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。

比的应用教学设计8

  教学目标:

  1.知识目标

  ⑴引导学生自主学习掌握利息按复利计算的概念

  ⑵掌握每期等额分期付款与到期一次性付款间的关系,应用等比数列的知识体系解决分期付款中的有关计算。

  2.能力目标

  发现问题、分析问题、解决问题的能力,培养学生利用信息技术将所学数学知识应用于解决实际生活中的问题。

  3.发展目标

  激发学生学习数学的兴趣及求知欲。渗透理论与实际相结合的思想。

  教学重点:

  抓住分期付款的本质分析问题;

  教学难点:

  建立数学模型,理解分期付款的合理性;

  教学思路:

  教师运用基于分组合作学习探究式教学模式,根据该部分知识内容特点(理论与实际问题相结合)确定主题---分期付款有关计算,教师协调全班学生分为十组,每四人一组,由数学成绩较好者担当组长,每组确定同一任务。学习过程分为三个阶段:第一阶段课前准备,每组确定帮忙解决某组员最想卖的商品,到各大商场记录分期付款的资料,同时寻找分期与数列之间存在的联系;第二阶段通过课中学习,确定分期方案,并核对方案的可行性,教师选几组代表上台借助投影仪向大家介绍组里确定的分期方案;第三阶段学生通过课后练习谈谈自身对本节内容知识的理解及感想。

  教材内容:

  本节课是等比数列的前n项和公式在购物方式上的一个应用.此前学生已掌握等比数列的通项公式及其前n项和公式,并学习了有关储蓄的计算(单利计息和复利问题),也就是说学生在知识和应用能力方面都有了一定基础。

  教学方法:

  为调动学生学习的积极性,产生求知欲望,教学中以创设情景,提出问题,采用设问等形式引导学生积极探究、合作、交流发现数学模型,并采用多媒体投影仪辅助教学,提高教学效率

  教学手段:

  多媒体辅助教学,导学提纲

  教学步骤:

  一、导入新课:

  幽默广告视频:丈夫正看球赛,妻子一过来就换电视剧,丈夫很郁闷,一客服对他说:“您可以分期付款买东西,提前享受。”结果,丈夫和妻子一人一台电视,但当丈夫看球赛正酣时,儿子又过来把台换了。面对商家和银行提供的各种分期付款服务,究竟选择什么样的方式好呢?(以幽默广告形式导入引起学生对本课题的兴趣)

  二、讲授新课:

  例:他准备花钱买一台5000元左右的平板电视,采用分期付款方式在一年内将款全部付清。据了解,苏宁电器允许采用分期付款方式进行购物,在一年内将款全部付清,该店提供了如下几种付款方案,以供选择。

  分析方案2:(选择次数中间的方案进行举例分析,进一步巩固数列知识)

  本题可通过逐月计算欠款来处理,根据题意,到期还清即第12个月的欠款数为0元。设每次应付x元,则:

  设每期还款x元,第k个月末还款后的本利欠款数为Ak元,则

  解得:

  三、随堂练习:

  由学生完成上表中“方案1”和“方案3”,熟练探究方法;

  可见:方案3使得付款总额较少,同时教师指出:结论具有不确定性——选择什么方案还要参照家庭的经济状况。(一改往日数学答案的唯一性,培养学生解决问题时应具备的全面性)

  请同学们总结:

  分期付款购买售价为a元的商品,分n次经过m个月还清贷款,每月还款x元,月利率为p,则求x的数学模型:

  (重点)练习:分组讨论计算某个组员利用自己零花钱分期付款购买自己最想要的'某种商品,并由小组代表到讲台上用投影仪来谈谈组里给他的方案意见,让学生充分体验数学的魅力。(在这段时间里,很多小组代表发表了本小组对某商品的分期方案,较多学生参与其中,体验数学在生活中的用处)

  四、课堂小结:

  师生共同回顾思维过程,教师提醒.

  ①分期付款有哪些一般规定?列方程的依据是什么

  ②分期付款中的计算涉及的数学知识:等比数列前n项和公式;数学思想:方程思想

  五、布置作业:

  某学生家境贫寒,但自强不息,于xxxx年考上北京大学,因家中无法负担其学费,遂决定向银行申请助学贷款,学制四年,每年9月1日申请贷款5000元。他如何还贷?请为他确定还贷方案。(什么是分期付款?银行贷款程序怎么样?利率是多少?如何计算?每月需还多少?)

  教学设计理念:

  创设情景,与实际生活相联系,让学生感到数学就在身边,身边处处有数学,从而增强学好数学的信心,用已掌握的数学知识解决身边的实际问题,同时尊重差异,实施合作学习。

  教学组织形式:

  分组合作学习

比的应用教学设计9

  一、内容与解析

  (一)内容:对数函数的性质

  (二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

  二、目标及解析

  (一)教学目标:

  1.掌握对数函数的性质并能简单应用

  (二)解析:

  (1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

  三、问题诊断分析

  在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

  四、教学支持条件分析

  在本节课()的教学中,准备使用(),因为使用(),有利于().

  五、教学过程

  问题1.先画出下列函数的简图,再根据图象归纳总结对数函数的相关性质。

  设计意图:

  师生活动(小问题):

  1.这些对数函数的解析式有什么共同特征?

  2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

  3.通过这些函数图象请从函数值的分布角度总结相关性质

  4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

  问题2.先画出下列函数的简图,根据图象归纳总结对数函数的`相关性质。

  问题3.根据问题1、2填写下表

  图象特征函数性质

  a>10<a<1a>10<a<1

  向y轴正负方向无限延伸函数的值域为R+

  图象关于原点和y轴不对称非奇非偶函数

  函数图象都在y轴右侧函数的定义域为R

  函数图象都过定点(1,0)

  自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

  在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

  在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

  [设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

  例1.比较下列各组数中两个值的大小:

  (1) log 23.4 , log 28.5(2)log 0.31.8 , log 0.32.7

  (3)log a5.1 , log a5.9 ( a>0 ,且a≠1 )

  变式训练:1.比较下列各题中两个值的大小:

  ⑴ log106 log108 ⑵ log0.56 log0.54

  ⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

  2.已知下列不等式,比较正数m,n的大小:

  (1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n

  (3) log a m < loga n (0 log a n (a>1)

  例2.(1)若且,求的取值范围

  (2)已知,求的取值范围;

  六、目标检测

  1.比较,,的大小:

  2.求下列各式中的x的值

比的应用教学设计10

  教学目标:

  使学生进一步理解和掌握用比例知识解答应用题的方法。

  抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。

  通过与算术方法解答相比较,加强知识之间的.联系,使学生进一步理解能用比例知识解答应用题的数量关系。

  教学过程:

  师:谁能够说说用比例知识解应用题的关键是什么?

  判断下题中各量成什么比例?并说明理由?

  指导学习题例。

  让学生独立解答例7。

  在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

  相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

  不同点:第一种解法是直接设所求问题为X。

  第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

  师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

  学习例6

  师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

  对比小结

  比较例5例6有什么不同?分别是根据什么关系来解答的?

  (强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

  算术解法和比例解法的比较和联系。

  观察算式(例5)

  练习巩固

  笔答题:教材117页1~3题。

  全课总结(略)

比的应用教学设计11

  教学目标:

  1.经历解决问题的过程,学会用两步乘法解决问题,感受解决问题策略的多样化。

  2.能从多个角度解决同一问题,提高解决问题的能力,发展思维。

  3.感受数学知识在生活中的.应用价值,体验成功的快乐。

  4.结合教学渗透思想教育。

  教学重点:

  正确分析数差关系,能用两步乘法解决问题。

  教学难点:

  解决问题的思考过程。

  教学过程:

  一、情境引入,激活思维

  师:“六一”儿童节快到了,学校准备举行一次乒乓球比赛,借这个机会,我们三(1)班也举行一次乒乓球比赛。现在由班长小芳去超市购买乒乓球,需要买的个数如图所示,请你仔细观察,从图中你发现了什么?(出示情境图)

  让学生回答:每袋有6个球,共有6袋。

  师:同学们观察得真仔细,看到图你最想知道什么?

  让学生提出:①我想知道一共买了多少个乒乓球?②我想知道一共用了多少元?

  师:(对着第一个学生的回答)你是想知道一共买了多少个乒乓球吗?(对着第二个学生的回答)你想知道一共用了多少元?是吧?你们对这两个问题还有什么想说的?

  让学生说出:要求一共用了多少元,还必须知道每个乒乓球多少元?(根据学生提问出示:补充条件和问题)

比的应用教学设计12

  教学内容:

  人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。

  学情分析:

  1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。

  2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。

  教学目标:

  1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

  2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。

  3、使学生在学习分数的意义的基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。

  教学重难点:

  重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

  难点:从分母和分子的意义这一角度理解“整体”与“部分”的关系。 教学准备:

  多媒体课件,答题纸,小棒。

  教学过程:

  师:你想到的这个数表示什么意思?

  (预设:平均分、分数线、分子、分母、分数的意义。师选择板书)

  二、探究新知。

  1、初步感受整体由“1个”变“多个”

  (1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?

  (2)、现在你又想到了哪个数?它表示什么意思?

  (3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?

  (4)教师对学生的.回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?

  2.理解部分与整体的关系。

  (1)课件出示六个苹果,动态演示平均分的过程。

  学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)

  (2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)

  3、回顾建模。

  课件出示:

  引导学生回顾总

  结:我们不仅可以把一个完整的物体

  或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。

  三、动手操作,加深认识。

  1、“均匀地分”。

  (1)提出要求:老师给大家准备了12个苹果,

  请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。

  (2)生独立思考,动手操作。

  (3)、汇报交流。

  (4)对比提升。

  课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。

  2、“创新地画”。

  (2)生独立思考,动手操作。

  (3)、汇报交流,展示学生作品。

  预设:因为都是把整体平均分成了2份,取其中的1份。

  师:哪儿不同?

  预设:总数不同,每份数也不同。

  四、闯关游戏,加深理解。

  第一关:“准确地拿”。

  第二关:“独具慧眼”。

  五、回顾反思,结束全课。

  1、引导学生回顾反思:今天你有什么收获?

  2、师给与评价

比的应用教学设计13

  教学过程:

  一、 创设情境,导入新课:

  同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)

  1、判断下面每题中的两种量成什么比例关系?

  (1)单价一定,总价和数量、

  (2)每小时耕地的公顷数一定,耕地的总公顷数和时间、

  (3)全校学生做操,每行站的人数和站的行数、

  2、 说说速度、时间和路程这三个量存在怎样的比例关系?

  (当速度一定)

  二、探究新知:

  1、 导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

  板书课题:比例的应用

  2、学习例1.(课件出示例题 )

  例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时、甲乙两地之间的公路长多少千米?

  (1) 先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

  (2)引导学生探究用比例知识解答。

  提问:这道题能不能用比例知识来解答呢?

  (课件出示问题,让学生思考)

  1、这道题中涉及哪三种量?(路程、时间和速度)

  2、哪种量是一定的?你是怎样知道的?(照这样的速度就是说速度一定)

  3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)

  (课件出示思考的过程,并齐读)

  (3) 提问: 根据正比例的意义可以列出怎样的比例?

  (教师根据学生的回答板书)

  (4) 解这个比例。 (教师板书解答过程)

  (5) 怎样检验所求的答案是否正确?(把求出的未知数代入原方程 ,看等式是否相等)

  (6)写出答语。

  (7) 练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)

  一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

  (8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。

  (9)教师说明:例1和练习题都是根据正比例的'意义列出的比例式,也是方程。

  3、学习例2:

  (课件出示例题)

  (1)自主探究用比例知识解答

  1 合作交流,小组讨论:

  题中有哪几种量? 这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?

  2、汇报讨论结果。

  老师板书方程并提问: 这个方程是比例吗?为什么?

  3、师生一起解答。(完成例2的板书)

  4、练习:(课件出示练习题)

  一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果每小时行驶87.5千米,需要多少小时到达?

  (学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)

  4、 比较例1和例2的异同:(相同的是都是用比例解答的,不同的是例1是根据正比例的意义列出的比例式,例2是根据反比例的意义列出的等式。但它们都是方程。) 你能从例1、例2的解答中找出用比例的方法解答应用题的关键是什么吗?

  5、教师小结。

  (课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)

  三、知识应用:(出示课件做一做)

  1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?

  2、某种型号的钢滚球,3个重22.5克。现有一些这种型号的滚球,共重945克,一共有多少个?

  四、作业:练习中的1~4题。

  五、课堂小结:

  1、这节课我们学会了什么?

  (学会了用比例知识解答应用题)

  2、结束语:比例知识在日常生活中的应用非常广泛,比如要测量一颗大树的高度,或是一根旗杆的高度,都可以用比例知识来解决。我们以后再去探讨好不好?

  教学内容:数学十二册《比例的应用》

  教学目标:

  1、使学生能正确判断应用题中涉及的量成什么比例关系。

  2、使学生能用比例方法正确解答比例应用题。

  3、培养学生的推理判断能力及勇于探索的精神。

  教学重难点:

  正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。

比的应用教学设计14

  一、教材分析

  本节课是必修三第十三章《电磁感应与电磁波初步》第三节的内容,本节内容把电与磁彻底的联系在一起。从物理学的角度看,电磁感应在电磁学中的地位,正是由于电磁感受现象的发现,把人类社会带入了电气化时代,体现了“划时代的发现”。另外本课的实验部分是在于引导学生通过活动和思考来主动地获得知识。教科书所呈现的实验既为本节研究感应电流的产生条件提供了实验情景,又成为后续楞次定律教学的基础。

  二、学情分析

  学生对闭合电路的部分导线切割磁感线能产生电流,在初中已经有一定的认识,但在空间想象能力、问题本质的分析方面还较为薄弱。因此,在教学中国从学生的已有知识出发,通过学生自己的自主学习、探究实验、产生问题等学习方法,解决问题得出产生感应丁柳德条件的结论。

  三、基于核心素养的教学目标设计

  物理观念:知道感应电流的产生条件及相应实验方法;知道用感应电流的产生条件去判断回路中是否产生感应电流。

  科学思维:通过物理学史的学习,体会电磁相互转化的思想。

  科学探究:通过学生实验,进行实验观察、归纳分类,达到能够判断回路中磁通量如何变化和因为什么而变化的目的。

  科学态度与责任:领会科学家对自然现象、自然规律的探究,以科学不怕困难、勇于面对挫折的坚强意志激励自己。体会物理与生产生活的紧密联系。

  四、重、难点

  重点:通过实验观察和实验探究,理解感应电流的产生条件。

  难点:感应电流的产生条件。

  五、教学方法

  讲授法、探究实验法

  六、教学过程

  (一)新课引入

  (二)划时代的发现

  1.奥斯特:电生磁

  (动图展示奥斯特实验)

  奥斯特发现的电流的磁效应,震动了整个科学界,它证实电现象与磁现象是有联系的。

  电能生磁,根据对称性,为什么不能用磁来生电呢?

  法拉第他就坚信磁也能生电。

  2.法拉第:磁生电

  于是从1822年开始进行了将近十年的实验。直到1830年8月他发现给一个线圈通电和断电的瞬间,另一个线圈中出现了电流。

  于是,他又设计并动手做了几十个实验,发现了各种深藏不露的各种"磁生电"的现象。从实验现象中领悟到:“磁生电”是在一种变化、运动的过程中才能出现的效应。总结起来是这么五类:

  ①变化的电流

  ②变化的磁场

  ③运动的恒定电流

  ④运动的磁铁

  ⑤在磁场中运动的导体

  并且他把这些现象命名为电磁感应。在这种情况下产生的电流叫做感应电流。

  小结:

  法拉第的这一伟大发现完善了电与磁的内在联系,所以便有电磁学这一门学科的诞生。

  (三)产生感应电流的条件

  法拉第发现了电磁感应现象,那么具体产生感应电流的条件是什么呢?

  1、实验探究:感应电流产生的条件

  导体切割磁感线,会在闭合回路中产生感应电流

  2、实验验证

  (1)ab静止的时候,电路中没有感应电流;

  (2)ab沿着磁感线运动的时候,电路中没有感应电流;

  (3)仅有ab切割磁感线的时候,才会产生感应电流。

  ·分析:ab切割磁感线时,磁场的大小和方向没有变化,变化的只有电路abcd的面积。

  那么,与磁场相关的哪个物理量发生了变化呢

  我们学过磁通量的的表达式是φ=BS,闭合电路abcd的面积发生了变化,也就是说,穿过电路abcd的磁通量发生了变化。

  那么,感应电流的产生是否与磁通量的变化有关呢

  下面我们通过实验来研究这个问题。

  3、实验探究1:

  磁铁插入、抽出

  实验操作:指针偏转情况

  磁铁插入——指针偏转

  磁铁静止在线圈中——指针静止

  磁铁拔出——指针偏转

  或停在线圈中时,电流表指针如何动作?

  如图,线圈A通过变阻器和开关连接到电源上,线圈B的两端连接到电流表上,把线圈A装在线圈B的里面。观察下面几种情况下线圈 B中是否有电流产生。通过动图依次观察实验。

  开关和变阻器的状态——指针偏转情况

  开关闭合瞬间——指针偏转

  开关断开瞬间——指针偏转

  开关闭合时,滑动变阻器不动——指针静止

  开关闭合时,迅速移动滑动变阻器的`滑片——指针偏转

  4、归纳总结

  请你根据实验现象总结,什么情况下闭合导体回路中产生感应电流。

  (动图展示线圈A中的磁感线条数变化的过程)

  磁场强弱的变化我们可以通过磁感线的条数来观察,观察动图可以看到闭合开关穿过B的磁感线从无到有;滑动滑片,穿过B的磁感线的条数不断的变化;断开开关,穿过B的磁感线从有到无。这种情况下,根据公式φ=BS,B的面积没有改变,但是磁场感应强度B变化了,所以说穿过线圈 B的磁通量也发生了变化,线圈B中有感应电流。

  5、得出结论

  以上实验及其他事实表明∶

  当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。这就是产生感应电流的条件。

  (四)电磁感应现象的应用

  ·发电机

  1831年圣诞节前夕的一次科学报告会上,向大众展示了人类历史上最早的发电机——法拉第圆盘发电机,开辟了人类社会的电气化时代。

比的应用教学设计15

  教学内容

  第23~24页例1、例2以及相应的“做一做”,练习五第1~4题、

  教学目的

  1、让学生掌握用比例解应用题的方法、

  2、让学生感受生活中的数学,体验数学的应用价值,培养学生运用所学知识解决实际问题的能力、

  教学重难点

  利用已学的正比例的意义,通过自己探索,掌握解答正比例应用题的方法。

  教学过程

  一、复习

  1、判断下面各题中的两个量成什么比例关系?

  1)、速度一定,路程和时间(正)

  2)、三角形的面积一定,底和高(反)

  3)、一个为0的自然数与它的.倒数(反)

  4)、Y=3XY与X(正)

  5)、每块砖的面积一定,砖的块数和总面积(正)

  二、引入

  一辆汽车从甲地开往乙地行驶路程和时间表:

  路程(千米)70140350……

  时间(小时)125……

  (1)、观察提问:

  1)、表中相关的量是哪两种量,汽车行的路程和时间成什么比例?

  为什么?师从表中圈出140350

  25

  师:将其中一个数当作未知数能编一道就用题吗?

  2)、学生试编

  如学生编题时没有“照这样速度”或“照这样计算”,师提醒:读题的人怎样知道速度一定?

  3)、生汇报所编之题,(选其中一题)师出示例1

  师:你们自编的题目会用以前学过的方法解答吗:

  学生试做;汇报:(师板书)

  生:归一140÷2×5

  倍比140÷(5÷2)

  分数140÷2/5或140×5/2

  方程140÷2=X÷5

  师:大家想出了这么多合理的解答方法,真能干,我们已经学过了比例的意义、解比例的知识,能不能利用比例的这些知识来解答这道题呢?

  今天我们就探讨如何用比例解答应用题(板书课题)

  二、新知

  1、学生分组讨论,尝试用所学的比例知识来解答应用题。

  2、讨论后,请两组学生上来写写他们的列式。

  解:设两地之间的距离有X千米

  140/2=X/5

  师:请讲讲你们的解题思路

  学生:根据“照这样计算”可以看出速度一定,也就是路程/时间=速度(一定)既比值一定。所以,路程和时间成正比,根据比例的意义列出等式。

  师:140/2表示什么?X/5表示什么?

  3、学生总结一下解比例应用题的步骤:

  1)、读题,找出条件和问题。

  2)、找准变量和定量,判断两种相关联的量成什么比例。

  3)、设未知数。

  4)、根据比例意义列出等式并解答。

  齐读解题步骤,师:这几步中,最关键的是哪步?

  4、出示刚才学生编的另一题:

  一辆汽车从甲地开往乙地2小时行驶140千米,已知公路长350千米,需要行驶多少小时。用比例解答该怎样解答。

  师:这道题的定量变了吗?路程和时间成什么比例关系?

  生试独立完成。集体订正。请学生讲讲解题思路。

  三,巩固练习:

  1、补充条件,使它成为一道完整的应用题,并用比例解答。

  一台织布机织布,4小时织布80千米,照这样式计算()一共可以织多少千米?

  学生1:补充“3小时”后,全体学生试做。

  学生2:补充“再织3小时”学生试做。

  请不同做法的学生板书,并说说解题思路。

  生1:间接设生2:直接设

  解设3小时织布X米解设一共可织布X米

  80/4=X/4+380/4=X/3

  X=60X=140

  60+80=140

【比的应用教学设计】相关文章:

比应用教学设计05-08

比的应用教学设计06-19

《比的应用》教学设计02-07

《比的应用》教学设计范文09-16

比的应用优秀教学设计06-12

《比的应用》教学设计最新09-10

比例的应用教学设计01-02

比应用教学设计(推荐)10-04

《浮力的应用》教学设计07-07

《比例的应用》教学设计04-03