《抽屉原理》教学设计优秀

时间:2024-06-17 13:10:42 教学资源 投诉 投稿

《抽屉原理》教学设计优秀范例【3篇】

  作为一名老师,通常需要准备好一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么教学设计应该怎么写才合适呢?以下是小编精心整理的《抽屉原理》教学设计优秀,欢迎大家借鉴与参考,希望对大家有所帮助。

《抽屉原理》教学设计优秀范例【3篇】

《抽屉原理》教学设计优秀1

  一、教学设计

  1.教材分析

  《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

  2.学情分析

  “抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。

  3.教学理念

  激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

  4.教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

  3.通过“抽屉原理”的灵活应用感受数学的魅力。

  5.教学重难点

  重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

  难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

  6.教学过程

  一、课前游戏引入。

  上课前,我们先来热身一下,一起来玩抢椅子的游戏。

  这有4把椅子,请5位同学上来参加游戏,游戏规则是:在老师说开始时,5位同学绕着椅子走,当老师说停的,5位同学都要坐在椅子上。

  为什么总有一张椅子至少坐两个同学?

  在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。(板书课题)

  二、通过操作,探究新知

  (一)探究物体数比抽屉数多1的情况

  1、把3根小棒放进2个杯子中,有几种不同的放法?(1)同桌合作,想一想,摆一摆,并记录下来。

  (2)反馈:两种放法:(3,0)和(2,1)。

  (3)从两种放法,同学们会有什么发现呢?(总有一个杯子中至少放进2根小棒)你是怎么发现的?

  (4)“总有”什么意思?(一定有)

  (5)“至少”有2根什么意思?(不少于2根)

  小结:把3根小棒放进2个杯子中,不管怎么放,总有一个杯子中至少放进了2根小棒。

  2、要把4根小棒放进3个杯子里,有几种放法?

  (1)请同学们动手摆一摆,再把你的想法在小组内交流。

  (2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

  (3)从四种放法,同学们会有什么发现呢?(总有一个杯子里至少有2根小棒)

  (4)你是怎么发现的?

  (5)大家通过枚举出四种放法,能清楚地发现“总有一个杯子里放进了2根小棒”。

  3、类推:把6根小棒放入5个杯子中,总有一个杯子中至少有几根小棒,为什么?

  还用不用把所有的摆法再一一列举出来,有什么方法只摆一次就能证明这个结论。(平均分)

  为什么用平均分的方法就能证明这个结论?余下的。小棒怎么分?

  怎样用算式表示?(6÷5=11,商1表示什么,余1又表示什么?)把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  4、从刚才我们的探究活动中,你有什么发现?(当物体数比抽屉数多1,就总有一个抽屉中至少放进了2个物体。)

  7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?

  过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。

  (二)探究物体数比抽屉数多几倍还多的情况

  1、研究把5根小棒放进3个杯子

  (1)把5根小棒放进3个杯子,总有一个杯子中至少有几根小棒?

  (2)可以怎样分,用平均分的方法证明一下。先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。

  (4)可以把我们的想法用算式表示出来:5÷3=1…2(商1表示什么,余数2表示什么)2+1=3表示什么?

  2、类推:如果把9根小棒放进4个杯子中,15根小棒也放进4个杯子中,会有什么结论?

  3、怎样求至少数?(商+1)

  3、小结:当物体数比抽屉数多几倍还多的情况,用物体数除以抽屉数,有余数时,至少数=商+1.

  4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

  5、做一做:

  (1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

  (先让学生独立思考,在小组里讨论,再全班反馈)

  (2)11个小朋友同行,其中至少有几个小朋友性别相同?

  (3)从电影院任意找来15个观众,至少有几个人属相相同?

  (找到题中什么当抽屉,物体数是多少,运用抽屉原理列出算式,并解释原因)

  三、迁移与拓展

  1、下面我们一起来放松一下,做个小游戏。

  我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

  2、用三种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂

  色相同。

  得出结论:当物体数除以抽屉数,整除时,至少数=商

  四、总结全课这节课,你有什么收获?

  二、教学反思

  新一轮的课程改革,把原本在奥数教材中出现的一些开发智力、开阔视野的数学思维训练内容也加入到数学教材中,以“数学广角”单元的形式出现。“抽屉原理”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。这对我们数学教师的教学提出了挑战。通过课堂实践,感受颇深,反思我的教学过程,有几下几点可取之处:

  1、创设情境,从学生熟悉的素材开始激发兴趣,兴趣是最好的老师。课前“抢凳子”游戏,简单却能真实的反映“抽屉原理”的本质。通过猜测,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

  2、建立模型,本节课充分放手,让学生自主思考,恰当引导

  教师是学生的合作者,引导者。在活动设计中,我注重学生经历知识产生、形成的过程。4根小棒放进3个杯子的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的.说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:小棒数比杯子数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。

  3、解释应用,深化知识。

  学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

  教学永远是一门遗憾的艺术。回顾整节课我觉得还有许多不足之处,学生对至少数的理解还很模糊,只是按照程式推导出至少数的求法,并没有真正体会出抽屉原理的本质。没有给学生足够思考的空间,只是有部分学生说出就给出结论,面向的应是全体学生,这是在我教学过程中还应加强的部分。

《抽屉原理》教学设计优秀2

  教材分析

  《抽屉原理的认识》是人教版数学六年级下册第五章内容。在数学问题中有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。、

  学情分析

  本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。通过几个直观的例子,用假设法向学生介绍“抽屉原理”,学生难以理解,感觉抽象。在教学时,我结合本班实际,用学生熟悉的吸管和杯子贯穿整个课堂,让学生通过动手操作,在活动中真正去认识、理解“抽屉原理”学生学得轻松也容易接受。

  教学目标

  1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2、通过操作发展 的类推能力,形成抽象的数学思维。

  3、通过“抽屉原理”的灵活应用,感受数学的魅力。

  教学重点和难点

  【教学重点】

  经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

  【教学难点】

  理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

  教学内容:

  六年级数学下册70页、71页例1、例2。

  教学目标:

  1、理解“抽屉原理”的一般形式。

  2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

  4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

  教学重点:

  经历“抽屉原理”探究过程,初步了解“抽屉原理”。

  教学难点:

  理解“抽屉原理”的.一般规律。

  教学准备:

  相应数量的杯子、铅笔、课件。

  教学过程:

  一、情景引入

  让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

  师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。

  二、探究新知

  1、探究3根铅笔放到2个杯子里的问题。

  师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?

  摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

  (1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?

  (2)、学生汇报放结果,结合学具操作解释。教师作相应记录。

  (4,0,0) (3,1,0) (2,2,0) (2,1,1)

  (学生通过操作观察、比较不难发现有与上个问题同样结论。)

  (3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

  师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。

  师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。

  教师出示课件演示让学生进一步理解“平均放”。

  3、探究n+1根铅笔放进n个杯子问题

  师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?

  让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。

  师:7根铅笔放进6个杯子,你们又有什么发现?

  学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。

  学生汇报后引导学生用实验验证想法。

  师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)

  师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)

  4、总结规律

  师:刚才我们研究的都是铅笔数比杯子数多1,而余数也正巧是1的,如果余下铅笔数比杯子多2、多3、多4的呢,结论又会怎样?

  (1)探究把5根铅笔放在3个杯子里,不管怎么放,总有一个杯子里至少有几根铅笔?为什么?

  a、先同桌摆一摆,再说一说。

  b、你怎么分的?

  学生汇报后,教师演示:将5根笔平均分到3个杯子里里,余下的两根怎么办?是把余下的两根无论放到哪个杯子里都行吗?怎样保证至少?

  引导学生知道再把两根铅笔平均分,分别放入两个杯子里。

  (2)探究把15根铅笔放在4个杯子里的结论。

  (3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。

《抽屉原理》教学设计优秀3

  桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。

  教学理念:

  激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

  教学目标

  1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

  3.通过“抽屉原理”的灵活应用感受数学的魅力。

  教学重难点

  重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

  难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

  教学过程:

  一、课前游戏引入。

  师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

  师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

  师:开始。

  师:都坐下了吗?

  生:坐下了。

  师:我没有看到他们坐的`情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?

  生:对!

  师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(抽屉原理)

  二、通过操作,探究新知

  (一)探究例1

  1、研究3枝铅笔放进2个文具盒。

  (1)要把3枝铅笔放进2个文具盒 ,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

  (2)反馈:两种放法:(3,0)和(2,1)。

  (3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

  (4)“总有”什么意思?(一定有)

  (5)“至少”有2枝什么意思?(不少于2枝)

  小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)

  2、研究4枝铅笔放进3个文具盒。

  (1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

  (2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

  (3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)

  (4)你是怎么发现的?

  (5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)

  (6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

  (7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

  (8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

  3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

  4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

  5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

  6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。

  这就是今天我们要学习的抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”

  7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?

  过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。

  (二)探究例2

  1、研究把5本书放进2个抽屉。

  (1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)

  (2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)

  (3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。

  (4)可以把我们的想法用算式表示出来:5÷2=2…1(商2表示什么,余数1表示什么)2+1=3表示什么?

  2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。

  如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。

  如果把11本书放进3个抽屉中。至少有一个抽屉放进4本书。你是怎样想的?(11÷3=3…2)商3表示什么?余数2表示什么?3+1=4表示什么?

  3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

  4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

  5、做一做:

  7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?

  8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

  (先让学生独立思考,在小组里讨论,再全班反馈)

  三、迁移与拓展

  下面我们一起来放松一下,做个小游戏。

  我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

  四、总结全课

  这节课,你有什么收获?

【《抽屉原理》教学设计优秀】相关文章:

《抽屉原理》教学设计优秀10-13

《抽屉原理》教学设计优秀(集合)12-13

抽屉原理教学设计02-01

《抽屉原理》教学设计02-13

抽屉原理教学设计10-07

《抽屉原理》教学设计04-15

《抽屉原理》教学设计最新06-08

[热]抽屉原理教学设计10-26

《抽屉原理》教学设计优秀3篇[优选]04-15

《抽屉原理》教学设计优秀集锦(5篇)12-13