应用题教学设计

时间:2024-04-19 07:07:36 教学资源 投诉 投稿

应用题教学设计

  作为一名为他人授业解惑的教育工作者,可能需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么写教学设计需要注意哪些问题呢?以下是小编精心整理的应用题教学设计 ,希望能够帮助到大家。

应用题教学设计

应用题教学设计 1

  一、教材分析、学情分析

  (一)教材的地位和作用

  《百分数的一般应用题》是在学生学过用分数解决问题和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。主要内容是求常见的百分率,也就是求一个数是另一个数的百分之几的实际问题,这种问题与求一个数是另一个数的几分之几的问题相同。所以求常见的百分率的思路和方法与分数解决问题大致相同。通过这部分教学,既加深了学生对百分数的认识,又加强了知识间的联系。

  这部分教材在安排上有以下一些特点:

  1、 从学生已有的知识和生活经验出发,帮助学生理解数学。

  2、 设置数学活动生活情境,培养学生的解决问题意识和探究精神。

  (二)学情分析

  对学生来说,利用已有的知识和生活经验,依据数量关系列式解答并不困难,但要求学生找准谁和谁比,很重要。

  二、教学目标与重难点

  根据以上分析,我确定了本节课的教学目标如下:

  1、使学生加深对百分数的认识,理解生活中的百分率的含义,掌握求百分率的方法。

  2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识

  3、让学生在具体的情况中感受百分数来源于生活实际,在应用中体验数学的价值。

  重点:解答求一个数是另一个数的百分之几的应用题。

  难点: 正确理解达标率、发芽率等这些百分率的意义

  三、教学学法、教学设计

  (一)学生学法

  在本节课中,我着重引导学生,在独立思考的基础上,学会小组合作交流。具体表现在,教师要指导学生观察计算方法,发现共同点,通过思考,提出问题,通过探究,解决问题。

  (二)教学设计理念

  本节课的教学设计具有以下几个特点:

  1、依据知识的迁移规律,进行了必要的铺垫。根据新课“求一个数是另一个数的百分之几”的需要,复习了百分数的意义,以及分数、小数化成百分数的方法,重点突出了准备题,为讲授新课做了铺垫。

  2、引导学生找出新旧知识的异同点,进一步强化了教学的重点。

  3、精心设计习题,使知识引向深入

  四:教学过程:

  (一) 创设情境,激趣导入。

  1爱迪生的名言:“我成功的秘诀就是:一份的灵感加上九十九份汗水”

  谈谈你对这句话的.理解。(成功来自不易等等)

  从这句名言你能提出什么数学问题?

  2.例如:把“成功”看着100份,那么“灵感”就占了它的1份,“汗水”就占它的99份。

  (1)“灵感”占“成功”的几分之几?

  (2)“汗水”占“成功”的几分之几?

  今天我们一起来学习百分率的求法。

  (二) 范例讲析。

  例1.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?

  问题1是那两个量相比?

  问题2哪个量是单位“1’?怎样计算?

  120÷160=3/4

  例2.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

  问题1对比两题,什么没有变?问题有何变化?

  2,达标率:达标人数占学生总人数的百分之几。

  问题3如何求达标率?

  达标率=达标人数÷总人数×100%

  注意:1求百分率必须乘100%。

  2.结果写成百分数的形式。

  3.便于比较,计算。

  120÷160×100%=0.75×100%=75%

  答:六年级的达标率是75%。

应用题教学设计 2

  教学目的

  1.学生通过观察、探究、研讨等活动,使学生掌握“比较两数差与倍数关系”的两步应用题的结构,并学会分析解答此种应用题,并且进一步巩固含有三个已知条件的两步应用题的结构,掌握该应用题的分析方法,并会分步列式解答.

  ⒉初步培养学生主动探索、独立获取知识的能力,提高学生分析处理信息和解决简单实际问题的能力.

  ⒊渗透数学来自于生活实践的思想,培养学生初步的数学应用意识和实践能力.

  教学重点

  理解和分析比较两数差与倍数关系的两步应用题的数量关系.

  教学难点

  正确找到中间问题.

  教具、学具准备

  多媒体课件:两步应用题(二),每学生各准备一条红、黄、紫色纸条.

  教学过程

  铺垫孕伏.

  准备题:商店有红气球8个,花气球的个数是红气球的3倍.花气球有多少个?(学生读题后互相分析,独立解答.)

  解题思路:根据“花气球的个数是红气球的3倍”知道以红气球的个数为标准,花气球的个数有3个红气球那么多,所以求花气球多少个用乘法计算8×3=24(个).

  创设情景,提出问题.

  ⒈教师描述情景.

  10月1日是国庆节,商店用三种颜色的气球装点购物大厅,有黄色、红色、花色的.其中黄色的气球有17个,红气球比黄气球少9个,花气球是红气球的3倍.

  ⒉根据提供的信息,学生编数学问题.可能出现以下问题.

  (1)商店有黄气球17个,红气球比黄气球少9个,花气球是红气球的3倍,花气球多少个?(例2)

  (2)商店有黄气球17个,红气球比黄气球少9个,花气球是红气球的.3倍,三种气球一共多少个?(此题以后再研究)

  ……

  三、自主探索,研究问题

  1.学习例2.

  学生读题,读后回答已知条件和问题分别是什么?

  独立试算,遇到问题小组内讨论解决.

  学生汇报交流,集体研讨辩论,学生可能会用彩色纸条(或画线段图)的方法来分析这道题,也可能用语言叙述.具体的思维过程可能是:

  方法1:根据“商店有黄气球17个”和“红气球比黄气球少9个”这两个条件就可以求出红气球有17—9=8(个),再根据“花气球是红气球的3倍”就可以求出花气球有8×3=24(个).

  方法2:要想求花气球多少个,根据“花气球是红气球的3倍”就必须知道红气球有多少个,红气球的个数未知,根据”商店有黄气球17个”和“红气球比黄气球少9个”两个条件可以求出红气球的个数:17—9=8(个),再求花气球的个数:8×3=24(个).

  (4)教师小结:教师边口述题意,边演示课件:两步应用题(二)依次显示线段图,结合线段图重点说明这道题的分析解答方法,并揭示课题.

  使学生明确:要想求花气球有多少个,必须知道它和谁有关系,结合第三个已知条件,知道了花气球的个数和红气球有直接关系,但红气球的个数题目里没有直接给,结合题目第二个已知条件又知道红气球和黄气球有直接关系,而黄气球的个数是已知的,所以第一步先求出红气球的个数,那么花气球的个数也就随之解答出来了.即:8×3=24(个).这就是我们今天学的含有三个已知条件的两步应用题.(教师板书课题)

  (5)小组分别说一说解题思路.

  改编例题,求异拓展(即教科书第78页的想一想).

  ⒈改编例题,合作解答.

  (1)把例2的第三个已知条件改成“花气球比红气球多5个”该怎样解答?

  (2)把例2的第三个已知条件改成“花气球有48个,花气球是红气球的多少倍”该怎样解答?

  (分组讨论:要求最后问题,必须先求什么?为什么?)

  第(1)题的解题思路:要想求花气球多少个,根据“花气球比红气球多5个”就必须知道红气球有多少个,红气球的个数未知,根据”商店有黄气球17个”和“红气球比黄气球少9个”两个条件可以求出红气球的个数:17—9=8(个),再求花气球的个数:8+5=13(个).

应用题教学设计 3

  教学目的

  1.通过解答一组相关的应用题,使学生进一步理解复合应用题是怎样在简单应用题的基础上发展起来的。

  2.使学生进一步掌握分析应用题的方法,进一步提高学生分析和解答应用题的能力。

  3.培养学生认真负责的态度和良好的学习习惯。

  教学重点

  能够掌握复合应用题的结构,正确解答复合应用题。

  教学难点

  使学生掌握复合应用题的关系。

  教学过程

  一、基本训练。

  1.口算。

  2.54 127+28 0.37+1.6 8816

  3.37+6.63 8.40.7 0.1258 1.02-0.43

  1.25+ 1 16

  2.要求下面的问题需要知道哪两个条件?

  (1)实际每天比原计划多种多少棵?

  (2)桃树的棵数是梨树棵数的多少倍?

  (3)五年级平均每人捐款多少元?

  (4)这堆煤实际烧了多少天?

  (5)剩下的书还需要多少小时能够装订完?

  (6)小明几分钟可以从家走到学校?

  教师总结:

  应用已经学过的数量关系,根据题目中的`问题考虑需要哪两个直接条件,是我们分析和解答简单应用题的关键。

  二、归纳整理。

  揭示课题:这节课,我们复习复合应用题(板书课题)。

  (一)教学例2:

  a.学生夏令营组织行军训练,原计划每小时走3.75千米;实际每小时走4.5千米。实际比原计划每小时多走多少千米?

  b.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际每小时走了4.5千米。实际比原计划平均每小时多走多少千米?

  c.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际2.5小时走完原定路程。实际比原计划平均每小时多走多少千米?

  1.指名读题,学生独立解答。(学生板演)

  2.小组讨论:这三道题都有什么联系?这三道题有什么区别?

  联系:这三道题说的是同一件事,要求的问题也相同,都是求实际比原计划平均每小时多走多少千米?要求最后问题都需要先知道原计划每小时走的千米数和实际每小时走的千米数。

  区别:

  a、实际每小时走的和原计划每小时走的千米数都是已知的,只需要一步计算;

  b、实际每小时走的千米数是已知的。原计划每小时走的千米数是未知的,需要两步计算;

  c、实际每小时走的千米数和原计划每小时走的千米数都是未知的,需要三步计算。

  3.教师质疑:对于不能一步直接求出结果的应用题,我们应该怎样进行分析呢?请你们以小组为单位试着分析b、c量道例题。

  4.教师总结:从上面这组题我们可以看出,复合应用题都是由几个简单一步应用题组合而成的。在分析数量关系时我们可以从所求问题出发逐步找出所需要的已知条件,直到所需条件都是题目中的已知的为止。

  5.检验应用题的方法。

  我们想知道此题目做的对不对,你有什么好办法吗?

  (1)按照题意进行计算;

  (2)把所求得的问题作已知条件,按照题意倒着算,看最后结果是否符合题意。

  三、巩固反馈。

  1.解答并且比较下面两道应用题,说说它们之间有什么区别?

  (1)时新手表厂原计划25天生产手表1000只,实际每天生产50只。实际比原计划提前几天完成任务?

  (2)时新手表厂原计划25天生产手表1000只,实际比计划提前5天完成任务。实际每天生产手表多少只?

  2.判断:下面列式哪一种是正确的?

  (1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?

  A:2100-24053B:(2100-240)3

  C:(2100-2405)3

  (2)一个装订小组要装订2640本书,3小时装订了240本,照这样计算,剩下的书还需要几小时才能够装完?

  A:(2640-240)240B:2640(2403)

  C:(2640-240)(2403)

  (3)一个机耕队用拖拉机耕6.8公顷棉田,用了4天,照这样计算,再耕13.6公顷棉田,一共需要用多少天?

  A:13.6(6.84)B:13.6(6.84)4

  C:(13.6+6.8)(6.84)

  (4)一个筑路队铺一段铁路,原计划每天铺路3.2千米,15天铺完,实际每天比原计划多铺路0.8千米,实际多少天能够铺完这段路?

  A:3.2150.8B:3.2 15(3.2-0.8)

  C:3.2 15(3.2+0.8)

  (5)某化工厂采用新技术后,每天用原料14吨。这样,原来用7天的原料,现在可以用10天。这个厂现在比过去每天节约多少吨原料?

  A:14710-14B:14107-14

  C:14-14107D:14-14710

  四、课堂总结。

  通过今天的学习你有什么收获?

  五、课后作业。

应用题教学设计 4

  教学目标:

  通过练习使学生进一步理解和掌握一般复合应用题的解题思路,提高学生分析问题解决问题的能力。

  教学重点:一般复合应用题的解题思路

  教学用具:幻灯,小黑板

  教学过程:

  一、看问题想条件

  1、奶糖和水果糖区有多少盒?

  1还剩多少数学题没有做?

  2每只垒球需要多少元?

  3实际比计划节约用电多少度?

  二、根据条件可以求出哪些问题

  4买了5顶帽子,每顶5元,?

  53小时行了45千米,?

  三、只列式不计算

  1、工厂要生产1200个零件,已经生产了5天,每天生产146个,还要生产多少个才能完成任务?

  2、小明买了7本练习本,每本5角,现在还剩1元5角。小明一共带了多少钱?

  3、小红5分钟做口算150题,照这样计算,做450题要几分钟?

  4、工厂运进一堆煤,计划每天烧4吨,可以用15天;实际用了20天,实际每天烧煤多少吨?

  5、同学们做了12朵黄花,做的红花的朵数比黄花的3倍多4朵。做红花多少朵?

  6、同学们做了12朵黄花,正好是红花朵数的3倍,红花做了多少朵?

  要求学生说出基本的数量关系式。

  四、解决问题

  问题:

  某粉笔厂接到一份订单:彩色粉笔86000盒,10天交货。如果不能按时交货,将厂方赔偿一切由此造成的损失。

  生产情况如下:4天已经生产了32000盒。

  请问按这样的'生产进度能按时交货吗?

  等学生得出结论后再出示:

  请你提出解决的方案。

  主要是复习归一应用题和验算方法。

  五、独立计算

  1、今年是一丰收年,王大爷家用大麻袋装麦子,一共装了12袋,每袋80千克。如果改用每袋装比大麻袋少装20千克的小麻袋,那么需要这样的小麻袋多少只?

  2、长江全长6300千米,比珠江的2倍还多1900千米。长江比珠江长多少千米?

  六、课堂作业

  练习六第7--12题。

应用题教学设计 5

  教学目的

  1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

  2.通过复习,培养学生的分析能力以及综合能力.

  3.通过复习,培养学生认真、仔细的学习习惯.

  教学重点

  通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.

  教学难点

  通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.

  教学过程

  一、复习准备.

  老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?

  学生回答:

  (1)3是6的`几分之几?

  (2)6是3的几倍?

  (3)3比6少几分之几?

  (4)6比3多几分之几?

  (5)6占6与3总和的几分之几?

  (6)3是6与3差的几倍?……

  谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)

  二、复习探讨.

  (一)教学例4.

  学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?

  1.教师提问:根据已知条件,你都可以提出什么问题?并解答.

  2.反馈:

  (1)水彩画和蜡笔画共多少幅?

  (2)水彩画比笔画少多少幅?

  (3)蜡笔画比水彩画多几分之几?

  (4)水彩画比蜡笔画少几分之几?

  (5)水彩画是蜡笔画的几分之几?

  (6)蜡笔画是水彩画的几分之几?

  (7)……

  3.教师质疑.

  (1)5问和6问为什么解答方法不同?(单位1不同)

  (2)3问和4问的问题有什么不同?(单位1不同)

  (二)例题变式.

  1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?

  2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?

  (1)学生独立解答.

  (2)学生讨论两道题的区别.

  教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.

  (三)深化.

  如果题目中的分数发生了变化,我们还会解答吗?

  1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?

  2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?

  (1)学生独立解答.

  (2)学生讨论两道题的区别.

  教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.

  三、巩固反馈.

  1.分析下面每个题的含义,然后列出文字表达式.

  (1)今年的产量比去年的产量增加了百分之几?

  (2)实际用电比计划节约了百分之几?

  (3)十月份的利润比九月份的利润超过了百分之几?

  (4)1999年的电视机价格比1998年降低了百分之几?

  (5)现在生产一个零件的时间比原来缩短了百分之几?

  (6)十一月份比十二月份超额完成了百分之几?

  2.列式不计算.

  (1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?

  (2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?

  (3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

  3.判断并且说明理由.

  男生比女生多20%,女生就比男生少20%. ( )

  4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?

  四、课堂总结.

  通过今天这堂课,你有什么收获吗?

  五、课后作业.

  某体操队有60名男队员,

  (1)女队员比男队员多 ,女队员有多少名?

  (2)男队员比女队员多 ,体操队员共有多少名?

  (3)女队员比男队员少 ,女队员有多少名?

  (4)男队员比女队员少 ,体操队员共有多少名?

  六、板书设计

应用题教学设计 6

  一、情景引入

  出示一堆煤的情景图,图中标明煤的重量为1吨,一个炊事员说:“这堆煤计划烧40天。

  ”你们知道这句话是什么意思吗?后来在实际烧的过程中,情况发生了变化,你们想知道发生了什么变化吗?那么我们今天就一起来学习有关计划与实际比较的应用题(板书课题)

  二、教学新课

  1、教学例2在情景图上加上另一个炊事员的.对话框:“由于改进炉灶,每天节省5千克。

  ”你们知道发生了什么新情况吗?根据上面的情景,你能编出应用题吗?根据学生的编的应用题,选出与例2有似的问题(1)读题,审题,分析数量关系要求改进炉灶后,这批煤可以烧多少天。

  要知道哪两个条件?我们应该先求什么?(2)你用什么方法来理解题目中的数量关系?(3)让学生尝试解答。

  2、如果把题目里的第三个已知条件和问题改成“改进炉灶后,这批煤比原计划多烧10天,每天实际烧煤多少千克?”该怎样解答?

  (1)让学生自己分析数量关系后列式解答。

  (2)讲评时让学生说出分析过程。

  (3)引导学生看一看例2与改编后的题目的联系和区别

  3、做一做

  (1)让学生独立完成做一做。

  (2)指名板演,其余做在本子上,帮助学困生。

  (3)集体评讲。

  三、课堂练习

  1、新华乡计划25天修渠道1350米,实际每天比计划多修21米,实际只要多少天就能完成任务?要求出实际只要多少天就能完成任务,必须先算出下面的哪个问题?( )怎样算?再求哪个问题?(1)实际要修多少天?(2)实际每天修多少米?(3)提前几天修完?

  2、有一堆化肥,原计划每天生产1.8吨,20天完成,由于改进技术,每天比计划多生产0.2吨,实际多少天完成?

  四、作业:

  课本第51页的1——5题

应用题教学设计 7

  教学目标:

  通过练习使学生进一步掌握解答三步计算应用题的基本步骤,并能熟练地进行验算,提高学生的分析的判断能力。

  教学重点:比较规范地分析、解答问题。

  教学用具:小黑板幻灯

  教学过程:

  一、基本练习

  1、提问:请你说说解答应用题的一般步骤。

  学生同桌说指名说

  2、看条件想问题

  有1200条毛巾,每箱装200条。?

  火车5小时行驶450千米。?

  修路队每天修路150米,已经修了12天。?

  王师傅计划25天加工一批零件,实际提前5天就完成了任务。?

  服装厂计划每天生产服装120套,实际比计划每天少生产19套。?

  3、看问题想条件,并说出数量关系式。

  实际每天生产自行车多少辆?

  实际提前几天完成任务?

  计划每天比实际少加工零件多少个?

  引导学生说出用不同的'条件组求出相同的问题。

  二、选条件求问题

  1、条件

  ⑴有1200千克苹果,⑵计划分装80箱

  ⑶实际每箱多装5千克

  ⑷实际装了60箱

  要求学生选择其中两个或三个条件,补上一个问题。

  三、练习应用

  1、甲乙两地相距120千米,小明骑摩托车从甲地去乙地,用了4小时;返回时每小时多行了10千米。返回时用了多少时间?比去时少用了多少时间?

  要求学生进行验算

  2、甲乙两个工程队计划各修路11440米。甲队每天修72米。如果乙队想比甲队提前4天完成任务,那么乙队每天要修路多少米?

  结果乙队反而比甲队多用了4天才完成任务,乙队实际每天修路多少米?

  反馈讲评要求学生说清思路

  四、课堂作业

  课本第23页练习四第2-6题

应用题教学设计 8

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

  (二)练习

  果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

  1.找出已知条件和问题

  2.画图并分析数量关系

  3.列式解答

  解1:设一共有果树 棵.

  答:一共有果树640棵.

  解1: (棵)

  (三)教学例2

  例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

  1.教师提问

  (1)题中的已知条件和问题有什么?

  (2)有几个量相比较,应把哪个数量作为单位1?

  2.引导学生说出线段图应怎样画?上衣价格的

  3.分析:上衣价格的 就是谁的`价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)

  4.让学生独立用列方程的方法解答,并加强个别辅导.

  解:设一件上衣 元.

  答:一件上衣 元.

  5.怎样直接用算术方法求出上衣的单价?

  (元)

  6.比较一下算术解法和方程解法的相同之处与不同之处.

  相同点:都要根据数量间相等的关系式来列式.

  不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

  三、巩固练习

  (一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

  提问:谁是单位1?数量间相等的关系式是什么?怎样列式?

  (米)

  (二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

  (三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

  1.课件演示:

  2.列式解答

  四、课堂小结

  这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?

  五、课后作业

  (一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

  (二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

  (三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

  六、板书设计

应用题教学设计 9

  教学内容:人教课标版一年级上册教科书第46、47页的内容。

  教学目标

  1.巩固7的加减法,提高计算的速度和正确率。

  2.使学生知道大括号和问号在图中表示的意义,正确理解题意和图中表示的数量关系,并能列式计算.

  3.初步培养学生的观察、分析能力和语言表达能力.

  4.通过教学培养学生学习数学的兴趣,养成认真倾听、积极思考的学习习惯.

  教学重点

  正确识图,知道大括号和问号所表示的意义。教学难点

  结合图意正确地选择算法.

  教学过程

  一、复习导入

  1.口算(课件依次出现不同的`口算形式以达到复习的目的)

  2.出示:教材46页的兔子图和47页青蛙图(不加“括号”和“?只”)

  (学生看图列式并指名说出原因)

  3.谈话引入板书课题:图画应用题。

  二、学习新知

  1.认识新朋友大扩号和问号。

  2.示例学习新知:

  (1)课件出示兔子采蘑菇图

  ①课件展示在兔子图下面加上大括号,在括号的下面加写“?只”,边展示边说明:括号表示把两边的兔子合并起来,下面加一个“?只”表示求一共有多少只兔子?

  ②引导学生试着用三句话完整地叙述图意并根据图意列式计算。

  (2)课件出示青蛙图

  ①课件展示在青蛙图上画括号,在括号下面写“7只”,在左边的青蛙图上面写“?只”。问:现在这幅青蛙图和刚才有什么不同?(多了括号、7只和?只)这幅图表示什么意思呢?

  ②引导学生试着用三句话完整地叙述图意并根据图意列式计算。

  (3)课件分别展示问号打在不同地方的苹果图。

  (4)通过比较与观察得出儿歌: 大括号和问号,问号在里用减法。问号在外用加法,问你一共有多少,牢牢记住用加法。比多比少剩多少,切莫忘记用减法。

  三、巩固提高

  1.独立完成书上46、47页的例题。

  2.课件出示小鱼图,小鸟图让学生独立完︷︸成。

  四、扩展 师生玩猜一猜游戏

  板书设计

  图画应用题

  大括号:︸表示一共的意思。问号:?

应用题教学设计 10

  教具准备:

  口算卡片、小黑板。

  教学过程:

  一、复习

  1.做练习三的第6题。

  教师出示口算卡片,指名让学生口算,全班集体订正。

  二、新课

  教学分步检验应用题的方法。

  教师用小黑板出示:三年级有43名学生,平均每人每学期用4本练习本,2个学期共用练习本多少本?

  教师提问:解答这道题可以先算什么,再算什么?怎样列式计算?

  教师指名让学生说一说所列的算式和每一步算的是什么。

  教师提问:还可以怎样算?怎样列式?

  教师同样指名让学生说一说所列的算式和每一步算的是什么。

  教师:怎么知道我们解答的对不对呢2这就需要对解答的过程进行检验。怎样检验呢?

  常用的方法是:按照原来的题意,依次检查每一步列式和计算,看是不是正确。现在让我们来检验一下上面这道题的解答是否正确。

  教师和学生一起讨论这道题已知什么,要求的是什么,可以先算什么,再算什么,所列的算式是什么等。每解决一个问题看一看与前面解答的是否一样,直到全部解答完。

  教师让学生翻开书第11页,自己解答题目:四年级有43名学生,2个学期共用练习本344本,平均每人每学期用多少本7做完后,让学生自己检验。

  三、课堂练习

  1.做练习三的第7题。

  读题后,指名让学生说一说这题要求的'是什么。使学生明确这题要求的是新增加5台冰箱一年的用电数,即多用电的数。然后让学生自己解答并且检验。检验之后,让学生说一说检验的方法。如果学生还没有掌握,教师可以带着集体进行检验。

  第一单元

  2.做练习三的第8题。

  让学生独立做题并且进行检验。

  3.做练习三的第9题。

  先让学生独立解答。然后教师提问:怎样把上面这道题改编成用除法解答的应用题

  呢?教师可以启发学生回想上一节课的第4题里的两小题之间的联系,然后问:想一想,怎样把条件和问题加以改变?指名让学生说一说;教师可以根据学生的意见把所改变的题目写在黑板上:15辆汽车一年可以节约10800千克汽油,平均每辆汽车1个月节约汽油多少千克?之后让学生自己解答,集体订正。

  4.做练习三的第10题。

  让学生自己解答,教师巡视,集体订正。

  5.选做练习三的第11*、12*题。

  这两题是选做题,教师可以让学有余力的学生试着做,教师个别辅导。

  第11*题,可启发学生想:根据“每组人数相等。”这个条件联系前面的已知条件,就可以确定是把180个同学平均分成了9组(5+4组),每一组的人数是180÷(5+4)=20(个)。要求第一批去了多少个同学,就是求5个组是多少人,即20×5=100(个)。所以这一题的解法是:180÷(5+4)×5=100(个)。

  第12*题,可启发学生想:要想求出1台碾米机8小时碾米多少千克,就要先知道1台碾米机1小时碾米多少千克。已知4台碾米机3小时碾米4860千克,求1台碾米机1小时碾米多少千克,这是我们刚学过的连除应用题,我们会解答。求出1台碾米机1小时碾米400千克后,再加算一步乘以8,就可算出1台碾米机8小时碾米3200千克。所以,这一题的解法是:4800÷4÷3×8=3200(千克)或者4800÷3÷4×8=3200(千克)。

  教学内容:

  教科书第11页分步检验应用题的方法,练习三的第6—10题。

  教学目的:

  (1)通过练习使学生进一步理解连乘、连除应用题的数量关系,掌握解答方法。

  (2)使学生初步学会分步检验应用题的方法,培养学生在解答应用题时进行检验的良好习惯。

应用题教学设计 11

  教学目标

  知识与能力

  1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题。

  2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

  过程与方法

  理解稍复杂的已知一个数的几分之几是多少,求这个数的应用题的.数量关系。

  情感态度与价值观

  1.会列方程解答这类应用题.

  2.培养学生分析推理能力.

  教学重点

  分析应用题的数量关系.

  教学难点

  找应用题的等量关系.

  教学过程

  一、复习旧知.

  小红买来一袋大米重40千克,吃了,还剩多少千克?

  1.画图理解题意

  2.指名叙述解答过程.

  3.列式解答40-40× 40×(1-)

  教师小结:解答分数应用题,关键是找准单位“1”,如果单位“1”是已知的,求它的几分之几是多少,就可以根据一个数乘分数的意义直接用乘法计算。

  二、探究新知.

  (一)变式引出例

  例6.小红买来一袋大米,吃了,还剩15千克买来大米多少千克?

  1.读题

  2.画线段图

  3.分析数量关系,列方程.

  4.教师提问:题中表示等量关系的三个量是什么?可以怎样列方程?

  (1)解:设买来大米千克.

  买来大米的重量-吃了的重量=剩下的重量

  (2)买来大米的重量×剩下几分之几=剩下的重量

  学生自己解方程并检验.

  答:这袋大米重40千克.

  (二)归纳总结.

  例6中的单位“1”是未知的,而已知剩下的量和吃了的分率,要求的恰好是单位“1”的重量,所以不能直接用乘法直接乘,可以列方程解答.或是找准和已知量相对应的分率用除法解答。

  出示例7。

  烧煤多少吨?

  读题,找出已知条件和所求问题。

  画图分析解答。

  ①从这个条件可以看出题中是几个数量相比?(两个数量相比。

  追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。

  我们应把哪个数量看作单位“1”?为什么?(把原计划烧煤量看作单位“1”。因为和它相比,以它为标准,所以把它看作单位“1”。

  ②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。

  下一步画什么?(实际烧煤吨数。

  指名回答:把计划烧煤量看作单位“1”,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的这两条线段谁为已知?谁为未知?

  在提问回答的过程中教师板演线段图:

  ③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

  计划烧煤吨数-节约吨数=实际烧煤吨数。

  计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。

  ④试做在练习本上。

  ⑤反馈:说说你的解答方法及依据。

  解设四月份原计划烧煤x吨。

  答:四月份原计划烧煤135吨。

  学生独立画图分析并列式解答。

  反馈提问:

  ②你用什么方法解答的?依据的等量关系式是什么?

  三)课堂总结

  今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

  数量间的等量关系相同,解答方法不同。

  三、巩固练习

  (一)找出下面各题的等量关系和对应关系.

  1.某修路除要修一条路,已经修了全长的,还剩240米没修,这条路全长是多少米?

  等量关系:

  一条路的长度-已经修的米数=没修的米数

  一条路的长度×没修的分率=没修的米数

  对应关系:

  剩的米数÷剩下的分率=全长的米数

  一根电线杆,埋在地下的部分是全长的,露地面的部分是5米.这根电线杆长多少米?

  选择正确的列式.

  一个畜牧场卖出肉牛头数的,还剩300头,这个畜牧场共有肉牛多少头?正确列式是()

  解:设共有肉牛()头。

  四)巩固反馈

  课本第76页的第2题。

  根据列式补充条件:

  五)布置作业

  课本第76页第1,3题。

  课堂教学设计说明

  本节课的内容是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

应用题教学设计 12

  教学目标:

  1、知识与技能:通过复习,能把稍复杂的分数和百分数应用题的有关知识系统化。

  2、数学思考:能牢固掌握分数和百分数应用题的基本数量关系和解题方法。

  3、解决问题:能够灵活地运用这些知识正确解答稍复杂的分数、百分数应用题。提高学生独立解决实际问题的能力。

  4、情感与态度:培养学生认真审题和学会联系实际的良好学习习惯。

  教具准备:

  电脑课件

  教学过程:

  一、谈话导入,揭示课题。

  二、复习梳理,再现知识。

  1、复习一类应用题。

  (1)复习巩固。

  屏幕出示两条信息,生根据这两条信息自己提出问题,自己解决问题。

  水彩画50幅;蜡笔画80幅。

  (2)合作交流。

  在小组中相互说说解题时是怎样想的。

  (3)讨论梳理。

  比较归纳各题的相同点。

  板书:找出单位“1”

  2、复习二、三类应用题。

  (1)复习巩固。

  屏幕出示如下信息:

  A、蜡笔画有80幅B、水彩画有50幅

  35

  C、水彩画比蜡笔画少— D、水彩画是蜡笔画的—

  88

  让学生从以上信息中任选两条,自己提出问题,自己解决问题。

  (2)交流探讨。

  屏幕出示四种情况。(略)

  (3)总结梳理。

  以上各题的解题思路有什么相同的地方?

  弄清以哪个数量作为单位“1”;再分析数量间的关系;选择适当的方法解答。(后两条板书)

  (4)类推延伸。

  教师点拨:如果把以上几道应用题分率句中的分数改为百分数,你会做吗?这说明什么?

  小结:在一般情况下,解答分数(百分数)应用题,应先找出分率句中的单位“1”,再分析数量间的关系,然后根据实际情况,选择算术或方程来解答。

  三、加强联系,综合应用。

  1、迁移方法,完成练习卷上的第1题练习。

  (1)生独立思考解答,后集体订正。

  (2)师小结。

  2、出示“做一做”的第1题。

  (1)生独立思考解答,再指名说说解题思路。

  (2)师点拨:废品率、合格率之间的关系。

  四、巩固练习。

  1、做练习纸上的第2、3、4题。

  2、讲评。

  五、总结归纳。

  1、这节课你有哪些收获?

  2、指导看书P111的.例4,并补充完整。

  六、布置作业。

  练习二十二的第1、2、3、4题。

  板书设计

  1、找出单位“1”;

  2、分析数量间的关系;

  3、选择适当的方法解答。

  教学设计说明

  复习课是根据学生的认知特点和规律,在学生学习数学知识的某一阶段,以巩固、梳理已学知识、技能,促进知识系统化,提高学生运用所学知识解决实际问题的能力为主要任务的一种课型。它是小学数学教学中的重要课型之一,在小学数学教学中占有重要的地位。如何把复习课上得轻松愉快又富有实效呢?

  《数学课程标准》(实验稿)在“教学建议”中提倡“要鼓励学生独立思考,引导学生自主探索、合作交流”的学习方式。同样,要上好数学复习课,也应该切实转变复习方式,突出自主性、针对性、系统性,才能全面提高复习效率。现结合六年制小学数学第十二册第四单元《分数应用题的整理和复习》的教学谈谈具体做法。

  列方程解应用题

  在列方程解决实际问题的教学过程中,教师教的重点和学生学的重点,不在于解,而在于学解。注重的是解决问题的过程。也就是说,要让学生经历寻找实际问题中数量之间的相等关系并列方程解答的全过程。

  1、本节课的教学设计,无论是学生对各种解题方法的探索和理解,还是让学生感受列方程解应用题的优越性,都尽量让学生主动参与,亲身体验,学生通过分析、比较、交流、讨论等活动,充分展示他们的思维过程,发展思维能力。

  2、应用题的教学难点就是:如何引导学生理解题意,列出需要的数量关系式或等量关系式。在这个过程中,重要的并不是展示学生的方法如何多,因为解决办法是可以举一反三的,重要的应该是引导学生如何通过分析,找出等量关系式的过程。同时,在分析过程中,让学生掌握多种办法来分析。如通过抓关键句、关键词、关键字列等量关系式;通过画线段图理解题意;通过画示意图来理解题意。学生才会更加积极地思考不同的方法来解决问题,如:本节课中呈现的画线段图、画示意图、抓关键字或词来理解和分析应用题。体现学生的主体地位,让学生在情境中通过自主探究、感悟、理解、掌握新知识。

  3、注重练习形式的多样化。本节课的练习安排了三个层次,一是巩固练习,重点让学生说一说等量关系,促进对列方程解应用题的掌握;二是开放性练习,融知识性、趣味性、活动性于一体,学生学习兴趣高,主动性强。三是通过独立作业,检验学生解决问题的能力。

应用题教学设计 13

  教材分析:

  本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、 谈话激趣,复习辅垫

  1. 师生交流

  师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

  对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)

  2.复习旧知

  师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

  学生回答后说明理由。

  师:算一算你们自己体内水分的质量吧!

  生答

  师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

  生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量

  35× 5 (4 )=28(千克)

  师:谁还能根据另一个信息写出等量关系式?

  成人的体重× 3 (2 )=成人体内的水分的重量

  2. 揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

  二、 引导探究,解决问题

  1. 课件出示例题。

  2. 合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

  3. 学生汇报

  生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的'重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

  生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。

  28÷ 5 (4 )=35(千克)

  4. 比较算法

  比较算术做法与方程做法的优缺点?

  (让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

  5. 对比小结

  和前面复习题进行比较一下,看看这题和复习题有什么异同?

  (1) 看作单位“1”的数量相同,数量关系式相同。

  (2) 复习题单位“1”的量已知,用乘法计算;

  例1单位“1”的量未知, 可以用方程解答。

  (3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

  单位“1”是已知还是未知的?

  根据学生回答画线段图。

  根据题中的数量关系找学生列出等量关系式。

  学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、 联系实际,巩固提高

  1. (投影)看图口头列式,并用一句话概括题中的等量关系。

  (1)

  (2)

  2.练一练:

  (1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?

  (2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?

  3.对比练习

  (1)一条路50千米,修了 5 (2 ),修了多少千米?

  (2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?

  (3)一条路50千米,修了 5 (2 )千米,还剩多少千米?

  四、全课小结畅谈收获

  ①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

  教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

  设计意图:

  一、从生活入手学数学。

  《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。

  二、关注过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  四、 有破度有层次地设计练习,提高学生的思维能力。

  教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

应用题教学设计 14

  教学时间:

  教学内容:131页15、16题,练习三十10-12题

  教学目标:

  知识:通过复习乘法的含义使学生知道乘法的含义和乘法算式中的各部分的名称。

  能力:提高分析能力和解决问题的能力。

  教学重难点:能正确解答应用题

  突破方法:讲解法、练习法

  教具:小黑板、投影机、

  教学过程

  一、复习乘法的'含义

  ○○○○

  ○○○○○○○○

  1、写出加法算式

  2、写出乘法算式

  二、复习乘法口决

  1、教师出示2-6的乘法口决卡片,很快说出得数

  2、在()里填上适当的数

  4×()=3×()=12

  5+5+5=()×3=()

  5+5+5+5+1=5×()+1

  3、让学生做练习三十10、11题

  三、复习乘法应用题

  1、

  ①有2只船,一只船坐4人,一只船坐5人,一共做几人?

  ②有2只船,每只坐5人,一共坐几人?

  2、对比题

  3、做131页16题

  4、做练习三十的12题

  四、板书设计

  教后经验与失误分析:

应用题教学设计 15

  教学内容:课本第20-21页练习五的第4-8题。

  教学目的:通过练习使学生进一步理解比较容易的三步应用题的数量关系,掌握解题的方法;培养学生的分析、推理和灵活解答应用题的能力。

  教学过程:

  一、混合练习。

  1.做练习五的第4题。

  请一位学生读题后,指名让学生说一说,这题的已知条件和问题、计算步骤,然后让学生自己解答。教师巡视,看看有没有不同的解法。如果有没有不同的解法。如果有不同的解法,教师把它们写在黑板上,让学生讨论一下两种解法都对不对,以开阔学生的眼界,培养学生灵活的解题能力。如果没有不同的解法,教师可启发学生想一想,还有没有其他的解法。让学有余力的学生自己找出另一种解法,集体讨论、订正。

  2.做练习五的`第5题。

  先让一位学生读题,说一说题里的已知条件和问题。然后教师提问,指名学生回答:

  要想平均每人做几朵花,先要求什么?(先要求出两个班一共做了多少朵花。)

  能不能直接求出两个班一共做了多少朵花?(不能。)

  还要先求出什么?(先求出二班做花的朵数。)然后让学生独立解答。注意发现和鼓励学生想出不同的解法。

  3.做练习五的第6题。

  教师出示第6题的图:

  让一位学生读题后,教师借助图引导学生理解题意。弄清楚“甲、乙二人同时从同一地点向相同方向出发。”是什么意思。然后,让学生说一说这题的已知条件和问题。接着教师提问:

  (1)要想求2小时后二人相距多少千米,先要求出什么?(先要求出甲、乙2小时后各行了多少千米。)

  (2)能不能直接求出?(不能)

  (3)还要先求出什么?(先求出乙骑摩托车的速度是多少。)

  (4)这道题应该怎样列式解答呢?(20×3×2-20×2=80)

  让学生自己列式解答,教师巡视。做完后集体订正。

  问:这道题还有没有其他的解法?可以先算出什么,再算出什么?

  引导学生自己想出可以先算出甲、乙二人每小时相距多少千米,再算出2小时后二人相距多少千米。

  教师让学生自己试着列式计算。(20×3-20)×2=80

  做完后,集体订正。

  问:上面两种解法,哪一种更简便一些呢?

  二、增加条件的练习。

  1.做练习五的第7题。

  请一位学生读题后,指名让学生说一说题里的条件和问题,怎样列式计算。然后教师提问问题:

  这是一道需要几步计算的应用题?(两步)

  你能改变题里的条件,使它变成一道三步计算的应用题吗?

  教师要求学生:想一想,应该怎样改。引导学生想出只要把原题中的一个直接条件变成间接条件就可以了。(例如:把“五月份生产了2199件”改为“五月份比四月份多生产359件”或者把“四月份生产了1840件”改为“四月份比五月份少生产359件。)

  教师让学生把自己改成的三步题,在自己的练习本上解答出来。解答之后,可指名让学生说一说两步应用题与三步应用题的区别,使学生进一步理解三步应用题的数量关系。

  2.做练习五的第8题。

  请一位学生读题后,教师出示这一题的示意图。

  原来80米 增加20米

  引导学生理解题意,使学生明确:这是一道连续两问的应用题;要想求出扩建后的操场面积,应该先求出扩建以后操场的长和宽;要想求出扩建以后操场的面积比原来增加了多少,只要用扩建以后的操场面积减去扩建以前的操场面积就可以了。然后,让学生自己列式解答。教师巡视,个别辅导。

【应用题教学设计】相关文章:

复合应用题教学设计11-20

简单应用题教学设计11-22

分数乘法应用题数学教学设计02-26

两步计算应用题教学设计10-08

稍复杂的分数乘法应用题 教学设计资料01-17

百分数应用题教学设计11-19

分数应用题教学反思10-06

《分数应用题复习》教案设计08-26

百分数应用题一教学设计资料01-17

分数乘法应用题教学反思10-06