正比例教学设计

时间:2024-05-19 13:03:07 教学资源 投诉 投稿

正比例教学设计(合集)

  在教学工作者开展教学活动前,往往需要进行教学设计编写工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。教学设计应该怎么写才好呢?下面是小编整理的正比例教学设计,仅供参考,希望能够帮助到大家。

正比例教学设计(合集)

正比例教学设计1

  教学目标

  1、知识与技能

  ①理解正比例函数的概念及正比例函数图象特征。

  ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

  2、过程与方法

  ①通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。

  ②经历运用图形描述函数的过程,初步建立数形结合,经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。

  3、情感态度与价值观

  ①结合描点作图培养学生认真细心严谨的学习态度和习惯。

  ②培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

  教学重点:

  探索正比例函数图形的形状,会画正比例函数图象。

  教学难点:

  正比例函数解析式的理解教学方法:探索归纳,启发式讲练结合

  教学准备:

  多媒体课件

  教学过程

  一、提出问题,创设情境,激发学生的学习兴趣情境

  1、(1)你知道候鸟吗?

  (2)它们在每年的迁徙中能飞行多远?

  (3)燕鸥的飞行路程与时间之间有什么样的数量关系?教师用课件展示问题。让学生观察图片中的燕鸥,然后思考并解答课本上的问题。学生自主解决三个问题。教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程和时间规律进行了刻画。

  【设计意图】从具体情境入手,让学生从简单的实例中不断抽象出建立数学模型、数学关系的方法。

  二、出示本节课的`学习目标

  ①理解正比例函数的概念及正比例函数图象特征。

  ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

  教师用课件展示学习目标,学生齐声朗读,记忆。

  【设计意图】首先让学生了解本节课的学习任务,有目的的进行本节课的学习。

  三、自学质疑:

  自学课本86——87页,并尝试完成下列问题

  1、写出下列问题中的函数表达式

  (1)圆的周长|随半径r的大小变化而变化

  (2)汽车在公路上以每小时100千米的速度行驶,怎样表示它走过的路程S(千米)随行驶时间t(小时)变化的关系?

  (3)每个练习本的厚度为,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化

  (4)冷冻一个0度的物体,使它每分下降2度,物体的温度T(单位:度)随冷冻时间t(单位:分)的变化而变化

  2、这些函数有什么共同点?这样的函数我们把它们称为正比例函数。由上得到的启发,你能试着给正比例函数下个定义吗?学生先自主探究,后分组讨论,然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。

  【设计意图】通过这些实际问题使学生进一步加深对函数概念的理解,也为导出正比例函数概念做好铺垫。

  教师引导学生观察分析上面的四个表达式的共性:都是常数与自变量乘积的形式。教师口述并板书正比例函数的概念。

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

  教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k是常数,k≠0?

  上述问题中各正比例函数的比例系数分别是什么?(由学生一一说出)

  做一做:下面的函数是不是正比例函数?y=3x y=2/x y=x/2 s=πr2

  通过上面的例子,师生共同总结正比例函数须满足下面两个条件:

  1、比例系数不能为0

  2、自变量X的次数是一次的。

  表示下列问题中的y与x的函数关系,并指出哪些是正比例函数。

  (1)正方形的边长为xcm,周长为ycm;

  (2)某人一年内的月平均收入为x元,他这年的总收入为y元;

  (3)一个长方体的长为2cm,宽为,高为xcm,体积为ycm3

  【设计意图】通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点。

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?自学课本87——89页,并尝试回答下列问题:[活动]

  1、各小组合作回顾函数图象的画法,画出下列函数的图象

  (1)y=2x(2)y=—2x

  【设计意图】:通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。

  教师活动:引导学生正确画图、积极探索、总结规律、准确表述。学生活动:利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。活动过程与结论:

  1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6画出图象如图P1242、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6画出图象如图P112

  问:①观察两个函数图象,能得到那些信息?教师指导:观察函数图象从以下几个方面进行:

  (1)自变量

  (2)函数值

  (3)升降性

  (4)特殊点

  (5)过了那几个象限

  (6)图象的形状

  ②总结正比例函数图象的性质

  3、两个图象的共同点:都是经过原点的直线。不同点:函数y=2x的图象从左向右呈状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;y=—2x图象经过第二、四象限,从左向右呈状态,即随x增大y反而减小

  三、巩固练习:

  1、判断下列函数哪些是正比例函数

  (1)y=2x

  (2)y=kx(k≠0)

  (3)y=—1/3x(4)y=1/2x+2

  (5)y=3x2

  (6)y=—3x2

  2、教材练习题

  比较两个函数图象可以看出:两个图象都是经过原点的直线。函数的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

  四、总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们可称它为直线y=kx。当k>0时,直线y=kx经过一、三象限,从左向右上升,即y随x的增大而增大;当k二、四象限,从左向右下降,即y随x的增大而减小。

  五、巩固深化

  1、画正比例函数时,怎样画最简便?为什么?教师活动:引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。学生活动:在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。

  2、活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象。画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。

  随堂练习:用你认为最简单的方法画出下列函数的图像:(1)y=3/2x,(2)y=—3x

  六、总结归纳,布置作业

  1、在本节课中,我们经历了怎样的过程,有怎样的收获?

  2、你还有什么困惑?

  作业:P98习题19.2─1、2题。

  教学设计说明:

  本节教学设计以“自学质疑,教师指导阅读,咬文嚼字;合作释疑,查漏补缺;展示评价,培养学生的概括能力;巩固深化,细心读题,学生说题,培养学生的语言表达能力”四个步骤强化了学生的阅读意识,提高了学生的阅读兴趣,培养了学生的阅读能力。较好的完成了本节课的学习目标。

正比例教学设计2

  教学目标

  知识与技能:理解正比例函数的意义;识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。过程与方法:通过现实生活中的具体事例引入正比例函数,提高学生运用数学知识解决实际问题的能力。情感态度与价值观:培养学生认真、细心、严谨的学习态度和学习习惯,同时渗透热爱大自然和生活的教育。

  教学重点:识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。教学难点:理解正比例函数的意义。

  教学设计

  (一)创设情境,引入新知

  20xx年7月12日,我国著名运动员刘翔在瑞士洛桑的田径110米栏的决赛中,以12.88秒的成绩打破了尘封13年的世界纪录,为我们中华民族争得了荣誉、

  (1)刘翔大约每秒钟跑多少米呢?

  刘翔大约每秒钟跑110÷12.88=8.54(米)、

  (2)刘翔奔跑的路程s(单位:米)与奔跑时间t(单位:秒)之间有什么关系?

  假设刘翔每秒奔跑的路程为8.54米,那么他奔跑的路程s(单位:米)就是其奔跑时间t(单位:秒)的函数,函数解析式为s= 8.54t

  (0≤t ≤12.88)、

  (3)在前5秒,刘翔跑了多少米?

  刘翔在前5秒奔跑的路程,大约是t=5时函数s= 8.54t的值,即s=8.54×5=42.7(米)、

  教师活动:教师用多媒体呈现问题,学生活动:学生思考并解答。教师重点关注:学生能否顺利写出y与x的函数关系式。注意自变量的取值范围、

  设计意图:

  通过“刘翔”这一实际情境引入,使学生认识到现实生活和数学密不可分,向学生渗透热爱运动、努力拼搏的精神。同时发展学生从实际问题中提取有用的数学信息,建立数学模型的能力。

  (二)观察思考、归纳概念

  问题1:

  下列问题中的变量对应规律可用怎样的函数表示?请指出函数解析式中的常数、自变量和自变量的函数、

  (1)圆的周长l随半径r的大小变化而变化;

  (2)铁的密度为7.8g/ cm3,铁块的质量m(单位:g)随它的体积v(单位:cm3)的大小变化而变化。

  (3)每个练习本的.厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;

  (4)冷冻一个0 ℃物体,使它每分下降2 ℃,物体的温度t(单位:℃)随冷冻时间t(单位:分)的变化而变化、

  教师活动:教师多媒体呈现上述四个实际问题。学生活动:学生独立解答,解答后小组交流,出代表进行反馈。

  设计意图:

  通过指出常数、自变量、自变量的函数,对函数的概念进行回顾,从而为后续环节找正比例函数的共同点建立生长点。通过对实际问题讨论,使学生体验从具体到抽象的认识过程。

  问题2:

  教师活动:将上表中的前四个函数进行比较

  思考:四个函数有什么共同特点?

  学生活动:观察、思考。小组交流,分析、归纳共同特点,出代表反馈。教师要根据学生的具体表现,通过引导、点拨,使学生比较、观察得出共同点。教师根据学生的表述板书:

  共同点:常数×自变量、

  学生阅读教材正比例函数的概念

  教师板书:

  概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数、

  教师追问:这里为什么强调k是常数,k≠0呢?正比例函数y=kx(k≠0)的结构特征

  ①k≠0

  ②x的次数是1

  学生活动:学生交流、讨论,互相补充。设计意图:通过将前四个函数进行比较,是学生通过比较、观察、分析、概括出正比例函数的共同特点,使学生明白正比例函数的特征,从而归纳出正比例函数的概念。有效地克服了因没有对比直接观察使学生出现的不适性、盲目性。培养学生的观察、分析、归纳、概括等思维能力。

  (三)练习运用,内化概念

  判断下列函数是否为正比例函数?如果是,请指出比例系数。

  教师活动:出示上题

  学生活动:独立解答,教师巡视。教师根据学生反馈情况,引导学生根据“常数×自变量”归纳辨别正比例函数要注意的问题。

  设计意图:

  使学生结合实例深入理解概念的内涵,做到具体问题具体分析。

  (四)、针对训练,提升能力

  例1(1)若y=5x3m—2是正比例函数,m=。

  (2)若y=(3m—2)x是正比例函数,则m的取值范围____。变式练习1、若y=(m—1)xm2是关于x的正比例函数,则m=

  2、已知一个正比例函数的比例系数是—5,则它的解析式为:()

  3、某学校准备添置一批篮球,已知所购篮球的总价y(元)与个数x(个)成正比例,当x=4(个)时,y=100(元)。

  (1)求正比例函数关系式及自变量的取值范围;

  (2)求当x=10(个)时,函数y的值;

  (3)求当y=500(元)时,自变量x的值。

  (五)、小结与作业:

  小结:

  本节课你有哪些收获?用你的语言说一说。

  作业:

  课后练习1题、2题。设计意图:

  通过学生自己回顾、归纳本节内容,使学生对本节课的内容进行一次重新梳理,使学生能从整体上对本节内容有一个深刻地认识,使知识内化

  板书设计

  正比例函数

  一、正比例函数概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数

正比例教学设计3

  教学内容:

  苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

  教材学情分析:

  《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

  “练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的`趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

  教学目标:

  ⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  ⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

  ⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

  教学重点:进一步理解比和比例的一些知识。

  教学难点:感受比的应用价值,在活动中获得一些新的认识。

  教学具准备:

  教学流程:

  一、自主学习,完成练习。

  ⑴揭示课题。

  教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

  ⑵自主练习。

  教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

  学生自主练习,教师巡视。

  二、交流讨论,梳理知识。

  ⑴整理比的知识。

  交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

  ⑵感受生活中的比例。

  交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。

  ⑶整理比例的知识。

  交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

  ⑷整理解比例的知识。

  交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

  ⑸解决实际问题。

  交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

  ⑹谈谈本节课的收获。

正比例教学设计4

  【教学内容】

  正比例

  【教学目标】

  使学生理解正比例的意义,会正确判断成正比例的量。

  【重点难点】

  重点:理解正比例的意义。

  难点:正确判断两个量是否成正比例的关系。

  【教学准备】

  投影仪。

  【复习导入】

  1.复习引入。

  用投影仪逐一出示下面的题目,让学生回答。

  ①已知路程和时间,怎样求速度?

  板书: =速度。

  ②已知总价和数量,怎样求单价?

  板书: =单价。

  ③已知工作总量和工作时间,怎样求工作效率?

  板书: =工作效率。

  2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

  【新课讲授】

  1. 教学例1。

  教师用投影仪出示例1的图和表格。

  学生观察上表并讨论问题。

  (1)铅笔的总价和数量有关系吗?

  (2)铅笔的总价是怎样随着数量的变化而变化的?

  (3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

  根据观察,学生可能会说出:

  ①铅笔的总价随着数量变化,它们是两种相关联的量。

  ②数量增加,总价也增加;数量降低,总价也减少。

  ③铅笔的总价和数量的比值总是一定的,即单价一定。

  教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

  2.教师出示:一列火车行驶的时间和路程如下表。

  引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

  组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。

  教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

  3.归纳概括正比例关系。

  ①组织学生分小组讨论,上面两个例子有什么共同规律?

  ②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

  学生说一说是怎么理解正比例关系的`。

  要求学生把握三个要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三:两个量的比值一定。

  4.用字母表示正比例的关系。

  教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

  5.教师:想一想,生活中还有哪些成正比例的量?

  学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

  【课堂作业】

  完成教材第46页的“做一做”(1)~(3)。

  答案:

  (1) 。

  (2)比值表示每小时行驶多少km。

  (3)成正比例。理由:路程随着时间的变化而变化。

  ①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。

  【课堂小结】

  通过这节课的学习,你有什么收获?

  【课后作业】

  完成练习册中本课时的练习。

正比例教学设计5

  学习目标 :加深对正比例意义的理解,能正确判断两个相关联的量是不是成正比例。

  学习重点 :进一步掌握正比例的意义。

  学习难点: 能正确判断两个相关联的量是不是成正比例。

  教学过程:

  一、温故互查:

  1、正比例的意义是什么?

  2、如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一

  定),正比例关系可以怎样表示?

  3、齐读正比例儿歌。

  二、自学感悟:

  “想一想”

  (1)正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  (2)父子的年龄成正比例吗?为什么?

  三、合作交流:

  在组内交流以上问题的解决过程。

  四、展示点评:

  正方形的周长随边长的变化而变化,并且周长与边长的比值都是

  4,所以两个量成正比例;正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以两个量不成正比例。

  虽然乐乐岁数增加,爸爸岁数也增加,但是乐乐岁数与爸爸岁数的比值不是一个确定的值,所以父子的年龄不成正比例。

  五、巩固练习:

  判断:

  (1)减数一定,被减数和差成正比例。

  (2)三角形的底一定,三角形的面积和它的高成正比例。

  (3)成正比例的两个量,一种量扩大,另一种量也随着扩大。

  六、拓展延伸:

  找一找生活中成正比例的例子,并与同伴交流。

  板书设计:

  正比例

  y =k(一定)x

  教学反思:

  我认为本节课最大的特点便是提供了丰富的材料,选择了师生互动,以教师的“引”为主导,学生为主体,呈现给学生丰富的感性材料,让学生在互动交流中去理解成正比例的量这一概念。

  3、画一画

  学习目标:

  1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

  2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  3、利用正比例关系,解决生活中的'一些简单问题。

  学习重点: 在具体情境中,通过“画一画”的活动,初步认识正比例图象。

  学习难点: 利用正比例关系,解决生活中的一些简单问题。 教学过程:

  一、自主尝试:

  判断下面的量是否成正比例关系?

  1、每行人数一定,总人数和行数。

  2、长方形的长一定,宽和面积。

  3、长方体的底面积一定,体积和高。 4、分子一定,分母和分数值。

  5、长方形的周长一定,长和宽。

  6、一个自然数和它的倒数。

  7、正方形的边长与周长。

  8、正方形的边长与面积。

  9、圆的半径与周长。

  10、圆的面积与半径。

  11、什么样的两个量叫做成正比例的量? 二、合作探究:

  小组合作完成课本44页例题重点找出正比例图像的特征。 三、汇报点评:

  小组汇报,集体点评。

  四、归纳总结:

  1、表示成正比例关系的两个相对应量中的各点在同一直线上,即正比例关系的图像是一条经过原点的直线。

  2、从图像中可以直观看到两种量的变化情况。

  五、巩固练习:

  完成课本45页“练一练”第1、2、题

  六、拓展延伸:

  完成课本45页“练一练”第3题

  板书设计:

  画一画

  正比例关系的图像是: 一条经过原点的直线。

  教学反思:

  在本节课教学设计中我本着以下几个要求:1、正比例是研究两个量之间的一种关系。2、知道正比例是一种怎样的图像。3、我们为什么要认识正比例图像在利用图像解决问题这一环节,我着重让学生利用图像解决一个又一个问题中体会认识正比例图像的好处,从而使学生充分感受到我们所学的知识是与我们的生活密切相关的。

  4、反比例

正比例教学设计6

  教学目标

  (一)教学知识点

  1.认识正比例函数的意义.

  2.掌握正比例函数解析式特点.

  3.理解正比例函数图象性质及特点.

  4.能利用所学知识解决相关实际问题.

  教学重点

  1.理解正比例函数意义及解析式特点.

  2.掌握正比例函数图象的性质特点.

  3.能根据要求完成转化,解决问题.

  教学难点

  正比例函数图象性质特点的掌握.

  教学过程

  Ⅰ.提出问题,创设情境

  一九九六年,鸟类研究者在芬兰给一只燕鸥??鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.

  1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

  2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

  3.这只燕鸥飞行1个半月的行程大约是多少千米?

  我们来共同分析:

  一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

  ÷(30×4+7)≈200(km)

  若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:

  y=200x(0≤x≤127)

  这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即

  y=200×45=9000(km)

  以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.

  类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.

  Ⅱ.导入新课

  首先我们来思考这样一些问题,看看变量之间的'对应规律可用怎样的函数来表示?这些函数有什么共同特点?

  1.圆的周长L随半径r的大小变化而变化.

  2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.

  3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.

  4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.

  解:1.根据圆的周长公式可得:L=2r.

  2.依据密度公式p=可得:m=7.8V.

  3.据题意可知:h=0.5n.

  4.据题意可知:T=—2t.

  我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func—tion),其中k叫做比例系数.

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

  [活动一]

  活动内容设计:

  画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.

  1.y=2x2.y=—2x

  活动设计意图:

  通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣.

  教师活动:

  引导学生正确画图、积极探索、总结规律、准确表述.

  学生活动:

  利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.

  活动过程与结论:

  1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:

  x—3—2—

  y—6—4—

  画出图象如图(1).

  2.y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:

  x—3—2—

  y6420—2—4—6

  画出图象如图(2).

  3.两个图象的共同点:都是经过原点的直线.

  不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限.

  尝试练习:

  在同一坐标系中,画出下列函数的图象,并对它们进行比较.

  1.y=x2.y=—x

  x—6—4—

  y=x—3—2—

  y=—x3210—1—2—3

  比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=—x的图象从左向右下降,经过二、四象限,即随x增大y反而减小.

  总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k

  正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

  [活动二]

  活动内容设计:

  经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

  活动设计意图:

  通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.

  教师活动:

  引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法.

  学生活动:

  在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由.

  活动过程及结论:

  经过原点与点(1,k)的直线是函数y=kx的图象.

  画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.

  Ⅲ.随堂练习

  用你认为最简单的方法画出下列函数图象:

  1.y=x2.y=—3x

  解:除原点外,分别找出适合两个函数关系式的一个点来:

  1.y= x(2,3)

  2.y=—3x(1,—3)

  小结:

  本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.课后作业

  习题11.2─1、2题.

正比例教学设计7

  教学内容

  教科书第54页例3,练习十二5,6,7题。

  教学目标

  1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

  2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

  3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

  教学重、难点

  运用正比例知识解决简单的实际问题。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、复习引入

  1.判断下面各题中的两种量是不是成正比例?为什么?

  (1)飞机飞行的速度一定,飞行的时间和航程。

  (2)梯形的上底和下底不变,梯形的面积和高。

  (3)一个加数一定,和与另一个加数。

  (4)如果y=3x,y和x。

  2.揭示课题

  教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

  二、合作交流,探索新知

  1.用课件出示例3

  教师:这幅图告诉我们一个什么事情?需要解决什么问题?

  教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

  2.全班交流解答方法

  指导学生思考出:

  (1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

  (2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

  (3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的`钱。

  3.尝试用正比例知识解答

  如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

  教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

  (1)题中有哪两种相关联的量?

  (2)题中什么量是不变的?一定的?

  (3)题中这两种相关联的量是什么关系?

  引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

  随学生的回答,教师可同步板书:

  教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

  引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

  教师:同学们会计算吗?把这个比例式计算出来。

  学生解答。

  教师:解答得对不对呢?你准备怎样验算?

  学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

  三、课堂活动

  1.出示教科书第49页的例1图和补充条件

  竹竿长(m)26…

  影子长(m)39…

  教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

  教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

  学生独立思考解答,讨论交流。

  2.小结方法

  教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

  (1)设所求问题为x。

  (2)判断题中的两个相关联的量是否成正比例关系。

  (3)列出比例式。

  (4)解比例,验算,写答语。

  四、练习应用

  完成练习十二的5,6,7题。

  五、课堂小结

  这节课我们学习了什么知识?你有什么收获?

正比例教学设计8

  教学要求:

  1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

  2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

  教学过程:

  一、复习铺垫

  1、说出下列每组数量之间的.关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、引入新课

  我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

  二、教学新课

  1、教学例1。

  出示例1。让学生计算,在课本上填表。

  让学生观察表里两种量变化的数据,思考。

  (1)表里有哪两种数量,这两种数量是怎样变化的?

  (2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

  引导学生进行讨论。

  提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

  想一想,这个式子表示的是什么意思?

  2、教学例2

  出示例2和想一想

  要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

  学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

  比值1.6是什么数量,你能用数量关系式表示出来吗?

  谁来说说这个式子表示的意思?

  3、概括正比例的意义。

  像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

  4、具体认识

  (1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

  例2里的两种量是不是成正比例的量?为什么?

  (2)做练习八第1题。

  5、教学例3

  出示例3,让学生思考/

  提问:怎样判断是不是成正比例?

  请同学们看一看例3,书上怎样判断的,我们说得对不对。

  强调:关键是列出关系式,看是不是比值一定。

  三、巩固练习

  1、做练一练第1题。

  指名学生口答,说明理由。

  2、做练一练第2题。

  指名口答,并要求说明理由。

  3、做练习八第2题(小黑板)

  让学生把成正比例关系的先勾出来。

  指名口答,选择几题让学生说一说怎样想的?

  四、课堂小结

  这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

  五、家庭作业。

正比例教学设计9

  教学目标:

  1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

  教学重点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  预习指导:

  一、自学教材。

  阅读教材第62~63页。

  二、检查学习。

  1.怎样两个量成正比例?

  2.完成"试一试"。

  教学准备:

  课件和口算题。

  教学过程:

  一、导入

  谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

  二、教学例1 1.课件出示例1的表

  ⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?

  ⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

  2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

  3.我们可以写出这么几组路程和对应时间的比。

  ⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

  ⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

  ⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  课件出示:路程和时间成正比例。

  ⑷现在你能完整地说一说表中路程和时间成什么关系吗?

  4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。

  ⑴课件出示"试一试"

  ⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?

  课件出示表中的数据。

  ⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。

  集体交流:

  ⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?

  ⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

  小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的`量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

  ⑹你能完整地这样说给你的同桌听一听吗?

  ⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?

  课件出示课题。

  ⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?

  指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

  5.完成"练一练"

  ⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

  ⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

  小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?

  三、练习

  1.完成练习十三第1题。

  请大家继续看课本66页第1题

  2.完成练习十三第2题

  ⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

  ⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。

  3.完成练习十三第3题(课件出示题目)

  ⑴课件出示放大后的三个正方形、

  ⑵大家看一看,你是这样画的吗?

  ⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。

  校对学生做的情况。

  ⑷请大家根据表中的数据讨论下面两个问题。

  ①正方形的周长与边长成正比例吗?为什么?

  ②正方形的面积与边长成正比例吗?为什么?

  四、总结。

  通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

  板书设计:

  正比例的意义

  路程和时间是两种相关联的量,

  时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,

  我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

正比例教学设计10

  教学目标

  (一)教学知识点

  1、认识正比例函数的意义。

  2、掌握正比例函数解析式特点。

  3、理解正比例函数图象性质及特点。

  4、能利用所学知识解决相关实际问题。

  教学重点

  1、理解正比例函数意义及解析式特点。

  2、掌握正比例函数图象的性质特点。

  3、能根据要求完成转化,解决问题。

  教学难点

  正比例函数图象性质特点的掌握。

  教学过程

  Ⅰ、提出问题,创设情境

  一九九六年,鸟类研究者在芬兰给一只燕鸥?鸟)套上标志环。4个月零1周后人们在2.56万千米外的澳大利亚发现了它。

  1、这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

  2、这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

  3、这只燕鸥飞行1个半月的行程大约是多少千米?

  我们来共同分析:

  一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

  ÷(30×4+7)≈200(km)

  若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。函数解析式为:

  y=200x(0≤x≤127)

  这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。即

  y=200×45=9000(km)

  以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

  类似于y=200x这种形式的函数在现实世界中还有很多。它们都具备什么样的特征呢?我们这节课就来学习。

  Ⅱ、导入新课

  首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?

  1、圆的周长L随半径r的大小变化而变化。

  2、铁的密度为7.8g/cm3。铁块的质量m(g)随它的体积V(cm3)的大小变化而变化。

  3、每个练习本的厚度为0.5cm。一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。

  4、冷冻一个0℃的物体,使它每分钟下降2℃。物体的温度T(℃)随冷冻时间t(分)的变化而变化。

  解:

  1、根据圆的周长公式可得:L=2r。

  2、依据密度公式p=可得:m=7.8V。

  3、据题意可知:h=0.5n。

  4、据题意可知:T=—2t。

  我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样。

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func—tion),其中k叫做比例系数。

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

  [活动一]

  活动内容设计:

  画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律。

  1、y=2x2、y=—2x

  活动设计意图:

  通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。

  教师活动:

  引导学生正确画图、积极探索、总结规律、准确表述。

  学生活动:

  利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。

  活动过程与结论:

  1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:

  x—3—2—

  y—6—4—

  画出图象如图(1)。

  2、y=—2x的.自变量取值范围可以是全体实数,列表表示几组对应值:

  x—3—2—

  y6420—2—4—6

  画出图象如图(2)。

  3、两个图象的共同点:都是经过原点的直线。

  不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限。

  尝试练习:

  在同一坐标系中,画出下列函数的图象,并对它们进行比较。

  1、y=x2、y=—x

  x—6—4—

  y=x—3—2—

  y=—x3210—1—2—3

  比较两个函数图象可以看出:两个图象都是经过原点的直线。函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=—x的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

  总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线。当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k

  正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx。

  [活动二]

  活动内容设计:

  经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

  活动设计意图:

  通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理。

  教师活动:

  引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。

  学生活动:

  在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。

  活动过程及结论:

  经过原点与点(1,k)的直线是函数y=kx的图象。

  画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。

  Ⅲ。随堂练习

  用你认为最简单的方法画出下列函数图象:

  1、y=x2、y=—3x

  解:除原点外,分别找出适合两个函数关系式的一个点来:

  1、y= x(2,3)

  2、y=—3x(1,—3)

  小结:

  本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础。

  课后作业

  习题11.2─1、2题。

正比例教学设计11

  1.联系生活,从生活中引入,激发了学生学习兴趣。

  数学来源于生活,又服务于生活。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。程老师从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有数学。如,新课开始时,程老师利用“张红想知道旗杆的高度”,从这样一个学生身边的例子引入,不仅让学生感受了数学与生活的紧密联系,还有效地设置了悬念,激发了学生学好本节课知识的.兴趣和决心。

  2.有效地处理教材,让学生亲身经历数学模型的形成过程。

  《比例的意义》这部分知识比较枯燥,也比较抽象,不易让学生直观的理解,与实际生活较远。而程老师处理的很好,把无声的、枯燥的教材进行了有声的、精彩的演绎。在这一节课中,程老师运用各种方法,通过对同一比例不同大小的国旗的长宽比例的探究,运用计算比值、课件演示、交流讨论、自主写出比例等等一系列的方法进行由浅入深地自主探索,实现了学生对“比例的意义”这一知识的真正理解和运用。

  3、服务于生活,回到生活中去,解决生活中的实际问题。

  在以上抽象出“数学模型”的基础上让学生进行拓展应用,体现“数学从生活中来,到生活中去的”思想,程老师在课的最后出示“大自然中的比例”,让学生利用学到的知识解决生活中的实际问题,既让学生感受了数学学习的价值,又和课的开始形成了呼应。圆满中结束本课的学习,学习效果很好。

正比例教学设计12

  教学内容:

  本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。

  教材分析:

  本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。

  教学目标:

  1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。

  2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

  4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。

  教学重点:

  认识正、反比例的意义

  教学难点:

  根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。

  课时安排:

  正比例和反比例(4课时)

  第1课时

  教学内容

  成正比例的量

  教材第62—63页的例1和试一试,练一练和练习十三的第1—3题

  课型

  新授

  本单元教时数:4本教时为第1教时备课日期月日

  教学目标

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、2、使学生在认识成正比例的.量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。

  3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。

  教学重点

  使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点

  根据正比例的意义正确判断两种相关联的量是不是成正比例。

  教学准备

  光盘课件

  教学过程设计

  教学内容

  教师活动

  学生活动

  二次备课

  一、教学例1

  1、谈话引出例1的表格

  2、这两种量的数据是怎样变化的?

  时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。

  小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。

  3、但是,你能发现什么呢?

  如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。

  这个比值是什么呢?

  谁能用一句话来概括例1中的变化与不变

  4、介绍成正比例的量

  指名说说,表中有哪两种量

  引导学生观察,

  指名说一说。

  启发学生从“变化”中寻找“不变”。

  学生试着回答,教师帮助完成。

  学生完整的说说路程和时间成正比例的量

  二、教学试一试

  1、出示教材试一试

  教师指导学生完成

  学试着完成,并交流回答四个问题。

  三、概括意义

  1、引导学生观察例1和试一试,它们有什么共同点。

  2、概括正比例的意义,揭示课题(板书)

  3、用字母怎样表示成正比例关系的两种量呢?

  y:x=k(一定)

  观察,说说自己的发现。

  学生完整的说一说例1和试一试成正比例关系。

  四、巩固练习

  1、完成练一练

  2、练习十三第1题

  重点让学生说出判断的理由

  3、做练习十三第2题

  4、做练习十三第3题

  引导学生根据计算的结果来判断。完成书上的问题

  重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。

  独立判断,交流时说出判断的理由。

  学生先各自算一算,交流,说出思考过程。

  指名判断,交流时说出思考过程,其它同学进行补充或纠正。

  学生理解题意,然后在书上画一画,算一算,填在书上。

  五、全课总结

  学习了什么?你有什么收获?

  说一说

  板书

  正比例的意义

  两种相关联的量=k(一定)y和x就成正比例的量

  课后感受

  第2课时

  教学内容

  正比例的意义及其图像

  教材第63页例2,随后的练一练和练习十三的第4、5题

  课型

  新授

  本单元教时数:4本教时为第2教时备课日期月日

  教学目标

  1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

  2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  教学重点

  使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

  教学难点

  使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  教学准备

  光盘课件

  教学过程设计

  教学内容

  教师活动

  学生活动

  二次备课

  一、教学例2

  1、先出示例1的表格

  谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。

  出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?

  引导学生观察这些点的排布规律,并用直线连起来。

  提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)

  (2)图中所描的点在一条直线上吗?

  (3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?

  学生描点。

  学生按要求操作完成。

  指名回答

  如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。

  二、巩固练习

  1、练一练

  学生做好后展示学生画的图象,共同评议

  问:你们画出的表示打字时间和打字个数关系的图象有什么特点?

  指名回答第(3)个问题

  追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?

  2、练习十三第4题

  既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。

  第二题要求估计,答案出入是允许的

  3、第5题

  先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。

  学生独立完成

  指名回答第(2)个问题

  学生相互间说一说

  学生回答,要说明理由

  讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。

  三、全课总结

  今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?

  说说,议论议论。

  板书

  正比例的意义及其图像

  例2(图像)

  课后感受

正比例教学设计13

  尊敬的各位评委:

  你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

  一、教材分析

  1、教学内容:人教版六年级下册P39正比例的意义。

  2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

  3、教学重点,难点、关键:

  教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

  4、教学目标:

  根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

  知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

  情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  二、学况分析

  六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

  三、教法

  遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

  四、学法

  引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

  五、教学过程

  本节课我安排了六个教学环节

  第一个环节:游戏导入,激发兴趣

  用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

  第二环节:引导观察,启发思考

  教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的`变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

  第三环节:创设情景,观察实验

  用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

  第四环节:探究成正比例的量

  学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  第五环节:巩固练习,拓展提高

  第六环节:全课小结

  六、效果预测

  在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

  本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

正比例教学设计14

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  【教学重难点】

  重点:

  成正比例的量的特征及其断方法。

  难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  【教学过程】

  一、四顾旧知,复习铺垫

  商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

  二、引导探索,学习新知

  1、教学例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

  (2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:===…=3、5,每一组数据的比值一定。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的'量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

  两种量中相对应的两个数的比值一定,这是关键。

  4、认识正比例图象。(课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

  无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

  小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

正比例教学设计15

  【教学内容】

  《义务教育课程标准实验教科书·数学》六年级下册45页~46页

  【教学目标】

  1.通过观察、比较、判断、归纳等方法,帮助学生理解正比例的意义。

  2.培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。

  3.用 表示变量之间的关系,初步渗透函数思想。

  【教学重点】理解正比例的意义。

  【教学难点】引导学生通过观察、思考发现两种相关联的量的比值一定,概括出成正比例的概念。

  【教具准备】

  课件 一.创设情境 导入新课

  同学们,再有两个多月的时间,我们就小学毕业了。学习了六年的数学,有一样东西跟我们最亲密,那就是数学书。

  (师拿出一本数学书)大家看,这是一本数学书、2本、3本、 随着书的本数在增多,什么也在变化?

  (学生说什么,教师就引导学生理解:如书的本数越多,书的总价就越厚高,说明书的本数和书的总价有关系,我们就说:书的本数和书的总价是两个相关联的量)板书:相关联的量

  由此可以看出:书的厚度、重量、价格都和书的本数是相关联的量,他们随着书的本数的变化而变化,这里面蕴含着一个重要的观点,那就是变化的观点,今天我们就来研究数量间的变化,去发现变化中的规律。

  (设计意图:由和学生最为亲密的数学课本入手这一例子,引出了两个相关联的量,由于事例为学生所熟悉,故很快将学生带入轻松愉快的学习情境,使学生及时进入状态,手脑并用,课堂气氛活跃。同时使学生感悟到生活中处处有数学,数学来源于生活。)

  二、探索交流 解决问题

  (一)探究成正比例的量

  课前,老师选择了书的本数和价格这两个相关联的量,并制作了一张统计表,我们一起来看

  看。

  1.教师引领 初步感知——教学例1 教师课件出示统计表

  (1)师:表中有哪两个相关联的量?

  生:总价与本数

  (2)师:总价是怎样随着数量的变化而变化的?

  生:(当本数是1本,总价是5元,当本数是2本,总价是10元.本数变化,总价也随着变化.从左住右看,本数增加,总价也随着增加;从右住左看,本数减少,总价也随着减少.本数和总价是相关联的两种量.一种量变化,另一种量也随着变化.)

  (3)师:总价与本数的变化有什么不变的规律? 预设:方案1(学生若回答有困难)

  师启发:相应的总价与本数的比分别是多少?比值是多少?你从中发现了什么规律吗? 生:(5|1=5 10|2=5 15|3=5 20|4=5(相对应的两个数的比值一定)

  师:相对应的两个数的比值一定也就是书的单价一定。你能用一个数量关系式来表示总价 数量、单价之间的关系?

  生:总价|本数=单价(一定)师:为什么特意加上一定两个字?

  生:因为不管总价与本数怎么变,书的单价始终保持不变

  师:是的,这个很重要,下面继续我们的探索之旅。路程与时间是不是也具有这样的关系呢?

  预设方案2(学生能回答)生:一本书的价格不变

  师:也就是书的单价不变,单价不变,就是总价与数量的比值不变。

  师:相对应总价与数量的比值是多少?你能用一个数量关系式表示他们之间关系吗?

  生:总价|本数=单价(一定)师:为什么特意加上一定两个字?

  生:因为不管总价与本数怎么变,书的单价始终保持不变

  师:是的,这个很重要,下面继续我们的探索之旅。路程与时间是不是也具有这样的关系呢?(设计意图:利用学生较熟悉的数量关系单价、数量、总价,由学生观察,找出规律。并借助教材中的三个问题,适时提问“总价与数量的变化中什么不发生变化?”引导学生用多种方式表征,初步感受“一个量增加,另一个量也随着增加”以及一个不变的量(比值一定),为后面学生的进一步发现学习提供了充分的心理准备与知识准备。

  2、小组合作,加深理解

  出示例2: 一辆汽车行驶的时间和路程如下表:

  时间(小时)路程(千米)

  分组讨论: 80

  …...…...160 240 320 400

  (1)表中有哪两种相关联的量?(表中有时间和路程两种量,它们是相关联的两种量)

  (2)仔细观察,路程是怎样随着时间的变化而变化的?(当时间是1小时,路程则是80千米,时间是2小时,路程是160千米,时间变化,路程也随着变化.时间增加,路程也随着增加;

  一种量变化,另一种量也随着变化.时间减少,路程也随着减少.)

  (3)相对应的路程和时间的比分别是多少?比值是多少?

  80|1=80 160|2=80 240|3=80 320|4=80

  (4)这个比值表示的是什么?如何用关系式来表示他们之间的关系? 生:这里的80表示一辆汽车的速度。也就是路程和时间的比值一定. 路程|时间=速度(一定)

  (设计意图:因为成正比例的`量这个概念本来就比较难理解,学生在短短的一节课中很难一下子正确建模。因此,教学例1之后,应根据教学需要和学生学习实际,我自主开发了一些新的教学内容,对学生的课本学习形成补充和拓展。)

  3、归纳总结

  师:比较例

  1、例2,这两个例子有什么共同点?学生汇报讨论结果。汇报时教师引导学生比较上面两种情况的相同点和不同点。同时教师根据学生的回答板书:(1)都有两种相关联的量

  (2)一种量变化,另一种量也随着变化

  (3)相对应的两个数的比值(也就是商)一定

  4.建立模型,抽象概括正比例的意义

  (1)师:具有这样变化规律的两个量到底是什么关系呢?请到数学书45页去寻找答案吧!

  生:自学汇报 师:我们一起来看大屏幕(课件总结)两种相关联的量,一种量变化,另一种量也随着变化。两种量中相对应的两个数的比值(也就是商)一定。这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

  板书课题:正比例

  (设计意图:让学生自学课本,一是为了培养学生的阅读能力,和自学意识,第二是为让学生加深对正比例的理解和认识

  (2)判断条件:

  根据成正比例的量的概念,谁来说说一说,要想知道两种量是不是正比例关系,应该抓住哪些关键点?

  (3)教学字母关系式

  师:如果用y和x表示两种相关联的变量,不变的量(即定量)用k表示,谁能用字母表示正比例关系?

  生:= k(一定)(3)全班交流:根据正比例的意义以及正比例关系的式子,想一想,成正比例的两种量必须具备哪些条件?

  (4)小结:两种量要有关联。

  一个量增加,另一个量随着增加。一个量减少,另一个量随着减少。两种量的比值一定。(设计意图:为使学生更好地理解、把握、运用概念,概念归纳出来后,引导学生找准把握概念的“关键词”非常必要,而且十分有效。如提出“要判断两个量是不是成正比例的量,要具备哪几个条件?”引导学生用言语、图象、关系式等不同方式加以表征,以揭示概念的本质,加深对概念的理解。)

  5、引导举例,强化认识

  师:想一想,生活中还有哪些成正比例的量?

  (1)学生自由举例。

  (2)预设:因为长方形的面积÷长=长方形的宽,所以长方形的面积和长成正比例。师:日常生活和生产中有很多相关联的量,有的成正比例,有的相关联,但不成比例。判断两种相关联的量是否成正比例,要看这两个量的比值是否一定,只有比值一定,这两个量才成正

  比例。

  6、判断下面的两种量是否成正比例?并说明理由

  (1)长方形的宽一定,长和它的面积

  (2)《小学生作文》的单价一定,总价和订阅的数量。

  (3)小新跳高的高度和他的身高。

  (4)小麦每公顷的产量一定,小麦的公顷数和总产量。

  (5)书的总页数一定,已经看的页

  (设计意图:这个环节设计的练习目的是让学生在巩固的基础上,学会明辨是非,加深对正比例的认识,同时,也让学生明确:“相关联的两个量也未必就是正比例,判断两种量是否成正比例,关键还要看它们的比值是否一定。)

  (二)研究正比例图像

  师:正比例关系不但能通过计算看比值是不是一定来判读,还能用图像来表示。

  出示例2:

  一辆汽车行驶的时间和路程如下表:

  时间(小时)路程(千米)

  出示图表 80

  …...…...160 240 320 400

  师:仔细观察,从图中能获得哪些信息?

  生:

  学生尝试画图。

  温馨提示:

  (1)在图中找到相对应的点并画出来。

  (2)仔细观察画出的点,先猜一猜,再连一连,你有什么发现?

  3.学生展示画图,感知正比例图像。

  猜测:我们经过观察发现这些点连起来好像是一条直线。师质疑:是不是这样呢?

  师:老师发现刚才有很多连线的时候都是从第一点开始连得,孩子们想一想,到底应该从哪儿开始连?

  生:0点

  师:0点意思表示什么意呢?

  教师引导学生说出0点表示:0小时行驶了0千米的路程(汽车还没有出发在原点)。师:那就请同学们把图像完善好。

  师 质疑:A点表示什么意思?B点表示什么意思?

  生:

  4、师小结:大家把所描的各点连起来都在一条直线上。看出正比例的图像就是一条从(0,0)出发的无线延伸的射线。我们可以利用这个发现判断两个量是否成正比例。大家刚才的发现和法国著名数学家笛卡儿的发明不谋而合,大家真了不起!

  (课件)数和形是数学的两大根基,以前毫不相干,正是笛卡儿的发明,把“数”转化为“形”的图象,从此数学发展更蓬勃,令数有了几何意义,是很多高等数学的思想。这是数学史上的伟大创举!大家的发现和数学家想的一样,好样的。请同学们把掌声送给最棒的自己。

  (设计意图:这一环节向学生渗透数学文化,从而数形完美结合)

  5、引导学生利用正比例图像解决问题。

  师:我们可以运用正比例图像解决生活中的一些问题。抛出问题:

  (1)根据图像判断,这辆汽车2.5小时行驶多少千米?

  (2)估计一下,行驶440千米需要多少小时? 引导学生:

  ①想一想,2.5小时大约在横轴的什么位置,能否在正比例图像上找到相对应的点?这个点对应纵轴上什么位置?

  ②动动手,利用三角板在图上试着画一画、找一找、验证一下。

  ③动画演示,将想象的点画出来。师:你为什么找得这么快?有什么好办法?

  生:台前演示

  师:利用正比例关系图像,不用计算,可以由一个量的值,直接找到对应的另一个量的值。得出结论:

  (设计意图:把研究的机会放给学生,充分发挥学生的主体地位。通过猜一猜、想一想、画一画等数学活动,提高学生解决问题的能力,并适时对学生进行数学人文教育。)

  6、总结

  今天我们通过猜想验证和“画一画、说一说、估一估”等数学活动,初步感知了正比例图像,并能在图中根据一个变量的值估计它所对应的变量的值。同学们真的非常了不起!

  四、回顾整理 反思提升

  1、通过这一节课的学习,你有什么收获?

  生:(2-3名学生回答)

  2、盘点学习过程

  千金难买回头看,我们一起来回顾这节课的学习过程,首先我们研究了总价、本数这两个相关联的量之间的关系,接着又研究了路程、时间这两个相关联的量,借助这两个具体的数量关系,由此归纳抽象出正比例模型。接着又研究了正比例图像,从而实现了数与形的完美结合!在以后的学习中,我们也可以用这种方法去学习研究其他的知识。

  3、最后送一句话给大家,“学而不思则罔,思而不学则怠”。希望同学们在以后的学习中勤于反思,善于总结,只有把学习和思考结合起来,才能有更大大多的发现!

  (设计意图:俗话说:“授之以鱼,不如授之以渔”本环节的设计既有知识的提升,更有学习方法的总结。)

【正比例教学设计】相关文章:

正比例教学设计09-18

《正比例》教学设计10-07

正比例的教学设计10-06

《正比例》教学设计02-12

《正比例》教学设计04-22

正比例教学设计02-22

正比例教学设计01-06

正比例教学设计范文10-07

有关《正比例》的教学设计10-07

《正比例》教学设计范文10-07